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Necroptosis is one of programmed cell death discovered recently, which involves in tumorigenesis, cancer metastasis, and immune
reaction. We studied the necroptosis-related genes (NRGs) in ovarian cancer (OV) tissues using data from public databases, which
separated into two NRGclusters. Patients in cluster A would have severe clinical characteristics, poor prognosis, and worse tumor
microenvironment infiltration characteristics. The NRG score was achieved through the Cox analysis, along with a construction of
a prognostic model. People with lower risk score would have better prognosis, lower expression of redox related genes, higher
immunogenicity, and better effect on immunotherapy. In addition, the NRG score was closely related to cancer stem cell index,
copy number variations, tumor mutation load, and chemosensitivity. We built a nomogram to enhance clinical application of
the signature. These outcomes can help use know the function of NRGs in OV and provide new ideas for evaluating clinical
outcome and developing more effective treatment protocols.

1. Introduction

Ovarian cancer (OV) is a major gynecological malignancy
around the world, and its mortality ranks first among gyne-
cological malignancies [1]. Worldwide, the number of new
OV cases was 313,959 and the number of deaths was
207,252 in 2020 [2]. Although the treatment of OV has made
many progresses recently, the prognosis of OV is still not
well [3]. More than 60% patients were in an advanced stage
when diagnosed [4, 5]. Through timely diagnosis and appro-
priate treatment, the mortality of advanced stage and recur-
rence rate of OV can be reduced to great extent [6]. So, it is
needed to found new diagnostic and therapeutic methods.
With development for the branch of the cancer cell immune
recognition and immune regulate molecules, immunother-
apy has become a research hotspot recently [7]. Developing
new biomarkers, identifying therapeutic targets, predicting

therapeutic effects, and screening potential immunothera-
peutic drugs offer new orientation for the remedy of OV
and may prolong the survival of patients [8].

Necroptosis is defined as a regulated type of necrosis
whose morphology is similar to necrosis, such as cell swelling
and rupture, regulated by certain signal pathways like apopto-
sis [9]. Necroptosis is crucial to cancer. For one thing, necrop-
tosis can trigger adaptive immune response and impede tumor
progression [10]. Meanwhile, the inflammatory response may
also help the occurrence and development of cancer, and
necroptosis can produce immunosuppressive tumor microen-
vironment (TME), which may contribute to cancer progres-
sion [11, 12]. Until now, several chemotherapeutics, natural
compounds, and classical necroptosis inducers have been
proved to disappear tumor cells through necroptosis. For
instance, characteristics such as etoposide, 5-FU, and cisplatin
may lead necroptosis of cancer cells [13]. Consequently, the
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Figure 1: Continued.
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Figure 1: Heredity and transcriptional changes of necroptosis-related genes (NRGs) in OV. (a) In TCGA-OV population, 89 patients had
gene mutations. (b) CNV frequency happened in NRG. (c) Location of CNV changes on 23 chromosomes in NRG. (d) Gene expression of
NRGs in normal and tumor tissues. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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Figure 2: Continued.
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selection of necroptosis-related genes and using them to build
predict signatures were promising methods to forecast the
prognosis OV patients.

Except malignant transformed cells, tumors consisted of
normal cells, like fibroblasts, muscle cells, and inflammatory
immune cells, which make up with TME together [14]. The
interaction between tumor cells and TME influences the treat-
ment effect of cancer [15]. In the early stage, tumors are infil-
trated by various adaptive and innate immune cells, which
conduct tumor-promoting and antitumor functions [16]. For
example, higher infiltration level of CD8 T cells is usually
related to better prognosis [17], while the macrophages M2
is supposed to be a poor prognostic marker [18]. In fact,
immunotherapy has become one of the most hopeful methods
in oncology. Clarifying the status of infiltrating immune cells
in TME and understanding their number and function may
contribute to formulate strategies to enhance the response rate
of immunotherapy. Necroptosis is becoming a new target of
cancer immunotherapy. Necroptosis in tumor cells regulates
TME and antitumor immunity, which will be particularly
helpful to the treatment of immune desert tumors [19, 20].
Necroptosis has different influence on tumor progression in
the light of tumor cell types and TME [21]. However, the
mechanisms are still unclear [22].

Redox reaction is a part of normal cell metabolism. If the
redox homeostasis is damaged, cell death may be induced

[23]. Increasing oxidative stress by increasing reactive oxy-
gen species level or decreasing cell antioxidant capacity is a
promising anticancer way, and it takes part in the mecha-
nism of many chemotherapy drugs that have been used in
clinical application [24]. More and more evidence shows
that the redox modification participated in the regulation
of some cell death modes, like necrosis and apoptosis. In
addition, thiol redox switches involve in regulating the
crosstalk between apoptotic and necrotic forms of cell death
[25]. Mitochondrial peroxidase has a upregulated expression
in different tumor types, including OV [26].

Our study calculated the expression profile of
necroptosis-related genes (NRGs) and downloaded the
immune pattern in OV by using two computational algo-
rithms. In terms of NRG expression level, OV patients were
separated into two independent subgroups. Then, the
patients were divided into three gene clusters according to
the differentially expressed genes (DEGs) between NRGclus-
ters. A prediction signature was further built to predict the
prognosis, so as to realize accurate identification and thera-
peutic measures of individuals.

2. Materials and Methods

2.1. Data Acquisition. Genetic and clinical profiles of OV
were downloaded from the cancer genome atlas (TCGA)
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Figure 2: Clinical and biological factors of two clusters defined by clustering analysis. (a) Interrelationships among NRGs in OV. (b) PCA
scatter plot reflecting the distinction between NRGclusters. (c) Survival probability of NRGcluster A and NRGcluster B. (d) Difference of
clinical factors expression levels of NRGs between NRGclusters.
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and gene expression omnibus (GEO). This study used 836
samples from two cohorts, TCGA-OV and GSE9891.
Table S1 shows clinical features of individuals involved in
the research. We combine TCGA-OV and GSE9891
datasets and use the “ComBat” algorithm to correct the
batch effect. In order to reduce statistical bias, samples
without overall survival (OS) value and without follow-up
data were screened out from the study. OV patients with
relevant characteristics (age, grade, and stage) and survival
data were used for further analysis. GSE9891 was
employed as an external set to validate.

2.2. Consensus Clustering Analysis. 67 NRGs were obtained
from published articles [27]. In accordance with gene
expression data, we performed consumes clustering via R
packages “ConsumusClusterPlus” [28]. To calculate the dif-
ferences of NRGs in pathways, the gene set variation analysis
(GSVA) was executed through a marker gene set (C2.
Cp.kegg. V7.2) from Molecular Signatures Database.

2.3. Gene Clusters Identification on the Basis of DEGs. Firstly,
the “limma” package was conducted to screen DEGs
between gene clusters. The univariate Cox regression
analysis was conducted on DEGs to screen DEGs related
to OV survival. Secondly, OV patients were classified
according to DEGs by using consistent clustering algo-
rithm, and the patients were separated into three different
subgroups.

2.4. Build Prognostic NRG Score Related to Necroptosis. After
integrating the transcriptome and clinical data, we deleted
individuals without prognostic data. All volunteers were ran-
domly separated into training (n = 319) and testing subtypes
(n = 318), and then the information of the training set was
used to build the NRG score which related to OV patients.
Based on prognostic genes associated with necroptosis, the
least absolute shrinkage and selection operator (LASSO)
regression algorithm was utilized to avoid over fitting through
the “glmnet” R package. The multivariate Cox analysis identi-
fied key genes to establish predict model on the base of the
training set. The formula is as follows: risk score = Σ ðcoefi ×
expiÞ, where coefi and expi, respectively, mean the coefficient
and express level of each gene. In accordance with median risk
score, samples were divided into two different subgroups.

2.5. The Difference of Clinical Features Patients and Stratified
Analysis. The score of individuals with different clinical fea-
tures was compared by box diagram and scatter diagram.
Hierarchical analysis was employed to assess the differences
in OS between different subgroups using the Kaplan–Meier
curve achieved by the “survminer” R package, to determine
that the model still has the ability to predict under different
clinicopathological characteristics.

2.6. Enrichment Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) were applied
to enrich NRG-related processes. KEGG is a dataset usually
used to discover significantly altered pathways enriched in

(i) (j)

(k) (l)

Figure 3: Tumor mutation load of the two NRGclusters. (a) Gene set enrichment analysis of NRGclusters. (b, c) Immune infiltration levels
of two NRGclusters. (d) The stromal score, (e) immune score, and (f) estimated score of the two NRGclusters were compared. (g–j) Immune
checkpoint expression of NRGclusters. (k) HLA expression of two NRGclusters. (l) Compare the scores of biological pathways between the
two NRGclusters. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.

7Oxidative Medicine and Cellular Longevity



(a)

q

(b)

p

(c) (d)

(e) (f)

Figure 4: Continued.

8 Oxidative Medicine and Cellular Longevity



(g)

p

p

p

(h)

p

p

p

(i)

p

p

p

(j)

(k) (l)

(m) (n)

Figure 4: Continued.

9Oxidative Medicine and Cellular Longevity



gene list. GO and KEGG were carried out through the bioin-
formatics platform [29]. By aggregating gene into gene sets,
the gene set enrichment analysis (GSEA) offer rich scores,
which allows users to have an in-depth understanding of
how biological processes are influenced [30].

2.7. Assessment of Immune Infiltration Level. TME is widely
involved in the tumorigenesis and tumor progression. ESTI-
MATE can predict the TME status in the light of relevant
biomarkers expression in immune and stromal cells which
conducted by the R package “estimate” [31, 32]. The
single-sample gene set enrichment analysis (ssGSEA) can
quantitatively estimate immune cell components from com-
plex gene expression data by using the R package “GSVA”
[33, 34]. CIBERSORT can quantify the abundance of TIICs
in risk groups (http://cibersort.stanford.edu/).

2.8. The Difference of Biological Processes between
NRGclusters. Rosenberg et al. defined a set of genes related
to specific biological pathways, such as epithelial mesenchy-
mal transition markers, DNA damage repair, and CD8 T-
effector signature [35].

2.9. Phenotypes of RNAss Differentiation. In cancer stem cells
(CSCs), mRNA expression-based RNAss is a variable to
describe the similarity between tumors and stem cells [36,
37]. The higher the score was, the stronger the degree of stem-
ness and the lower differentiation degree. RNAss scores were
achieved from the xena (https://xenabrowser.net/datapages/).

2.10. Predict the Effect of Immunotherapy. Immunopheno-
score (IPS) has been verified to predict patient response to
immunotherapy [38], which can be achieved from The Can-
cer Immune Atlas (TCIA) (https://tcia.at/home). TMB can
screen individuals who could benefit more from immuno-
therapy [39]. The burden of gain or loss of copy number var-
iations (CNV) was calculated by gene pattern (https://cloud
.genepattern.org) [40].

2.11. Analysis of Drug Sensitivity. To assess the therapeutic
efficacy of chemotherapeutics on OV patients, the half max-
imum inhibitory concentration (IC50) of chemotherapeutics

was achieved by the “prrophetic” R package [38]. We
achieved the data of gene expression and drug sensitivity
from CellMiner to calculate the correlation between some
commonly used drugs and 8 genes.

2.12. Set Up a Nomograph. A nomogram can evaluate the OS
through the “rms” package [41], where each factors were
given a score, then added up them, and achieved a final
score [42].

Hosmer-Lemeshow was applied to testify whether the
predicted results were consistent with the fact [42]. The pre-
dictive ability of the model was explored through the C
-index and area under curve (AUC) [43, 44]. C-index can
be calculated by restricted mean survival (RMS). The capac-
ity of nomogram was calculated by C-index and AUC, rang-
ing from 0.5 to 1.0 [45].

2.13. Statistical Analysis. R version 4.1.0 was applied to anal-
yses in this research. P < 0:05 was considered significant.

3. Results

3.1. Genetic and Transcriptional Changes of NRGs in OV.
The analysis flow chart is performed in Figure S1.
Figure 1(a) presents the summary outcome of the
incidence of somatic mutations in 67NRGs.There were 89
mutations that occurred in 436 samples (20.41%) where
ATRX and ALK had highest mutation frequency (2%). The
CNV of MYC and TNFSF10 increased significantly, while
the CNV of TARDBP, TNFRSF21, HDAC9, AXL, TLR3,
and CYLD were decreased (Figure 1(b)). The location of
CNV of 67NRGs on chromosome is exhibited in
Figure 1(c). We also compared the discrepancy of genes in
control and OV samples (Figure 1(d)). Among the 67
genes, 38 genes had different expression levels, and the
corresponding OS was also different (Figure S2). Genetic
and transcriptional levels of NRGs between OV and
control tissues were different which means that NRGs have
a significant role in the progression of OV.

3.2. Discrimination of NRGclusters in OV. The state of NRG
interactions and regulator connections OV populations are

(o) (p)

Figure 4: Identify gene subtypes in the light of DEGs (a) GO and (b) KEGG enrichment analysis of two gene clusters. (c) Survival
probability of gene subtypes. (d) Clinicopathological features of three gene subtypes. (e) The expression of NRGs of gene clusters. (f, g)
Immune infiltration of gene clusters. (h) Stromal score, (i) immune score, and (j) estimated score of three gene clusters were compared.
(k–n) Expression of immune checkpoints. (o) HLA expression level of gene clusters. (p) Compare the score of biological pathways
between the three gene clusters. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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presented in Figure 2(a). For further analysis of the express
characteristics of NRG in OV, we classified OV patients from
k = 1 to k = 9 (Figure S3). PCA showed discrepancies in
necroptosis transcription between the NRGclusters
(Figure 2(b)). The Kaplan–Meier curve implied that
NRGcluster A had higher survival probability than patients in
NRGcluster B (Figure 2(c)). Furthermore, there were
discrepancies in NRG expression and clinicopathological
features among different OV subtypes (Figure 2(d)).
Compared with NRGcluster B, patients in NRGcluster A had
older age, more advanced stage and grade, and worse survival
status.

3.3. Characteristics of Different Subtypes of TME. As per-
formed in Figure 3(a), some immune activation-related pro-
cesses like B cell receptor signaling pathway were enriched in
NRGcluster B, which indicate immune activation
(Figure 3(a)). The immune infiltration scores of NRGcluster
A and NRGcluster B were compared, showing a great differ-
ence. The immune infiltration level in NRGcluster A was
lower than that in NRGcluster B. Innate and adaptive immune
cells were enriched in NRGcluster B (Figure 3(b)). Then, we
calculated the association between two RNA modified sub-
types and 22 TIICs. The proportion of immune cells was
higher in NRGcluster B which means that NRGcluster B
may related to immune activation (Figure 3(c)). Therefore,

we estimated the TME score of the NRGclusters
(Figures 3(d)–3(f)). A higher estimate score represents a
higher fraction of stromal and immune cells. The outcomes
indicated that patients in NRGcluster B had a higher TME
score. We noticed that the two NRGclusters had different
immune infiltrations. Features of NRGcluster A were similar
to the definition of “cold” tumors, which has less invasive
immune cells and may achieve less benefit from immune ther-
apy, while NRGcluster B is roughly similar to “hot” tumors.
Regarding the express levels of immune checkpoints in two
NRGclusters, we noticed that PD1 (Figure 3(g)), CTLA4
(Figure 3(h)), PDL1 (Figure 3(i)), and PD-L2 (Figure 3(j))
had a high expression level in NRGcluster B. The HLA expres-
sion of the NRGclusters was also different (Figure 3(k)). We
then found that some immune-related pathways were more
prominent in NRGcluster B (Figure 3(l)).

3.4. Identification of Gene Cluster Based on DEGs. We
screened out DEGs (Figure S4a) and then conducted GO
and KEGG analyses which revealed that NRGs were
mainly associated with immune-related processes which
means that they are crucial in the immune regulation of
TME (Figures 4(a) and 4(b)). The best number of clusters
is three (Figure S4b-S4e). Gene cluster B had the highest
survival probability and was related to early stage, early
grade, younger age, and better survival status (Figures 4(c)

(a)

A
B
C

0.0028
0.98

0.027

0

2

4

6

8

A B C
geneCluster

geneCluster

Ri
sk

 sc
or

e
(b)

0.520.52

AA
BB

0

2

4

6

A B
NRGcluster

Ri
sk

 sc
or

e

0

2

4

6

A B
NRGcluster

NRGcluster

(c)

⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

2.5

5.0

7.5

10.0

G
BP

2

RA
RR

ES
3

CD
38

LA
M

P3

G
PR

34

CL
EC

5A

RA
RR

ES
1

FM
O

2

Low
High

Risk

G
en

e e
xp

re
ss

io
n 

(d)

0.00

0.25

0.50

0.75

1.00

Risk
+ High risk 
+ Low risk

Low risk
High risk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (years)

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

159 132 93 49 21 7 2 0 0 0 0 0 0 0 0 0
160 142 116 86 51 35 23 20 13 11 4 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ris
k

p < 0.001

(e)

AUC at 1 years: 0.623
AUC at 3 years: 0.686
AUC at 5 years: 0.771

0.0 0.2 0.4
1 − specificity

Se
ns

iti
vi

ty

0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(f)

Figure 5: Construct NRG score based on the training set. (a) Distribution of groups with different classification criteria. Difference of NRG score
between (b) gene clusters and (c) NRGclusters. (d) Expression of the 8 NRGs between risk groups. (e) The Kaplan–Meier analysis shows survival
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and 4(d)). In addition, patients in gene cluster B and
NRGcluster B had similar clinical characteristics. The gene
expression in three gene clusters was different (Figure 4(e)).
The outcome of ssGSEA showed that the vast immune cells
had higher infiltration levels in gene cluster B (Figure 4(f)),
which was primarily infiltrated by adaptive immune cells
(Figure 4(g)). In addition, gene cluster B tends to have
higher TME score and immune checkpoints expression
(Figures 4(h)–4(n)). HLA expression levels of gene clusters
in the three groups were also the highest expression in gene
cluster B (Figure 4(o)). In addition, classical biological
progresses were more prominent in gene cluster B
(Figure 4(p)). According to these features, we considered
that gene cluster B belongs to “hot” tumors.

3.5. Build and Testing the Prognostic Signature. Figure 5(a)
displays the spread of patients in three gene clusters and two
NRGclusters. 14 OS-related genes were screened as candidate
prediction genes (Figure S5a-S5b). Finally 8 achieved genes
(GBP2, RARRES3, CD38, LAMP3, GPR34, CLEC5A,
RARRES1, and FMO2) were selected. Among them, GBP2,
RARRES3, and CD38 were protective genes (Figure S5c).
According to the above results, we assessed the NRG
score: risk score = (−0.5265×GBP2 expression) + (−0.2565
×RARRES3 expression) + (−0.2786×CD38 expression) +
(0.2053×LAMP3 expression)+ (0.4263×GPR34 expression)
+ (0.2201×CLEC5A expression)+ (0.2249×RARRES1
expression)+ (0.1025×FMO2 expression). We noticed that
the score of gene cluster B was lower than that of gene

cluster A (Figure 5(b)). In the grouping according to
NRGcluster, there was no diversity of risk score between the
two subgroups (Figure 5(c)). Most of the 8NRGs had
different expression between the two risk subgroups in
training set (Figure 5(d)). Individuals with low scores had
higher OS when compared with higher score group
(Figure 5(e)). In addition, the AUC of NRG score for 1, 3,
and 5 years were 0.623, 0.686, and 0.771, respectively
(Figure 5(f)). Then, we use the testing group, all groups from
TCGA, and the data from GEO to verify the above results.
Figure S6 presents the difference of NRGs expression,
survival analysis, and AUC in two risk groups in testing set,
all sets, and GEO set, respectively. There were distinctions in
the eight gene expressions between the risk groups. The
AUC of NRG score for 1, 3, and 5 years is still high, which
means that the model had excellent predict ability.

3.6. The Difference of Risk Score between Different Feature
Patients. To analyze the relationship between NRG score
and clinical features, we compared the risk scores of dif-
ferent individuals. It was found that the NRG score of
OV patients in stages I-II was lower than in stages III-
IV (Figure S7a). Moreover, the risk score of OV patients
with better survival status was also lower than that of
OV patients with worse survival status (Figure S7b). The
NRG score was proved to be an independent prognostic
variable (Table 1). In different age, stage, and grade
subgroups, the OS of the high NRG score group tends
to be lower (Figure S7c). Furthermore, for BRCA1 wild

Table 1: Univariate and multivariate Cox regression analyses of the prognosis-related variables.

Variable
Univariable model Multivariable model

HR HR.95 L HR.95H P value HR HR.95 L HR.95H P value

Training set

Age 1.4679 1.0659 2.0215 0.0187 1.4287 1.0361 1.9702 0.0296

Grade 1.1163 0.7573 1.6454 0.5784

Stage 11.9886 1.6752 85.7985 0.0134 9.0377 1.2600 64.8256 0.0285

Risk score 1.9319 1.6308 2.2885 0.0001 1.8825 1.5865 2.2338 0.0001

Testing set

Age 1.4023 1.0347 1.9005 0.0293 1.3802 1.0179 1.8715 0.0380

Grade 1.2773 0.8671 1.8814 0.2156

Stage 2.7702 1.2974 5.9149 0.0085 2.4765 1.1551 5.3098 0.0198

Risk score 1.3176 1.1442 1.5173 0.0001 1.2787 1.1047 1.4800 0.0010

All set

Age 1.4182 1.1398 1.7645 0.0017 1.3772 1.1066 1.7139 0.0041

Grade 1.2049 0.9166 1.5839 0.1816

Stage 3.9317 1.9467 7.9407 0.0001 3.3380 1.6495 6.7551 0.0008

Risk score 1.4904 1.3431 1.6538 0.0001 1.4498 1.3031 1.6130 0.0001

GEO set

Age 1.5109 1.0347 2.2063 0.0326 1.5138 1.0358 2.2124 0.0322

Grade 1.3183 0.8887 1.9555 0.1696

Stage 6.8898 2.1835 21.7396 0.0010 5.9038 1.8625 18.7139 0.0026

Risk score 1.3764 1.1772 1.6093 0.0001 1.3164 1.1175 1.5506 0.0010
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R = 0.27, p = 5.6×10–6

−2000

−1000

0

1000

0 2 4 6
Risk score

St
ro

m
al

Sc
or

e

(g)

⁎⁎⁎ ⁎⁎⁎

−5000

−2500

0

2500

5000

St
ro

m
al

Sc
or

e

Im
m

un
eS

co
re

ES
TI

M
AT

ES
co

re

TM
E 

sc
or

e
Risk

low

high

(h)

Activated.B.cellna
Activated.CD4.T.cellna
Activated.CD8.T.cellna
Activated.dendritic.cellna

CD56bright.natural.killer.cellna
CD56dim.natural.killer.cellna
Eosinophilna
Gamma.delta.T.cellna
Immature.. B.cellna

Immature.dendritic.cellna
MDSCna
Macrophagena
Mast.cellna
Monocytena
Natural.killer.T.cellna
Natural.killer.cellna
Neutrophilna
Plasmacytoid.dendritic.cellna
Regulatory.T.cellna
T.follicular.helper.cellna
Type.1.T.helper.cellna
Type.17.T.helper.cellna
Type.2.T.helper.cellna
riskScore

rSeg

riskscore

sign

pos

neg

pSeg
<0.001

<0.01

<0.05

Not Applicable

ns

r

0.25

1.0

0.5

0.0

0.50

1.00

CD8 T efector

Antigen processing machinery

EMT1

EMT2

EMT3

Pan–F–TBRS

Angiogenesis

DNA replication

Nucleotide excision repair

DNA damage repair

Homologous recombination

Mismatch repair

riskScore

(i)

Figure 6: Continued.

14 Oxidative Medicine and Cellular Longevity



patients and chemotherapy treated patients, the survival
probability of patients with higher risk score was lower.

3.7. Assessment of TME in Terms of the NRGs. For the pur-
pose of deepen understanding the TME of subgroups, we first
conducted GSEA and found that the low NRG score group
was mainly related with some immune-related processes
(Figure 6(a)), while high-score individuals were associated
with cancer-related processes (Figure 6(b)). Further studies
indicated that pan-F-TBRS was obviously activated in the high
group (Figure 6(c)). People with higher risk score had higher
immune score and stromal score (Figures 6(e)–6(g)). Not sur-
prisingly, the combined estimated score of these two scores
was also higher in the high-risk group. We then identified
the relationships between immune cells and risk score as well
as the correlations between risk score and the score of classical
biological pathways enrichment (Figures 6(h) and 6(i)). The
immune function score of B cells, T helper cells, and Tfh was
significantly higher in low-risk groups (Figure 6(j)). Then,
we calculated the correlation between risk score and immune
cell abundance (Figure 7(a)). The NRG score was positively

associated with macrophages M2, mast cells activated, mono-
cytes, neutrophils, and T cells CD4 memory resting and had
negative relationship with macrophages M1, plasma cells,
etc. (Figure 7(b)). In terms of oxidative stress, the expression
of oxidative stress-related genes was low in low-risk group,
especially CYBB (Figure S8). Moreover, we noticed that a
great deal of immune cells was related to the genes
(Figure 7(c)). Human leukocyte antigen expression was also
higher in lower risk cohorts (Figure 7(d)). Figure 7(e) shows
that many immune checkpoints were overexpressed in
patients in high risk. There was discrepancy of immune
checkpoints expression between the groups. CTLA4, CD274,
PDCD1, and IDO1 had negatively correlation with risk score,
and HAVCR2 has positive relationship with the score
(Figure 7(f)). The outcome of IPS score indicates that low-risk
score was associated with higher immunogenicity (Figure 7(g)).

3.8. Predict the Curative Effect of Immunotherapy.
Figure 8(a) shows the relationships between the NRG score
and CSC index. We noticed that the NRG score was nega-
tively associated with CSC index (r = −0:35, P < 0:001)
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Figure 6: Evaluate TME of different risk groups. Main enriched biological pathways of (a) low NRG score group and (b) high-score group.
(c, d) The ssGSEA score and immune infiltration score of risk groups. (e–h) The NRG score had positive association with stromal cells,
immune cells, and estimated score. (i) The relevance of risk score and immune cells as well as classical biological pathway score. (c, j)
The difference of immune function score betweenthe groups.

15Oxidative Medicine and Cellular Longevity



⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎ ⁎ ⁎⁎⁎ ⁎⁎⁎

0.0

0.1

0.2

0.3

0.4

B ce
lls 

naiv
e

B ce
lls 

mem
or

y
Plas

ma c
ell

s
T ce

lls 
CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

or
y r

est
ing

T ce
lls 

CD4 m
em

or
y a

cti
vat

ed

T ce
lls 

fol
lic

ular
 help

er

T ce
lls 

reg
ulat

or
y (

Tre
gs)

T ce
lls 

ga
mma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

act
iva

ted
M

on
oc

yte
s

M
acr

op
hag

es 
M

0

M
acr

op
hag

es 
M

1

M
acr

op
hag

es 
M

2

Den
dr

itic
 ce

lls 
res

tin
g

Den
dr

itic
 ce

lls 
act

iva
ted

M
ast

 ce
lls 

res
tin

g

M
ast

 ce
lls 

act
iva

ted
Eosi

nop
hils

Neu
tro

ph
ils

Fr
ac

tio
n

Risk
Low
High

(a)

R = –0.31, p = 5×10–13

0.0

0.1

0.2

0 1 2 3 4
Risk score

M
ac

ro
ph

ag
es

 M
1

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4
Risk score

M
ac

ro
ph

ag
es

 M
2

R = 0.33, p = 5.3×10–15

0.0

0.1

0.2

0 1 2 3 4
Risk score

M
as

t c
el

ls 
ac

tiv
at

ed

R = 0.19, p = 1.3×10–5

0.0

0.1

0.2

0.3

0 1 2 3 4
Risk score

M
on

oc
yt

es

R = 0.17, p = 0.00011

0.00

0.05

0.10

0 1 2 3 4
Risk score

N
eu

tro
ph

ils

R = 0.3, p = 4×10–12

0.0

0.1

0.2

0.3

0 1 2 3 4
Risk score

Pl
as

m
a c

el
ls

R = –0.18, p = 2.7×10–5

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4
Risk score

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

R = –0.21, p = 9.5×10–7

0.0

0.1

0.2

0.3

0 1 2 3 4
Risk score

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
R = 0.28, p = 1.8×10–10

0.0

0.1

0.2

0.3

0 1 2 3 4
Risk score

T 
ce

lls
 C

D
8

R = –0.18, p = 2.4×10–5

0.00

0.05

0.10

0.15

0 1 2 3 4
Risk score

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

R = –0.27, p = 2.1×10–10

0.00

0.05

0.10

0 1 2 3 4
Risk score

T 
ce

lls
 re

gu
lat

or
y 

(tr
eg

s)

R = –0.15, p = 0.00075

(b)

Figure 7: Continued.

16 Oxidative Medicine and Cellular Longevity



which showed that CRC cells with lower risk score have
more obvious stem cells and lower cell differentiation. L-
TMB accompanied with high risk means a significant poorer
survival probability than other groups (Figures 8(b) and
8(c)). Mutation frequencies of TP53 and TTN were high in
both cohorts (Figures 8(d) and 8(e)). Accompanied with
high-risk score, OS becomes lower (Figures 8(f) and 8(g)).

Figure 8(h) shows the distribution of GISTIC scores on all
chromosomes. Focal amplification and deletion of different
chromosome regions were found (Figures 8(i) and 8(j)).

3.9. Estimation of Drug Sensitivity. We chose drugs usually
applied in the remedy of OV to assess the sensitivity of
patients to these drugs. IC50 values of docetaxel in high-
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Figure 7: Immune infiltration situations of the subtypes. (a) The difference of immune cell abundance between the groups. (b) The correlation
between 8 genes and immune cell abundance. (c) The relationship between risk score and immune cell abundance. (d) The difference of HLA
expression between the groups. (e) Twenty immune checkpoints with differential expression in the two groups were depicted. (f) The correlation
between immune checkpoints and risk score. (g) The differences of IPS cell expression. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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risk patients were lower, while IC50 of A.443654 and pacli-
taxel was lower in people with low-risk score (Figure S8a-
S8c). We also calculated the relationships between some
common drugs and 8 genes. Taken together, the above
results suggested that NRGs are correlated with drug
sensitivity (Figure S8d).

3.10. Construct Nomograms for Clinical Application. Taking
care of the practical utilize of NRG score in predicting, we
built a nomogram containing NRG score and clinical factors
(Figure 9(a)), predictors including NRG risk score, age,
nomogram risk, and stage. Our signature had higher C
-index (Figure 9(b)). The AUC corresponding to NRG risk
was generally higher which indicates great prediction perfor-
mance, and it will be better when considering age and stage
(Figures 9(c)–9(e)). DCA indicated that the NRG risk score
or nomogram risk combined with clinical features had a
higher benefit in predicting the OS of OV patients at 1, 3,
and 5 years (Figures 9(f)–9(h)). A subsequent calibration
diagram proved it again (Figure 9(i)).

3.11. NRG Model Has Great Prognostic Performance. To con-
trast the prognosis ability of our signature with other signa-
tures, we screened four prognosis models from the previous
literatures. We used the multivariate Cox regression analysis
to assess the estimate score, based on specific genes expres-
sion (Figure S10a). Figure S10b indicated that the prognosis
of high-risk individuals was worse in all four models.
Obviously, our model has the highest C-index which was
0.65 (Figure S10c). Therefore, our genetic characteristics
performed best in about six years (Figure S10d).

4. Discussion

Despite progress in study and remedy of OV, the 5-year sur-
vival rate is still low [46], and more than half of the patient

relapse and develop drug resistance [47–50]. Cell death inhi-
bition is the ultimate cause of drug resistance in OV [51]. As
the main type of cell death, previous studies mostly focused
on the drug resistance of apoptosis in OV [52]. Necroptosis
is a newly noticed type of regulatory necrosis which has been
proven to have great effect on cancer, especially in drug
resistance [53]. Therefore, our exploration may improve
the poorer outcome of OV.

Patients in NRGcluster A had more advanced clinical
characteristics and poorer survival than patients in
NRGcluster B. There are also distinctions in the features of
TME between the two NRGclusters. The TME score and
immune checkpoint expression was higher in NRGcluster
B patients. We screened three gene clusters in the light of
DEGs. Then, we established an effective prognostic risk
score and verified its predict performance. There were great
differences in clinical features, TMB, TME, immune check-
point, C-index, CNV, and drug sensitivity between the risk
groups. Finally, the nomogram was established to further
enhance the performance and promote use of NRG score.

The prediction model has a close correlation with redox
stress and immune environment. The high-risk group has
higher levels of redox stress, which may be closely related to
their poor prognosis. Despite advances has been achieved in
immunotherapy recently, outcomes of OV patients have still
been heterogeneous, indicating the effect of TME in the occur-
rence and development of OV [54].TME is an ecosystem con-
sisting of tumor cells, infiltrating immune cells and stromal
cells intertwined with noncellular components. In this study,
the necroptosis pattern with immune inhibition was related
to higher NRG score, and the necroptosis pattern with
immune activation was related to lower NRG score. Macro-
phages M1, also known as “classic activated macrophages,”
has a proinflammatory effect. Their high expression was
associated with a better prognosis in patients with OV [55].
OV-associated memory T cells are also associated with
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Figure 8: Assess the efficacy of immunotherapy. (a) RNAss was negatively correlated with NRG score. (b, c) Survival probability of people
with different TMB and risk score. (d, e) The situation of gene mutation in different risk groups. (f, g) Survival probability of people with
TP53 mutation and TTN mutation. (h) Copy number score for the groups. (i, j) Cytoband shows amplification (left) and deletion (right).
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Figure 9: Built and verification of nomogram. (a) Nomograms used to predict OS in 1, 3, and 5 years. (b) C-index of prognostic factors
including risk score. (c–h) ROC and DCA curves of 1, 3, and 5 years. (i) Nomogram calibration curve of the model.
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chemotherapy response and longer survival [56]. CD4 T cells
have crucial effect on almost every aspect of immunity and are
considered an important component needed in tumor immu-
notherapy [57]. Plasma cell infiltration is related with high
CD4 and CD8 T cell response and great prognosis [58, 59],
while NRG score was positively associated with macrophage
M2, mast cell activation, monocyte, neutrophil, and T cell
CD4 memory rest. The more macrophages M2, the worse
the prognosis of patients with advanced OV [60]. Tumors
with high mast cell are associated with immunosuppressive
OV TME and are potentially insensitive to immunotherapy
[61]. Monocytes are recruited around the cancer and differen-
tiated into macrophages, which can be used as biomarkers of
OV progression [62]. Neutrophils are key players in OV and
have been considered new biomarkers of cancers or as immu-
notherapy targets to promote tumor progression [14].

TME is closely correlated with the response of patients
with various cancers to immunotherapy, and patients with
immunodominant TME subtypes benefit the most from
immunotherapy [63]. In the past decades, immunotherapy,
especially the treatment using ICIs, was developing rapidly.
The researches on ICI are booming, and clinical studies have
proved their safety and effectiveness. In this study, we
observed that CTLA4, CD274, PDCD1, and IDO1 had a
negative correlation with risk score, and HAVCR2 has a pos-
itive association with risk score. Among them, researchers
have a deeper understanding of CTLA4 and PDCD1. Evidence
from non-OV shows that patients with hot tumors infiltrated
by immunogenic T cells have lasting clinical benefits in PD-1/
PD-L1 blocking response compared with individuals with cold
tumors [64]. However, their effect in OV is not clear. Whether
they can be used as targets of immunotherapy in clinical still
needs further research. Immunotherapy conducted on these
patients may obtain better curative effect.

In addition, we found that OS decreased significantly
when TP53 and TTN mutation particularly combined with
high-risk score. Proteins encoded by some major target
genes regulated by TP53 are essential for maintaining geno-
mic integrity and cell life cycle [65]. TTN mutations are
closely associated with the response to immune checkpoint
blockade (ICB) [66, 67]. However, previous articles have
not clearly discussed whether TTN or TP53 mutation has
an impact on the immunotherapy effect of OV. Human
CNV is a repetitive or missing DNA fragment relative to
the reference genome, which may lead to genomic imbalance
and diseases such as tumor. So, it is correlated with the pro-
cess of diagnosis and prognosis [68, 69]. CNV has been
tested to be related to the prognosis of OV [70]. Low-risk
patients have more gene mutations, and CNV load belongs
to immune activation subgroup.

However, immunotherapy using ICB alone is less effec-
tive in the treatment of OV [71]. Therefore, it is necessary
to treat OV patients by ICB combined with chemotherapy,
radiotherapy, and other therapeutic methods. Cisplatin and
its derivatives are commonly used in OV chemotherapy. It
has been determined that cisplatin can induce necroptosis
and significantly increase the death of OV cells, to improve
the anticancer effect of chemotherapeutics [72, 73]. Taxane
cytotoxic drugs such as docetaxel have become one of the

most effective drugs for the immunotherapy of gynecological
cancer recently. It has been approved for the remedy of OV,
breast cancer, and so on [74, 75]. Paclitaxel can induce
immunogenic cell death in OV and achieve therapeutic
effect [76]. We found IC50 values of docetaxel in high-risk
patients were lower, while IC50 values of A.443654 and pac-
litaxel were lower in low-risk patients. Therefore, different
chemotherapy drugs can be used for patients in different risk
groups, which may get better therapeutic effect.

This study also has some shortcomings. Firstly, the
necroptosis genes included in this study were achieved from
previous articles. Some unreported NRGs might be ignored.
Secondly, the prognostic model constructed for OV in this
study needs to be verified in clinical application. Therefore,
we need to screen new genes related to necroptosis in more
cohorts and collect enough cases and clinical information of
OV in the future, to ensure that the model is effective for
clinical application.

5. Conclusions

Our comprehensive analysis of NRG reveals its impact on
TME, clinical characteristics, and prognosis of OV. The therapy
role of NRGs in immunotherapy was also analyzed. The above
results emphasize the significance of NRGs and offer new orien-
tation for guiding precision therapy strategy of OV patients.
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