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Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain, which brings heavy burdens to individuals
and society. The mechanism of IVDD is complex and diverse. One of the important reasons is that the abnormal
accumulation of reactive oxygen species (ROS) in nucleus pulposus cells (NPCs) leads to endoplasmic reticulum stress (ERS),
which causes increased apoptosis of NPCs. Nuclear factor E2-related factor 2 (Nrf-2) and its downstream antioxidant proteins
are key molecular switches for sensing oxidative stress and regulating antioxidant responses in cells. Sulforaphane (SFN), a
natural compound derived from Brassicaceae plants, is a Nrf-2 agonist that displays potent antioxidant potential in vitro and
in vivo. Here, we used advanced glycation end products (AGEs) to construct an in vitro degeneration model of NPCs, and we
found that AGEs elevated ROS level in NPCs and caused severe ERS and apoptosis. While SFN can promote the entry of Nrf-
2 into the nucleus and increase the expression level of heme oxygenase 1 (HO-1) in vitro, thus clearing the accumulated ROS
in cells and alleviating ERS and cell apoptosis. Moreover, the protection of SFN on NPCs was greatly attenuated after HO-1
was inhibited. We also used AGEs to construct a rat IVDD model. Consistent with the in vitro experiments, SFN could
attenuate ERS in NPCs in vivo and delay disc degeneration in rats. This study found that SFN can be used as a new and
promising agent for the treatment of IVDD.

1. Introduction

Low back pain (LBP) is a common disease with high rate of
incidence and wide coverage in modern population [1]. With
the development of society and changes in people’s lifestyles,
the incidence of lower back pain is increasing year by year [2,
3], and the patients tend to be younger [4]. Data show that
about 84% of the world’s population suffers from LBP, of which
10% will be disabled [5, 6]. Therefore, LBP not only seriously
influences patients’ physical and mental health and quality of
life but also causes a heavy economic burden on families and
society [7]. In 2016 alone, medical care related to LBP cost
the United States as much as 134.5 billion dollars [8]. A large

number of studies have proved that intervertebral disc (IVD)
degeneration (IVDD) is the main cause of LBP [9–11].

IVDD is mainly characterized by the decrease of nucleus
pulposus (NP) cells (NPCs) and the degradation of extracel-
lular matrix (ECM). NPCs are the main source of ECM, but
the pathophysiological mechanism of the reduction in the
number of NPCs is not fully understood [12]. Endoplasmic
reticulum (ER) plays a fundamental role in regulating the
normal physiological function of NPCs by virtue of its
strong membrane structure and a large number of enzymes
on it [13]. ER stress (ERS) is a series of adaptive cellular
responses when ER homeostasis is destroyed. When ERS
occurs, the unfolded protein response (UPR) is activated
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with the goal of protecting the cell from stress, reducing bio-
synthetic load, and helping reestablish cellular homeostasis
[14]. But, persistent ERS would further aggravate the pres-
sure of ER and even induce cell death through UPR signaling
pathway.

Excessive oxidative stress, which causes accumulation of
reactive oxygen species (ROS), is one of the common causes
of ERS [15]. Nuclear factor E2-related factor 2 (Nrf-2) is a vital
molecular switch for sensing oxidative stress and regulating
antioxidant responses. Under oxidative stress, Nrf-2 is acti-
vated and translocated into the nucleus, regulates the expres-
sion of many downstream antioxidant proteins including
heme oxygenase 1 (HO-1), which protects against cellular oxi-
dative stress injury and exerts cytoprotective effects [16, 17].

In recent years, natural plant-derived compounds have
been extensively studied for the treatment of IVDD [18]. Sulfo-
raphane (SFN) is widely found in the Brassicaceae family and is
most abundant in broccoli. A recent study showed that SFN
exhibited antiviral activity against pandemic SARS-CoV-2
and seasonal HCoV-OC43 coronaviruses [19]. Besides, it has
pharmacological effects such as antioxidation, antitumor, anti-
bacterial, and anti-inflammatory [20–22]. And its antioxidant
capacity is mainly achieved through the activation of Nrf-2.

In this study, we found that the level of ERS was higher in
the degenerated NP tissues. By constructing a cell model of
oxidative stress with advanced glycation end products (AGEs),
we found that SFN could activate the Nrf-2/HO-1 pathway to
alleviate ERS and apoptosis in NPCs. In addition, animal
experiments have also demonstrated that SFN has the effect
of ameliorating IVDD. This study provided a new and prom-
ising protocol for the treatment of IVDD.

2. Materials and Methods

2.1. Ethics Statement. Acquisition of human nucleus pulpo-
sus tissue was approved by the ethics committee of Huashan
Hospital, Fudan University (No. KY2022-044). The conduct
of animal experiments was approved by the animal ethics
committee of Shanghai Medical College, Fudan University
(No. 202203012S).

2.2. NPCs Isolation and Culture. IVD is divided into five
grades according to the Pfirrmann grading [23]. We divided
grades I to III into negative control (NC) group and grades
IV to V into IVDD group. The NC group NP tissues were
obtained from patients with Hirayama disease because they
hardly undergo degeneration. The NP tissues in the IVDD
group were derived from patients with cervical myelopathy,
and they tended to degenerate severely. Fifteen samples were
used forWB and 30 samples were used for qRT-PCR. Samples
from five NC groups were used for cell culture. NP tissues
were cut, separated by 0.25% trypsin (Gibco, US), and incu-
bated in DMEM/F12 complete medium (Gibco, US). The
supernatant was discarded by centrifugation, 0.2% collagenase
type II was added, and centrifuged for 3h until the tissue
pieces disappeared. The cells were inoculated into the culture
bottle and the culture medium was changed once every 3 days.
After forming monolayers, they were detached with 0.25%

trypsin and passaged. Cells used in experiments were all pas-
saged until passages 1 to 3.

2.3. Cell Grouping and Treatment. Controls were treated
without any treatment. SFN group was as follows: the cells
were treated with 10μM SFN for 24 hours. AGEs group
was as follows: the cells were treated with 200μg/mL AGEs
for 24 hours. SFN+AGEs group was as follows: the cells
were treated with 10μM SFN and 200μg/mL AGEs for 24
hours. SFN+AGEs+ML385 group was as follows: the cells
were treated with 10μM SFN, 200μg/mL AGEs, and 5μM
ML385 for 24 hours. SFN+AGEs+si NC group was as fol-
lows: the cells were treated with 10μM SFN, 200μg/mL
AGEs, and si NC for 24 hours. SFN+AGEs+si HO-1 group
was as follows: the cells were treated with 10μM SFN,
200μg/mL AGEs, and si HO-1 for 24 hours. All NPCs were
cultured under 1% hypoxia to simulate the hypoxia environ-
ment of intervertebral disc in vivo.

2.4. Western Blot (WB). Total protein was extracted using RIPA
kit (AS1004, ASPEN), and protease inhibitors (AS1008,
ASPEN) were added during protein extraction to prevent pro-
tein degradation. After electrophoresis, coating and sealing,
the indexes to be detected were incubated with primary anti-
body and secondary antibody, and finally immunolabeled with
enhanced chemiluminescence reagent (AS1059, ASPEN). Anti-
bodies against caspase-3 (#9662), caspase-12 (#9671), phos-
phorylated PERK (p-PERK, Thr980, #3179), PERK (#3192),
phosphorylated eIF2α (p-eIF2α, Ser51, #3597), eIF2α (#2103),
GRP78 (#3183), CHOP (#2895), and HO-1 (#43966) were
obtained from cell signing technology corporation (Massachu-
setts, USA). Anti-β-tubulin (#ab6046), anti-β-actin (#ab8226),
and anti-Nrf-2 (#ab137550) were purchased from Abcam
(Cambridge, USA). Antihistone H3 (EM1108) was purchased
from ELK Biotechnology (Wuhan, China).

2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR). TRIpure reagent (EP013, ELK Biotechnology) was used
to extract total RNA from NP tissues and cultured cells. The
primers used for qRT-PCR were as follows: homo GRP78, for-
ward 5′-CATCACGCCGTCCTATGTCG-3′, and reverse 5′-
CGTCAAAGACCGTGTTCTCG-3′. Homo CHOP, forward
5′-CCCTCACTCTCCAGATTCCAGTC-3′, and reverse 5′-
CTAGCTGTGCCACTTTCCTTTCA-3′. HomoGAPDH, for-
ward 5′-TCAAGAAGGTGGTGAAGCAGG-3′, and reverse 5′
-TCAAAGGTGGAGGAGTGGGT-3′. GAPDH was used for
normalization.

2.6. Immunofluorescence Staining.After drying the sections nat-
urally, they were rinsed with 1×PBS and washed 3 times for
5min each. The antigen repair solution is 10mmol/L Tris
EDTA (pH 9.0) (V900483, Sigma). After the repair, when it
returns to room temperature, clean the sections again. After
blocking with 10% goat serum for 1 hour, the primary antibody
(concentration 1 : 200) was incubated overnight at 4°C. Next
day, the slices were washed with 1×PBS for 3 times for 5min
each time, and then incubated with fluorescent secondary anti-
body (concentration 1 : 200) for 1h and 4-6-diamidino-2-phe-
nylindole (DAPI) (D8417-1MG, Sigma) for 5min. After
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incubation, cleaned the sections, sealed them with antifluores-
cence quenching agent (V900155-25G, Sigma), and observed
and took photos after natural drying in dark.

2.7. TdT-Mediated dUTP Nick End Labeling (TUNEL)
Staining. After the cells were inoculated into 12-well plates
for intervention treatment, they were washed with PBS once,
fixed with 4% paraformaldehyde (80096618, Sinopharm
Chemical Reagent) at 37°C for 30 minutes, washed with
PBS three times, and then treated with 0.1% Triton X-100
(30188928, Sinopharm Chemical Reagent) for 5 minutes.
After washing with PBS three times, 50μL TUNEL solution
(11684817910, Roche) were added, respectively, incubated in
dark at 37°C for 60min, washed with PBS, added antifluor-
escence quenching sealing solution (V900155-25G, Sigma),
placed it in 40 times fluorescence microscope, randomly
selected 10 fields, counted the number of TUNEL positive
cells and total cells, observed and took photos.

2.8. Flow Cytometry. After the cells were centrifuged for
5min at room temperature and resuspended in PBS at 4°C
and washed by centrifugation, they were suspended in bind-
ing buffer diluted with deionized water and incubated for
15min at room temperature in the dark by adding annexin
V-FITC (AO2001-02P-G, Sungene Biotech) to the PI label,
and the diluted binding buffer was added and then used
for detection on the machine (AriaIII, BD).

2.9. Transfection of Small Interfering RNA (siRNA). Inhibi-
tion of HO-1 expression in NPCs was performed using small
interfering RNA (siRNA). The sequences of si-RNAs for
HO-1 were as follows: sense: 5′-CAGAUCAGCACUAGCU
CAUTT-3′; antisense: 5′-AUGAGCUAGUGCUGAUCUG
TT-3′. NPCs were digested with 0.25% trypsin and counted
and inoculated into 6-well plates. Lipofectamine 2000 and
trail siRNA DMEM were added, and the final concentration
was 200nmol/L. Knockdown efficacy was examined by WB.

2.10. Detection of Reactive Oxygen Species (ROS). CellROX
Deep Red Reagent (#C10422, Thermo Fisher Scientific)
was added to the culture medium and incubated for 20
minutes. A fluorescence microscope was used to observe
the cells staining situation, and five visual fields were ran-
domly selected. The intensity of red fluorescence per unit
area was analyzed by Image Pro Plus 5.0 image analysis sys-
tem, and the relative content of ROS in cells was expressed
by the intensity of fluorescence per unit area.

2.11. Extraction of Cytoplasmic and Nuclear Protein. After
treatment, cytosolic and nuclear proteins were detached by
using the Nuclear and Cytoplasmic Protein Extraction Kit
(#P0027, Beyotime Biotechnology). After protein quantifica-
tion, the variation of Nrf-2 expression was detected via WB.

2.12. Animal Experiments. A total of 30 six-week-old Sprague-
Dawley (SD) rats were used for the following animal experi-
ments. The rats were randomly divided into three groups, the
control (PBS) group (ten females), AGEs group (ten females),
and AGEs+SFN group (ten females). All rats were anaesthe-
tized by intraperitoneal injection of a mixture of 70mg/kg keta-

mine (Hengrui, China) and 5mg/kg xylazine [24]. Co8/9 was
selected for intradiscal injection of PBS, advanced glycation
end products (AGEs) (200μg/mL) or a mixture of AGEs
(200μg/mL)+SFN (10μmol/L), respectively, at the same total
injection volume (2μL), using a 33-gauge needle (Hamilton,
Benade, Switzerland) [13]. Intradiscal injections were per-
formed every 2 weeks, and rats were housed for 8 weeks. A
33 gauge needle can avoid intervertebral disc degeneration
caused by acupuncture to the greatest extent.

2.13. MR Examination of Tail Vertebrae. The tail vertebrae
of rats were examined by MR (3.0T, Prism, Siemens, Ger-
many) at 0, 4, and 8 weeks, respectively. Degenerative discs
show reduced brightness and volume. After 8 weeks, the
intervertebral discs were scored by the Pfirrmann grading
according to the previous research methods [25].

2.14. Histology and Immunohistochemistry. Rats were sacri-
ficed 8 weeks later, and tails were collected. The fur and
muscle of the tail were fully removed, fixed with 4% parafor-
maldehyde, and then decalcified with EDTA. After decalcifi-
cation, dehydration and paraffin embedding were carried
out, and then dewaxing, hematoxylin and eosin (H&E)
staining, and Safranin-O/fast green staining were carried
out. Histological scoring methods refer to previous studies
[25]. ERS-related proteins (caspase-3, GRP78, and CHOP)
were detected by immunohistochemistry.

2.15. Statistical Analysis. SPSS 20.0 software was used to per-
form data analysis, and the measurement data were pre-
sented as mean ± standard deviation. Differences between
two groups were analyzed by Student’s t-test. Comparisons
among multiple groups were analyzed using one-way
ANOVA, and data were nonnormally distributed using the
Kruskal-Wallis rank sum test. P < 0:05 was considered sta-
tistically significant. Graphpad prism 9.0 software and Fig-
draw were used to draw figures.

3. Results

3.1. ERS Level Increased with IVDD. We first used WB to ana-
lyze the expression of ERS-associated proteins in 5 different
degenerative grades of IVD (Figure 1(a)). Both glucose-
regulated protein 78 (GRP78) and C/EBP homologous protein
(CHOP) increased with the degree of degeneration
(Figures 1(b)–1(d)). Next, the expression of GRP78
(Figures 1(e) and 1(f)) and CHOP (Figures 1(g) and 1(h))
mRNA in normal and degenerated NP tissues was detected by
qRT-PCR and correlation analysis was performed. It illustrated
that the contents of both mRNAs were positively correlated
with the degeneration grade. And the more severe the degener-
ation was, themore abundant the content was. Immunofluores-
cence was used to detect apoptosis-related proteins in the NP
tissues of the two groups, and we found that the expression of
caspase-3 (Figures 1(i) and 1(j)) and caspase-12 (Figures 1(k)
and 1(l)) in the degenerated NP tissue was higher than that in
the control group. These results suggested that degeneration
of the NP was accompanied by more severe ERS and apoptosis.
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Figure 1: Continued.
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3.2. SFN Alleviated AGEs-Induced ERS and Apoptosis in
NPCs. AGEs can lead to ERS in cells [26], and we used it
to construct a cellular model of ERS. WB assays demon-
strated that the expression levels of GRP78 and CHOP in
AGEs treated NPCs were markedly elevated, as were the
phosphorylation level of the eukaryotic translation-

initiation factor 2α (eIF2α) and protein kinase R-like endo-
plasmic reticulum kinase (PERK). However, SFN application
alleviated AGEs-induced ERS (Figures 2(a) and 2(b)). AGEs
also led to increased caspase-3 and caspase-12 levels in
NPCs, which could be reduced by SFN (Figures 2(a)–2(c)).
TUNEL staining showed that AGEs significantly increased
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Figure 1: ERS level during IVDD in human NP tissues. (a) Magnetic resonance images of intervertebral discs of five different degenerative
grades. (b–d) WB was used to detect the expression of ERS-related proteins in IVD of different degenerative grades, and the relative
quantitative data (c, d) was calculated accordingly. ∗P < 0:05 vs. any Pfirrmann grading. (e) GRP78 mRNA level was measured by qRT-
PCR in normal and degenerative NP tissues. (f) Correlation analysis between GRP78 mRNA level and Pfirrmann grading. n = 30. (g)
CHOP mRNA level was measured by qRT-PCR in normal and degenerative NP tissues. (h) Correlation analysis between CHOP mRNA
level and Pfirrmann grading. n = 30. (i–l) Representative images of caspase-3 (i) and caspase-12 (k) expression was detected by
immunofluorescence analysis and the relative fluorescence intensity was calculated in normal and degenerative NP tissues. ∗P < 0:05 vs.
NC group. Scale bar = 50 μm. (Error bars showed means ± SD; n = 3).
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Figure 2: SFN alleviated ERS and apoptosis of NPCs induced by AGEs. NPCs were cultured under 1% hypoxia to simulate the hypoxia
environment of intervertebral disc in vivo. (a–c) WB was used to detect the expression of ERS-related proteins and apoptosis-related proteins,
and the relative quantitative data (b, c) was calculated accordingly. (d, e) TUNEL staining was used to detect the apoptosis of NPCs, and the
relative quantitative data was calculated accordingly. Scale bar = 50μm. (f, g) The apoptosis of NPCs was detected by flow cytometry. (Error
bars showed means ± SD; n = 3; ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, vs. control group; #P < 0:05, ##P < 0:01, ###P < 0:001, vs. AGEs group).
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Figure 3: The protective effects of SFN in ameliorating ERS and reducing apoptosis in NPCs were abolished by the Nrf-2 inhibitor ML385.
NPCs were cultured under 1% hypoxia to simulate the hypoxia environment of intervertebral disc in vivo. (a–c) WB was used to detect the
expression of ERS-related proteins and apoptosis-related proteins, and the relative quantitative data (b, c) was calculated accordingly. (d, e)
TUNEL staining was used to detect the apoptosis of NPCs, and the relative quantitative data was calculated accordingly. Scale bar = 50μm.
(f, g) The apoptosis of NPCs was detected by flow cytometry. (Error bars showed means ± SD; n = 3; ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, vs.
control group; #P < 0:05, ##P < 0:01, ###P < 0:001, vs. AGEs group; @P < 0:05, @@P < 0:01, @@@P < 0:001, vs. AGEs+SFN group).
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the number of apoptotic cells, while SFN played a protective
role and reduced the proapoptotic effect of AGEs
(Figures 2(d) and 2(e)). Apoptosis was further detected by
flow cytometry. AGEs significantly increased the apoptosis
rate of NPCs, while SFN markedly reversed this trend
(Figures 2(f) and 2(g)).

3.3. Nrf-2 Inhibitor Mitigated the Protective Effect of SFN.
We further investigated whether the alleviating effect of
SFN on ERS and apoptosis was through Nrf-2, and we used
a Nrf-2 inhibitor ML385. When Nrf-2 was inhibited, the
ability of SFN to suppress the expression of ERS-related pro-
teins decreased and the level of ERS increased (Figures 3(a)
and 3(b)). Similarly, caspase-3 and caspase-12 elevated after
Nrf-2 was inhibited (Figures 3(a) and 3(c)). TUNEL staining
showed that after the application of ML385, the number of
TUNEL positive cells raised significantly, indicating that
the number of apoptosis of NPCs increased (Figures 3(d)
and 3(e)). Flow cytometry further suggested that ML385
mitigated the antiapoptotic effect of SFN (Figures 3(f) and
3(g)). These results demonstrated that SFN alleviated ERS
and apoptosis by activating Nrf-2.

3.4. Knockdown of HO-1 Reversed the Protective Effect of SFN.
We used siRNA to knockdown HO-1. WB showed that HO-1
was successfully inhibited by siRNA (Figures 4(a) and 4(b)).
When HO-1 was inhibited, the ability of SFN to alleviate
ERS was substantially attenuated (Figures 4(c) and 4(d)).
Meanwhile, the function of SFN on inhibiting the expression
of apoptosis-associated proteins was also abolished
(Figures 4(e) and 4(f)). Next, we observed ROS in NPCs by
immunofluorescence. AGEs caused intracellular ROS accu-
mulation in NPCs, which was alleviated by SFN. However,
when HO-1 was inhibited, the protective effect of SFN was
no longer present (Figures 4(g) and 4(h)). TUNEL staining
(Figures 4(i) and 4(j)) and flow cytometry (Figures 4(k) and
4(l)) further confirmed that si HO-1 weakened the protective
effect of SFN and increased the apoptosis of NPCs. The above
results indicated that SFN played a role in attenuating ERS and
apoptosis via HO-1.

3.5. SFN Promoted Nrf-2 Translocation into the Nucleus. Since
Nrf-2 plays a role in the nucleus, we further studied whether
SFN can boost the translocation of Nrf-2 into the nucleus.
WB showed that AGEs could decrease Nrf-2 in the cytoplasm.
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Figure 4: After inhibiting HO-1, the protective effect of SFN on NPC was eliminated. NPCs were cultured under 1% hypoxia to simulate the
hypoxia environment of intervertebral disc in vivo. (a, b) The inhibitory effect of si-RNA on HO-1 was detected by WB. @@@P < 0:001. (c–f)
WB was used to detect the expression of (c, d) ERS-related proteins and (e, f) apoptosis-related proteins, and the relative quantitative data
was calculated accordingly. (g) ROS in the NPCs was labeled with CellROX Deep Red Reagent, and the nucleus was dyed blue by DAPI.
Representative images were taken by fluorescence microscope. Scale bar = 50 μm. (h) Quantitative analysis of ROS level. (i, j) TUNEL
staining was used to detect the apoptosis of NPCs, and the relative quantitative data was calculated accordingly. Scale bar = 50μm. (k, l)
The apoptosis of NPCs was detected by flow cytometry. (Error bars showed means ± SD; n = 3; ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, vs.
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But when SFNwas used, the level of Nrf-2 elevated (Figures 5(a)
and 5(b)). Similarly, AGEs reduced Nrf-2 in the nucleus,
whereas SFN application increased its level (Figures 5(c) and
5(d)). In addition, we visualized its intracellular distribution
by fluorescent staining of Nrf-2 (Figures 5(e) and 5(f)). The
nucleus was dyed blue, Nrf-2 was dyed red, and Nrf-2 in the
nucleus was purple. In AGEs+SFN group, the purple fluores-
cence intensity of the nucleus increased significantly. It could
be seen that SFN have the ability to promote the translocation
of Nrf-2 from the cytoplasm into the nucleus. We further stud-
ied the effect of SFN on HO-1, a downstream target of Nrf-2.
The results of WB and qRT-PCR showed that HO-1 increased
at both themRNA and protein levels as SFN promoted Nrf-2 to
enter the nucleus (Figures 5(g) and 5(h)).

3.6. SFN Delayed Intervertebral Disc Degeneration In Vivo. We
observed the in vivo effect of SFN by injecting PBS, AGEs,
and AGEs+SFN into the caudal IVD of rats. The tail of rats
was examined by MR at 0, 4, and 8 weeks, respectively. The
brightness and volume of IVD treated with AGEs decreased
gradually with time. However, in the case of SFN cotreatment,
the brightness and volume of the IVD were better maintained
(Figure 6(a)). At 8 weeks, the Pfirrmann grade in the
AGEs+SFN group was notably lower than that in the AGEs
group (Figure 6(b)). Through H&E staining and Safranin-O/
fast green staining of the IVD, it can be found that AGEs make
the tissue structure of the IVD disordered or even disappeared,
while SFN can maintain the tissue structure of the IVD. More-
over, the histological score of IVD in AGEs+SFN group was
remarkably lower than that in AGEs group (Figures 6(c)–
6(e)). TUNEL staining was used for the detection of apoptosis
of NPCs. AGEs increased apoptosis of NPCs, while SFN treat-
ment could rescue NPCs (Figures 6(f) and 6(g)). Immunohisto-
chemistry was used to detect ERS-related proteins and Nrf-2/
HO-1 in the nucleus pulposus. AGEs increased caspase-3,
GRP78, and CHOP levels in the nucleus pulposus, while decre-
sased Nrf-2 and HO-1 levels. This effect was reversed by SFN

(Figures 6(h) and 6(i)). The above results suggest that SFN
has in vivo effects to modulate ERS and delay disc degeneration.

4. Discussion

LBP affects more than half of the global population to vari-
ous degrees [27]. Among the many factors that contribute
to LBP, IVDD caused by genetic factors, aging, mechanical
alterations, or inflammation is the most prominent trigger
[28–30]. The IVD is a large fibrocartilaginous composite
located between adjacent vertebral bodies and plays an
extremely important role in supporting weight bearing and
assisting somatic movement [31]. It consists of the annulus
fibrosus, the superior and inferior cartilaginous endplates,
and NP. Although the precise mechanisms of IVDD are
not fully understood, accumulating evidence suggests that
aberrant function of NPCs is a key contributor to IVDD
[32]. Its specific manifestations are the decrease of NPCs
and the increase of apoptosis [33]. At present, the main
treatment strategies for LBP focus on reducing pain and
other symptoms, but this will not delay IVDD [34]. There-
fore, it is particularly urgent to deeply investigate the mech-
anisms of IVDD and thereby find treatments that have the
potential to prevent or postpone IVDD.

SFN, an isothiocyanate derived from cruciferous plants, is
one of the best-recognized natural products with anticancer
effect, and its bioactive functions and potential application in
anti-inflammation, antioxidation, anticancer, obesity, and dia-
betes have been extensively studied [20–22]. Oxidative stress is
due to the imbalance between the generation of ROS/reactive
nitrogen species (RNS) and cellular antioxidant capacity
[35]. Normally, the deleterious effects of metabolically gener-
ated ROS/RNS are neutralized by antioxidant systems, and
moderate level of ROS/RNS is beneficial to the normal physi-
ological functions of cells. When the generation of ROS/RNS
is beyond the bounds of antioxidant systems’ scavenging abil-
ity, high concentrations of ROS/RNS cannot only react with
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Figure 5: SFN promoted Nrf-2 translocation into the nucleus. (a, b) Nrf-2 expression in the cytoplasm was detected by WB. (c, d) Nrf-2
expression in the nucleus was detected by WB. (e, f) Nrf-2 fluorescence staining showed its distribution in NPCs. The nucleus was dyed
blue, Nrf-2 was dyed red, and Nrf-2 in the nucleus was purple. Scale bar = 20 μm. (g) WB was used to detect the expression of HO-1
protein. (h) HO-1 mRNA level was measured by qRT-PCR. (Error bars showed means ± SD; n = 3; ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,
vs. control group; #P < 0:05, ##P < 0:01, ###P < 0:001, vs. AGEs group).
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cellular molecules such as DNA, lipids, and proteins to cause
damage but also regulate intracellular signaling pathways,
resulting in cell senescence and apoptosis [36].

The mechanism of cells against oxidative stress is consti-
tuted by two parts, the antioxidant enzyme system and the
nonenzymatic antioxidant. Antioxidant enzymes include
superoxide dismutase (SOD), glutathione-S-transferase
(GST), glutathione reductase (GR), glutathione peroxidase
(GP), NAD(P)H-quinone oxidoreductase 1 (NQO1), thiore-
doxin reductase (TR), HO-1, and others. Glutathione is the
most important endogenous nonenzymatic antioxidant. These
antioxidant enzymes and nonenzymatic antioxidants are reg-
ulated by the Nrf-2-related pathway [16, 17]. Kelch-like-
ECH-associated protein 1 (Keap1) is a key repressor of Nrf-2

and contains several redox sensitive cysteine residues
(cys151, cys273, and cys288) that play critical roles in the reg-
ulation of Nrf-2 signaling. Under normal conditions, Nrf-2 is
locked in the cytoplasm by Keap1 and binds to ubiquitin ligase
E3 complex. Nrf-2 is ubiquitinated and degraded by protea-
some, and Keap1 is recycled and regenerated. When exposed
to oxidative stress, Nrf-2 is released from Keap1 after the
cysteine residue of Keap1 is oxidized or chemically modified
[37, 38]. Nrf-2 translocates to the nucleus and combines with
small Maf (sMAf) protein to form heterodimer. After that,
Nrf-2 binds with antioxidant responsive element (ARE)
located in the promoter region of many cell protective genes
to activate the transcription of a series of downstream antiox-
idant genes. SFN can enhance Nrf-2 transcription by decreas-
ing the methylation of the initial 15 CPGs of the Nrf-2
promoter [39]. SFN can also prevent the binding of Keap1
and Nrf-2 by chemically modifying the cysteine residues
(mainly cys151) of Keap1, which in turn attenuates the ubiq-
uitination and degradation of Nrf-2, leading to the accumula-
tion of Nrf-2 and the enhancement of Nrf-2-regulated
downstream gene transcription [37]. In this study, we found
that SFN promoted the entry of Nrf-2 into the nucleus and
reduced the accumulation of ROS caused by AGEs. But when
HO-1 was inhibited, the alleviating effect of SFN against oxi-
dative stress was weakened.

ER is the main organelle for protein synthesis, calcium ion
storage, and lipid synthesis. Various stimuli, such as oxidative
stress, will disrupt ER homeostasis, leading to UPR, misfolded
protein accumulation, and pathological changes, which is
ERS. Three cytoprotective mechanisms are mainly triggered
by ERS [40]. Firstly, upregulated chaperone expression such
as GRP78. GRP78 activates the three pathways of the UPR to
assist protein refolding. Secondly, alpha subunit of eukaryotic
initiation factor 2 (eIF2α) was phosphorylated by protein
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Figure 6: SFN delayed IVDD in vivo. (a) The tails of rats were examined by magnetic resonance at 0, 4, and 8 weeks, respectively. (b) The
rat IVD were scored according to the magnetic resonance images. (c) Representative images of H&E staining of IVD. Scale bar upper = 500
μm; scale bar lower = 150μm. (d) Representative images of Safranin-O/fast green staining of IVD. Scale bar upper = 500 μm; scale bar
lower = 150 μm. (e) Histological score of IVD. (f, g) Representative images of TUNEL staining of IVD and quantification analysis were
performed. Scale bar = 50μm. (h, i) Immunohistochemistry was used to detect ERS-related proteins and Nrf-2/HO-1 in the NP, and
quantification analysis were performed. Scale bar = 500μm. (Error bars showed means ± SD; n = 10; ∗∗∗P < 0:001, vs. PBS group;
###P < 0:001, vs. AGEs group).
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kinase R-like endoplasmic reticulum kinase (PERK), which
reduces protein translation. Thirdly, protein aggregates are
degraded via the ER associated degradation pathway, the ubiq-
uitin proteasome pathway, or autophagy. However, excessive
ERS for a long time will lead to the activation of inflammatory
pathway NF-κB, induce aging, and lead to ER specific apopto-
sis. ERS specific apoptosis is mediated by CHOP, which can
induce the expression of a large number of proapoptotic factors
including tribbles homolog 3 (TRB3), growth arrest and DNA
damage-inducible protein 34 (DADD34), and death receptors
5 (DR5) [41]. In addition, ERS can activate B-cell lymphoma-
2 (Bcl-2) family members, caspase-3, caspase-12, and c-Jun
N-terminal kinase (JNK) to induce apoptosis [42]. In this
study, a cellular model of ERS was constructed by AGEs. We
found that AGEs activated the PERK pathway in ERS, and
ERS significantly increased the level of apoptosis in the NPCs.
SFN alleviated the negative effect of AGEs, but this therapeutic
effect was abolished when Nrf-2 or HO-1 was inhibited.

Our study also had some limitations. Firstly, we only stud-
ied the effect of SFN on ERS in NPCs, ignoring its effect on
other organelles. For example, Xu et al. [43] found that SFN
can improve mitochondrial function in NPCs. In addition,
ERS has three signaling pathways, and this study only involved
PERK pathway. Finally, we only investigated the role of apo-
ptosis in IVDD, ignoring inflammation and so on. These lim-
itations will be improved in future research.

5. Conclusion

We found that the levels of ERS-associated proteins and cell
apoptosis are elevated during IVDD. SFN could mitigate
ERS-induced NPCs apoptosis via Nrf-2/HO-1 pathway under
the AGEs stimulation in vitro (Figure 7). Besides, the intradis-
cal injection of SFN could alleviate ERS-associated apoptosis
during IVDD and may delay IVDD progression in vivo. This
work provided a novel idea and experimental basis for the
study of the mechanism and treatment of IVDD.
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Bcl-2: B-cell lymphoma-2
JNK: C-Jun N-terminal kinase.
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