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Background. MicroRNAs are endogenous, small noncoding RNA molecules that play a pivotal role in the regulation of gene
expression. MicroRNAs are involved in many biological processes such as proliferation, cell differentiation, neovascularization,
and apoptosis. Studies on microRNA expression may contribute to a better understanding of the pathomechanism of chronic
inflammatory demyelinating polyneuropathy (CIDP) and consequently enable the development of new therapeutic measures
using antisense miRNAs (antagomirs). In this study, we evaluated the level of miR-31-5p in the serum of patients with CIDP
and its correlation with the miR-31-5p level and clinical presentation and electrophysiological and biochemical parameters.
Methods. The study group consisted of 48 patients, mean age 61:60 ± 11:76, who fulfilled the diagnostic criteria of a typical
variant of CIDP. The expression of miR-31-5p in patient serum probes was investigated by droplet digital PCR. The results
were correlated with neurophysiological findings and the patient’s clinical and biochemical parameters. Results. The mean copy
number of miRNA-31 in 100μl serum was 1288:64 ± 2001:02 in the CIDP group of patients, while in the control group, it was
3743:09 ± 4026:90. There was a significant positive correlation (0.426) between IgIV treatment duration and miR-31-5p
expression. Patients without IgIV treatment showed significantly lower levels of miR-31 compared to the treated group
(259:44 ± 304:02 vs. 1559:48 ± 2168:45; p = 0:002). The group of patients with body weight > 80 kg showed statistically
significantly lower levels of miRNA-31-5p than the patients with lower body weight (934:37 ± 1739:66 vs. 1784:62 ± 2271:62,
respectively; p = 0:014). Similarly, the patients with elevated cerebrospinal fluid (CSF) protein levels had significantly higher
miRNA-31-5p expression than those with normal protein levels (1393:93 ± 1932:27 vs. 987:38 ± 2364:10, respectively; p = 0:044
). Conclusion. The results may support the hypothesis that miR-31-5p is strongly involved in the autoimmune process in
CIDP. The positive correlation between higher miR-31-5p levels and duration of IVIg treatment may be an additional factor
explaining the efficacy of prolonged IVIg therapy in CIDP.

1. Introduction

MicroRNAs (miRNAs) are a family of single-stranded, non-
coding gene expression, endogenous regulatory molecules

formed from double-stranded precursors. miRNAs are a
group of molecules about 21-23 nucleotides in length that
posttranscriptionally regulate gene expression and thus con-
tribute to the modulation of numerous complex and disease-
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relevant cellular processes, including cell proliferation, cell
motility, cell cycle control, neovascularization, apoptosis,
and stress response. Their role depends mainly on their
complementarity to the 3′UTR regions of targeted miRNAs.
The importance of these molecules is demonstrated by the
fact that more than one-third of protein-coding genes in
human cells are regulated by miRNAs. It was estimated that
genes encoding miRNAs account for 1-5% of all genes in
humans and animals [1–3]. Previous studies had reported
that miR-31-5p plays an essential role in tumor suppression
in hepatocellular carcinoma by regulating the cell cycle and
epithelia-mesenchymal transition. In addition, the altered
expression of miR-31-5p was also confirmed in other tumors
such as esophageal squamous cell carcinoma, gastric cancer,
colorectal cancer, breast cancer, and cervical cancer [4–6].

On the other hand, together with other miRNAs such as
miR-1, miR-133a, miR-133b, and miR-206, miR-31 belongs
to dystromirs (Dystromirs as Serum Biomarkers for Moni-
toring the Disease Severity in Duchenne Muscular Dystro-
phy) due to the specific expression in muscle cells and
roles in skeletal muscle maintenance and regeneration [7].
It has been shown that miR-31 is involved in muscle prolif-
eration and differentiation, as it increases myoblast transfor-
mation in myotubes [8]. Furthermore, miR-31 modulates
dystrophin expression by targeting the 3′UTR of the dystro-
phin transcript and repressing its translation. Therefore,
miR-31 has been suggested as a suitable target for improving
dystrophin recovery in exon skipping therapy in Duchenne
muscular dystrophy [7, 9].

The level and effect of miR-31 thus vary by the type of
the autoimmune disease [10–12]. miR-31 expression
increases in the mice T cells in experimental autoimmune
encephalomyelitis (EAE) and keratinocytes of patients with
psoriasis, and its activation is associated with exacerbation
of both diseases [12–14]. In contrast, patients with sys-
temic lupus erythematosus have decreased expression of
miR-31 in T cells, where it plays protective roles [15].
Moreover, miR-31 may also modulate the immune
response of neutrophils [12].

The immune system homeostasis is mediated by regu-
latory T (Treg) cells [10]. miR-31 regulates Treg cells
through several mechanisms, including suppression of
FOXP3 (forkhead box P3) protein involved in Treg cell
differentiation. Furthermore, miR-31 can repress the gen-
eration of peripherally derived Treg cells [11], which dif-
ferentiate into secondary lymphoid organs and tissues to
control autoimmune responses under specific inflamma-
tory conditions [12]. Zhang et al. [13] identified a poten-
tial FOXP3-binding site within the promoter region of
the gene encoding murine miR-31, suggesting that FOXP3
may directly target miR-31. FOXP3+ Treg cells are critical
in maintaining immune tolerance and homeostasis of the
immune system. The molecular mechanisms underlying
the stability, plasticity, and functional activity of Treg cells
have been much studied in recent years. Therefore, identi-
fying the molecular mechanisms by which FOXP3 and
miR-31 regulate each other and identifying the other
downstream target genes in this regulatory network can

assist in the development of novel treatments for autoim-
mune diseases [16, 17].

Chronic inflammatory demyelinating polyneuropathy
(CIDP) is an acquired autoimmune neuropathy in which
nerve damage occurs by both cellular and humoral mecha-
nisms. The incidence rates varied between 0.15 and 0.70
cases per 100,000 persons per year. This disease occurs in
all age groups, but its prevalence increases with age and is
more common in men than in women. The median disease
duration to diagnosis was ten months (range, 2-64) [18–20].

While various antibodies have been identified, including
IgG4 classes directed against proteins of the Ranvier node
and the nodal area, the diagnosis of CIDP is still based on
clinical and electrophysiological criteria [18, 21, 22]. There
is no specific biomarker characteristic for CIDP, which
seems to be much-needed. Research on miRNAs appears
to be helpful in the search for diagnostic markers and may
contribute to the development of potential treatment. The
incorrect expression of particular miRNAs may result from
genome changes or abnormalities in their biogenesis or
may be related to epigenetic factors regulating gene expres-
sion. Not only are the structurally determined changes in
miRNA expression levels significant, but also their epige-
netic regulation. Modulation of miRNA expression by
changes in the methylation level of their genes will probably
be a future target for new therapies in CIDP.

The aim of this study was to evaluate the expression of
miR-31-5p in serum in CIDP patients with the assessment
of the correlation between miR-31-5p level and clinical pre-
sentation and electrophysiological and biochemical parame-
ters. Electrodiagnostics (nerve conduction studies) are
recommended to confirm the clinical diagnosis of typical
CIDP, so special attention was paid to the analysis of the
correlation of electrophysiological parameters with miR-
31-5p levels. In addition, we examined whether diabetes
mellitus could influence the level of the miRNA-31 level.
CSF analysis should be considered to exclude diagnoses
other than CIDP; in particular, elevated protein levels in
CSF should be interpreted with caution in the case of diabe-
tes mellitus comorbidity. We also analyzed the relationship
between IVIg treatment duration and miRNA expression.

2. Materials and Methods

The study group consisted of 48 patients (female: 8, male:
40), who fulfilled the CIDP diagnostic criteria according to
the European Academy of Neurology/Peripheral Nerve
Society guideline [18]. The mean age was 61:60 ± 11:76
years. A plasma exchange (5 exchanges over 2 weeks) pro-
cedure was performed in 23 patients with CIDP. Chronic
immunosuppressive treatment was used in 43 patients,
including corticosteroids (prednisolone) in 20 patients,
and immunosuppressive drugs in 13 patients (mycopheno-
late mofetil in 9 patients, azathioprinum in 3 patients, and
ciclosporin in 1 patient). In addition, 17 patients had dia-
betes mellitus type 2, including a history of plasma
exchange for the immediate treatment of CIDP, while 9
patients received chronic immunosuppressive therapy
(azathioprinum in 4 patients and mycophenolate mofetil
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in 5 patients). Hypertension was recognized in 23 patients.
Also, 23 patients had degenerative changes of the lumbo-
sacral vertebral column.

Patients with variants of CIDP (distal, multifocal, focal,
motor, and sensory), chronic immune sensory polyradiculo-
pathy (CISP), multifocal motor neuropathy (MMN), mono-
neuritis multiplex, hereditary demyelinating neuropathy,
chronic ataxic neuropathy with disialosyl antibodies
(CANDA) and chronic ataxic neuropathy, ophthalmoplegia,
IgM paraproteinaemia, cold agglutinin and disialosyl anti-
bodies (CANOMAD), cerebellar ataxia, neuropathy, vestib-
ular areflexia syndrome (CANVAS), and POEMS
syndrome were excluded from this study. Patients with IgG
or IgA monoclonal gammopathy of undetermined signifi-
cance and IgM monoclonal gammopathy without antibodies
to MAG were also excluded. HIV infection, other immuno-
logical conditions, and malignancy were also excluded.
Amyloidosis, liver and kidney damage, multiple myeloma
and osteosclerotic myeloma, venous insufficiency and
chronic limb ischaemia, myopathy and neuromuscular junc-
tion disease, dorsal column lesions (such as syphilis, para-
neoplastic diseases, and copper deficiency) and toxic
neuropathies (e.g., due to chemotherapy and vitamin B6 poi-
soning), and peripheral nerve tumors were excluded.

Vitamin B12 levels in all patients were normal. All
patients were negative for tumor markers, antibodies
against neuronal antigens, and antibodies characteristic
for autoimmune disorders, including connective tissue dis-
eases. All patients showed a good response to the treat-
ment, IVIg in particular.

The control group consisted of 13 subjects. The control
group was matched for sex, age, comorbidities, IBM index,
and smoking.

2.1. Ethical Standards. All subjects in the patient and control
groups were informed in detail about the purpose and proce-
dure of the study and gave written informed consent to par-
ticipate in the study. The authors had a positive opinion of
the Bioethics Committee of the Medical University of Wroc-
ław No. KB-719/2021 on conducting this study.

2.2. Clinical and Biochemical Evaluation. Clinical improve-
ment was defined according to the following scales: INCAT
disability scale (the significance was established as ≥1 point),
Medical Research Council (MRC) sum score (as ≥2 to 4
points), and grip strength measured by hand dynamometer
(+ more than 10% of the output value). The Inflammatory
Neuropathy Cause And Treatment (INCAT) disability scale
was first used in a clinical trial comparing the efficacy and
safety of intravenous immunoglobulin with oral prednisone
in patients with CIDP [23]. The scale is a measure of activity
limitation by assessing upper and lower limb dysfunction.
The INCAT score is inversely related to function, where 0
indicates no functional impairment and 10 indicates an
inability to perform any purposeful movement of the
limbs [24].

Serum microRNA-31 copy number; immunoglobulin
IgG, IgM, IgA and levels; and creatine kinase (CK) activity

were estimated. In addition, pleocytosis and protein levels
were determined in cerebrospinal fluid.

Correlations between miRNA-31 expression and disease
duration, clinical parameters (upper limb, lower limb, total
INCAT), IgIV treatment time, body weight, and selected
biochemical parameters (IgG, IgM, IgA, CK, CSF protein
levels, and CSF) were calculated. The group of patients was
divided into subgroups based on the disease duration (≤5
years/>5 years), body weight (≤80 kg/> 80 kg), INCAT total
(0–4/5–10), the presence of diabetes mellitus type 2 (yes/no),
hypertension (yes/no), CK level (normal/above normal),
CSF pleocytosis (<5/>5 cells/μl), protein (<50 g/dl/≥50 g/
dl), and IgIV treatment (yes/no).

2.3. Electroneurography. The electrophysiological tests were
carried out using the Viking Quest version 10.0 device.
Motor and sensory nerves were performed using standard
methods [25], with the evaluation of latency, amplitude,
and conduction velocity. All tests were done under the same
conditions. The same distance from the stimulating and
active electrodes was used. The room temperature fluctuated
between 21 and 23°C, and the temperature of the extremities
was not less than 32°C. Compound muscle action potential
(CMAP) was determined in the median, ulnar, peroneal,
and tibial nerves. F-wave latency was studied for all motor
nerves. Sensory nerve action potential (SNAP) was deter-
mined in the median, ulnar, and sural nerves.

2.4. Serum Collection and RNA Isolation. Blood samples
were collected from CIDP patients and controls. Serum frac-
tions were isolated within 2 hours after blood collection
using 10-minute centrifugation at 1900 × g and then at
16,000 × g. For serum miRNA isolation, the miRNeasy
Serum/Plasma Advanced Kit (Qiagen, Germany) was used
according to the manufacturer’s protocol. Then, miRNA
samples were frozen and stored at -80°C.

2.5. Reverse Transcription. Reverse transcription reactions
(RT) were performed using 2,5μl of extracted microRNAs,
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Figure 1: Histogram of miR-31-5p copies in 100μl of serum in the
patient group.
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TaqMan microRNA Reverse Transcription Kit (Thermo
Fisher Scientific, Foster City, CA, USA), and specific RT
primers for miR-31-5p in a final volume of 7.5μl according
to manufacturer’s recommendation. All RT products were
diluted twice with water.

2.6. ddPCR. Droplet digital PCR was applied as a method of
miR-31expression analysis due to its high accuracy, repro-
ducibility, and sensitivity [26]. The ddPCR reaction mixtures
contained the following: 1.33μl of RT product, 1μl of Taq-
Man miRNA-specific probe (ID 002279, Thermo Fisher Sci-
entific), 7.67μl of molecular biology-grade water, and 10μl
of 2x ddPCR™ Master Mix for Probes (Bio-Rad). A total of
20μl of the reaction mixtures was loaded into a plastic car-
tridge with 70μl of Droplet Generation Oil for Probes in
the QX200 Droplet Generator (all from Bio-Rad). The drop-
lets obtained from each sample were then transferred to a
96-well PCR plate (Eppendorf, Hamburg, Germany). PCR
amplifications were carried out in the C1000 Touch Thermal
Cycler at 95°C for 10min, followed by 40 cycles at 95°C for
3 sec and 60°C for 1min and 1 cycle at 98°C for 10min end-
ing at room temperature (RT). Finally, the plate was loaded
on a Droplet Reader (BioRad) and read automatically. Abso-
lute quantification (AQ) of each miRNA was calculated from
the number of positive counts per panel using Poisson distri-
bution. The quantification of the target miRNAs is presented
as the number of copies/100μl of serum.

2.7. Data Analysis. Statistical analyses were performed using
Statistica 13.0 software. Normality of distributions was
tested using the Shapiro-Wilk test. Due to the lack of nor-
mality of distribution for many variables, Spearman’s rank
correlation coefficient was used to analyze relationships
between variables. Due to the same reason, subgroup (based

on the disease duration, body weight, INCAT total, etc.)
comparisons were made using the Mann–Whitney U . The
level of statistical significance for all variables was set at
alpha = 0:05.

3. Results

3.1. The Clinical and Electrophysiological Data of the Study
Group. The mean duration of CIDP was 5.31 years
(SD ± 3:16). A total INCAT score was equal to 3:10 ± 2:14.
The INCAT score for the upper limbs was 1:65 ± 0:98, and
for the lower limbs, 1:77 ± 1:08. The mean body weight
was 88:35 ± 20:05 kg; 28 patients (female: 4, male: 24) had
a body weight > 80 kg. Blood tests results were as described:
CK 269:02 ± 194:88 IU/l, IgG level 10:81 ± 2:55 g/l, IgA
2:42 ± 1:03 g/l, and IgM 1:07 ± 0:77 g/l. CSF general exami-
nation showed a mean pleocytosis amounting to 3:70 ± 2:9
cells/μl, and the protein level was 74:20 ± 34:71mg/dl. The
mean copy number of miR-31-5p in 100μl serum was
1288:64 ± 2001:02 (Figure 1) in the CIDP group of patients,
while in the control group, 3743:09 ± 4026:90.

Seventeen (17) patients had diabetes mellitus, and all of
them were men. Table 1 shows the clinical characteristics
of patients with and without diabetes. The mean electro-
physiological parameters for subjects are shown in Table 2.

The electrophysiological parameters were also compared
between patients with and without concomitant diabetes
mellitus. A significantly longer latency of the sural nerve
SNAP was found in the diabetic group (4:25 ± 0:6 vs. 3:71
± 0:86; p = 0:037). There was no statistical significance
between the other parameters in the above groups.

3.2. The Correlations between MicroRNA-31-5p Copy
Number and the Data Studied. A significant correlation of

Table 1: The clinical characteristics of patients without and with diabetes.

Group of patients
without diabetes

Group of patients with
diabetes p value

Mean SD Mean SD

miR-31-5p/100 μl of serum 1366.33 2054.54 1146.97 1953.03 0.332

Duration of the CIDP (years) 5.35 3.07 5.24 3.42 0.688

Duration of IgIV treatment (months) 17.16 13.01 12.00 14.90 0.076

Body weight (kg) 87.32 20.27 90.24 20.12 0.726

INCAT upper limbs 1.94 1.00 1.12 0.70 0.005

INCAT lower limbs 1.97 1.17 1.41 0.80 0.086

Serum CK (IU/l) 279.13 197.57 250.59 194.48 0.698

Cerebrospinal fluid

IgG (g/l) 10.95 2.87 10.55 1.86 0846

IgA (g/l) 2.29 0.86 2.65 1.28 0.532

IgM
(g/l)

1.18 0.83 0.87 0.63 0.200

Pleocytosis (cells/μl) 3.43 2.49 4.18 3.70 0.796

Protein (mg/dl) 72.39 37.20 7741 30.66 0.499

Age (years) 59.23 11.93 65.94 10.40 0.070

ni 31 17

Gender F = 8 M = 23 F = 0 M = 17
Abbreviation: ni: number of patients in the group.
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miR-31-5p was noted for the duration of IgIV treatment
(0.426) (Table 3, Figure 2). Based on J. Guilford’s classifi-
cation, we showed a low correlation (0:1 < ∣r ∣ ≤0:3)

between microRNA-31-5p levels and IgG (0.212) and
IgA (-0.209) levels, peroneal CMAP latency (0.25), tibial
CMAP latency (0.24), and SNAP conduction velocity of

Table 2: The mean electrophysiological parameters of CIDP patients.

Nerve conduction Electrophysiological parameters
Patients
n = 48

Motor

Median (wrist-elbow)

Latency (ms) 6:20 ± 3:94
Amplitude (mV) 5:28 ± 3:75

CV (m/s) 37:50 ± 18:26

Ulnar (wrist-elbow)

Latency (ms) 3:60 ± 1:40
Amplitude (mV) 7:04 ± 3:20

CV (m/s) 46:48 ± 11:35

Peroneal (ankle head of fibula)

Latency (ms) 6:16 ± 1:88
Amplitude (mV) 2:01 ± 1:67

CV (m/s) 37:19 ± 6:81

Tibial (ankle popliteal fossa)

Latency (ms) 6:26 ± 1:38
Amplitude (mV) 3:19 ± 3:13

CV (m/s) 35:97 ± 7:74

Sensory

Median (digit II)

Latency (ms) 3:64 ± 1:03
Amplitude (μV) 11:01 ± 7:25

CV (m/s) 42:08 ± 7:69

Ulnar (digit V)

Latency (ms) 3:13 ± 0:94
Amplitude (μV) 10:36 ± 6:69

CV (m/s) 42:96 ± 8:89

Sural

Latency (ms) 3:82 ± 0:67
Amplitude (μV) 5:10 ± 3:92

CV (m/s) 43:47 ± 9:85

F-wave studies

Median

F-latency (ms)

34:34 ± 6:95
Ulnar 35:01 ± 7:74

Peroneal 67:17 ± 8:25
Tibial 67:62 ± 8:05

Table 3: Correlations of miR-31-5p with clinical and biochemical data in CIDP patients.

Data Correlations

Clinical
Parameters

Disease duration -0.024

IgIV treatment time 0.426

Weight -0.117

INCAT

Upper limb 0.186

Lower limb 0.109

Total 0.167

Biochemical parameters

Serum

CK -0.019

IgG 0.212

IgA -0.209

IgM 0.067

Cerebrospinal fluid
Protein levels 0.123

Pleocytosis 0.023
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the ulnar nerve (0.26). We did not find any significant
correlation between microRNA-31-5p expression and
other clinical, biochemical, and electrophysiological
parameters (Tables 3 and 4).

The patients with body weight > 80 kg showed signifi-
cantly lower levels of miRNA-31-5p than those with lower
body weight (934:37 ± 1739:66 vs. 1784:62 ± 2271:62,
respectively; p = 0:014). Conversely, patients with high pro-
tein levels in CSF showed significantly higher levels of
miRNA-31-5p than those with normal protein levels
(1393:93 ± 1932:27 vs. 987:38 ± 2364:10, respectively; p =
0:044).

3.3. The Group Characteristics in relation to IgIV Treatment.
In the patient group, 38 subjects (female: 6, male: 32) were
treated with IgIV. The patients who were not treated with
IgIV demonstrated markedly decreased levels of miR-31-5p
versus the patients who were treated (259:44 ± 304:02 vs.
1559:48 ± 2168:45, respectively; p = 0:002). The copy num-
ber of miR-31-5p in the group of patients treated with IgIV
compared to the control group was lower but not statistically
significant (1559:48 ± 2168:45 vs. 3743:09 ± 4026:90, respec-
tively; p = 0:157), while in the group of patients not treated
with IgIV compared to the control group, it was significantly
lower (259:44 ± 304:02 vs. 3743:09 ± 4026:90, respectively;
p = 0:014) (Figure 3).

In addition, the group of patients treated with IgIV
showed significantly higher protein levels in the cerebrospi-
nal fluid than the group of patients untreated with IgIV
(79:59 ± 36:20 vs. 54:29 ± 18:90, respectively; p = 0:017).
There were no significant statistical differences between
IgA, IgG,and IgM levels between the groups of patients
treated and untreated with IgIV.

3.4. The Characteristics of Patients with Upregulation of
MicroRNA-31-5p Expression. Upregulation of microRNA-
31-5p expression, determined as value > mean value + 3SD,
was found in 5 patients. The mean copy number of miR-
31-5p in 100μl serum was 6503.76. In this group of patients,
the mean electrophysiological parameters were better than

the mean values obtained in the entire CIDP group
(Table 5). The biochemical parameters in this group of
patients showed the following: CK 215.60U/l, IgG level
9.3 g/l, IgA 2.7 g/l, and IgM 0.62 g/l. CSF general examina-
tion showed a mean pleocytosis amounting to 3.60 cell/μl,
and the protein level was 60.14mg/dl. The mean duration
of CIDP disease was 5 years, mean IgIV treatment time
16.80 months, and mean weight 96 kg. A total INCAT score
was equal to 2.2, and the INCAT score for the upper limbs
was 1.00 and for the lower limbs 1.40.

4. Discussion

The most important result of our study is the finding of low
miRNA-31 values in CIDP patients. The small copies of
microRNA-31 can be attempted to explain the reciprocal
dysregulation of the transcription factors in patients with
CIDP. Several studies demonstrate that miR-31 can posi-
tively regulate cell proliferation, differentiation, and activity
by regulating NF-κB, RAS/MAPK, Notch, and some cyto-
kine signalling pathways [12, 14, 27, 28]. The increased
miRNA-31 copies in our patients treated with IVIg may be
due to the mechanism of action of IVIg. IVIg inactivates,
silences, or leads to apoptosis of T cells, while restoring the
balance of anti- and proinflammatory cytokines. Addition-
ally, IVIg are thought to interfere with the passage of auto-
immune cells across the blood-nerve barrier and to reduce
antibody production by B cells, interfere with B cell prolifer-
ation through cell surface receptors, and block the activity of
certain B cell subtypes. IVIg may also contain numerous
anti-idiotypes that neutralise pathogenic antibodies. Finally,
it has been shown that IVIg treatment interrupts several
steps in the complement activation cascade and affects activ-
ity mediated by the Fc receptor [29–31].

The findings of Ripamonti et al. [32] highlighted
miRNA-31 as a possible target for modulation of T cell-
dependent antibody responses in humans with immune dys-
regulation. Antibody production by B lymphocytes requires
support from follicular helper T (TFH) cells—a specific sub-
group of CD4+ T lymphocytes. TFH cell role needs the pres-
ence of BCL6 (B cell lymphoma 6), a transcriptional
repressor with unclear gene target responsible for helper
activity. Combined miRNA analysis with gene expression
profiling in human TFH cells, the authors found that the
level of miR-31 is upregulated. The authors concluded that
their findings highlight miR-31 as a possible target to mod-
ulate human T cell-dependent antibody responses in the set-
tings of infection, vaccination, or immune dysregulation. In
our study, we were able to confirm the upregulation process
only in 5 patients. The patients with a high level of miRNA-
31 had better clinical (in INCAT score) and electrophysio-
logical parameters, although due to the small number of sub-
jects, statistical analysis could not be performed. They also
showed lower CK activity, lower IgG and IgM levels, as well
as lower CSF protein levels.

We demonstrated a low positive correlation between
miRNA-31 and serum IgG level. Previous studies have
found that patients with Guillain-Barré syndrome (GBS)
have high variability in serum immunoglobulin G (IgG)
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Figure 2: Scatter plot of the correlation between miR-31-5p
expression and IgIV treatment time in CIDP patients.
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levels after standard IVIg treatment and that large increases
in serum IgG (ΔIgG) are associated with better treatment
outcome. A recent prospective study in CIDP indicated that
the increased ΔIgG level after standard IVIg dosage in the
continuous treatment was relatively constant within individ-
ual patients. This level could differ between patients who
were treated with the same stable dosage and with interval
of IVIg [33]. In our study, there were no statistically signifi-
cant differences in IgG levels between treated and untreated
IgIV groups, as well as in the patients with miRNA-31
upregulation. In the CIDP patients, we additionally revealed
the low negative correlation between IgA and miRNA-31
levels, but no significant differences were found between
IgA levels in the patient and healthy groups. In the course
of IgA deficiency, the occurrence of autoimmune diseases
has been found to be significantly more frequent than in
patients with normal levels of this immunoglobulin. The
relationships between IgA, IgG, and miRNA-31 in our study
group were ambiguous and did not allow drawing clear
conclusions.

We found a positive, average correlation between the
duration of IVIg treatment and miRNA-31-5p expression.
IVIg has been shown to inactivate or lead to T cell apo-
ptosis, while restoring the balance of anti- and proinflam-
matory cytokines. Additionally, IVIg is thought to interfere

Table 4: Correlation between the electrophysiological parameters and expression of miRNA31-5p in serum in CIDP patients.

Nerve conduction Electrophysiological parameters
Correlation
miRNA

Motor

Median (wrist-elbow)

Latency 0.05

Amplitude -0.12

CV -0.08

Ulnar (wrist-elbow)

Latency 0.02

Amplitude -0.04

CV -0.13

Peroneal (ankle head of fibula)

Latency 0.25

Amplitude 0.12

CV -0.01

Tibial (ankle popliteal fossa)

Latency 0.24

Amplitude -0.05

CV 0.12

Sensory

Median (digit II)

Latency 0.09

Amplitude -0.11

CV -0.01

Ulnar (digit V)

Latency -0.14

Amplitude -0.15

CV 0.26

Sural

Latency -0.13

Amplitude -0.16

CV 0.08

F-wave studies

Median

F-latency

-0.08

Ulnar 0.09

Peroneal -0.09

Tibial 0.01

12000

Me

Min-Max
25% - 75%

10000

8000

6000

m
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N
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1
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Figure 3: Graph showing the mean copy number of miR-31-5p in
the patient group—treated and untreated with IgIV—and in the
control group.
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with the passage of autoimmune cells across the blood-
nerve barrier and to reduce antibody production by B
cells, interfere with B cell proliferation through cell surface
receptors, block the activity of certain B cell subtypes,
interrupt several steps in the complement activation cas-
cade, and affect activity mediated by the Fc receptor [31,
34]. The correlations between IVIg treatment effectiveness
and miRNA level were described in many studies in differ-
ent clinical situations [35–38]. IVIg replacement therapy in
different immunodeficiency patients is thought to be able
to modulate miRNA level. miRNAs seem to be a valid tar-
get to develop new therapies and potential biomarkers in
different inflammatory diseases. Based on the literature
and their original results, the authors proposed an addi-
tional hypothesis for the mechanism of miR-31-5p regula-
tion [39–42]. According to the miRDB database, the target
of miR-31-5p is the miRNA for the sphingomyelin syn-
thase 1 (SGMS1) gene. Sphingomyelin synthase converts
ceramide to sphingomyelin, so the amount of CSF sphin-
gomyelin directly depends on its amount and activity. If
in CIDP the level of miR-31-5p decreases (as we observe
in our studies, CIDP patients not treated with IgIV have
very low levels of this miR compared to control and
treated patients), this may directly affect the increase in

the level of its target, SGMS1, and consequently sphingo-
myelin. The application of IgIV therapy improves the con-
dition of patients by, among other things, increasing
miR31-5p (in our observations, patients after IgIV therapy
have statistically higher levels of miR31-5p), which
decreases SGM1A and consequently affects the reduction
of sphingomyelin. On this basis, we can conclude that
the level of circulating serum miR-31-5p may not only
be a helpful diagnostic biomarker in CIDP but also a
tracer of clinical improvement in patients with CIDP
undergoing IgIV therapy.

We tried to consider other factors influencing the
miRNA level in our patients and the results of treatment.
The lower levels of miRNA-31 were observed in the patients
with high body weight. There are many controversies
regarding the importance of obesity in the CIDP patients
and its influence on the IVIg treatment. Pharmacokinetic
difference in lean and obese patients at higher doses of IVIg
were observed, but it seems to be small to influence the IVIg
dosage. Sometimes, a very high IgG level is observed in obese
patients treated with IVIg [43]. The CIDP patients with and
without diabetes mellitus were similar in the clinical and
electrophysiological tests; miRNA-31, IgG, Ig A, CK, and
CSF protein levels did not differ either. Our results were

Table 5: The mean electrophysiological parameters of CIDP patients with upregulation of microRNA-31 expression.

Nerve conduction Electrophysiological parameters
Patients
n = 5

Motor

Median (wrist-elbow)

Latency (ms) 6.38

Amplitude (mV) 7.08

CV (m/s) 47.4

Ulnar (wrist-elbow)

Latency (ms) 2.96

Amplitude (mV) 8.78

CV (m/s) 47.2

Peroneal (ankle head of fibula)

Latency (ms) 6.28

Amplitude (mV) 2.12

CV (m/s) 40.8

Tibial (ankle popliteal fossa)

Latency (ms) 6.68

Amplitude (mV) 3.30

CV (m/s) 38.10

Sensory

Median (digit II)

Latency (ms) 3.52

Amplitude (μV) 11.30

CV (m/s) 48.80

Ulnar (digit V)

Latency (ms) 2.72

Amplitude (μV) 11.90

CV (m/s) 44.60

Sural

Latency (ms) 3.61

Amplitude (μV) 4.20

CV (m/s) 44.10

F-wave studies

Median

F-latency (ms)

32.76

Ulnar 32.48

Peroneal 68.89

Tibial 65.76
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similar to other studies in which the differences between
patients with and without DM were not seen [44].

Influencing miRNA function may contribute to a bet-
ter understanding of the CIDP pathogenesis and the selec-
tion of an effective type of treatment. It is worth noting
that abnormal expression of individual microRNAs may
result from changes in the genome or abnormalities in
their biogenesis or may be related to epigenetic factors
regulating gene expression [45–49]. The work of Vinci
et al. [47] highlighted that not only structurally deter-
mined changes in miRNA expression levels but also their
epigenetic regulation seemed to be important in the CIDP
pathogenesis and may become future targets for the devel-
opment of new therapies modulating miRNA expression
through changes in the level of methylation of their genes.
Additionally, the interaction between miR-31 and the NF-
κB signalling pathway is the subject of many studies. The
positive feedback loop formed by miR-31 and NF-κB sig-
nalling may bring new ideas for the treatment of some
autoimmune conditions [14, 48–52]. In a previous study,
the authors demonstrated significantly higher levels of
IL-6, IL-2, IL-4, and TNF-α and an increased CD4+/CD8
+ ratio in patients with CIDP compared to controls. Elec-
trophysiological parameters in CIDP patients were also
found to be closely related to the autoimmune process.
All these studies may contribute to a better understanding
of the pathomechanism of CIDP [53].

The authors are aware of the study’s limitations. Due to
the complexity of miRNA roles, the main limitation was the
selection of only one miRNA type. The selection was based
on the literature and the importance of miRNA-31 related
to CIDP issues. Additionally, this study and the control
group were rather small. The patient group was not homoge-
neous in terms of disease duration, type of treatment, and
additional medical conditions.

5. Conclusion

In this study, we have shown the reduced level of miRNA-
31-5p in the patients with typical CIDP. It was signifi-
cantly reduced in the patients who were not treated with
IVIg. In the treated group, miRNA was approaching the
correct level, and in some patients, it was upregulated.

These patients had better clinical and electrophysiologi-
cal results than other patients with CIDP. We observed a
clearly negative impact of the obesity on the clinical and
electrophysiological status with a lower miRNA-31 level.
All these results could support the thesis that miRNA-31 is
highly involved in the autoimmune process in CIDP. The
positive relationship between the higher level of miRNA-31
and the duration of IVIg treatment may be an additional fac-
tor explaining the effectiveness of the prolonged IVIg ther-
apy in CIDP. The presence of diabetes mellitus does not
significantly influence the miRNA-31 level and clinical and
electrophysiological status. Further studies are needed to
assess whether such miRNAs could represent novel potential
biomarkers in the management and therapy of CIDP
patients.
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