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Atrial fibrillation (AF) is a major risk factor for ischemic stroke. We aimed to identify novel potential biomarkers with diagnostic
value in patients with atrial fibrillation-related cardioembolic stroke (AF-CE).Publicly available gene expression profiles related to
AF, cardioembolic stroke (CE), and large artery atherosclerosis (LAA) were downloaded from the Gene Expression Omnibus
(GEO). Differentially expressed genes (DEGs) were identified and then functionally annotated. The support vector machine
recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) regression analysis were
conducted to identify potential diagnostic AF-CE biomarkers. Furthermore, the results were validated by using external data
sets, and discriminability was measured by the area under the ROC curve (AUC). In order to verify the predictive results, the
blood samples of 13 healthy controls, 20 patients with CE, and 20 patients with LAA stroke were acquired for RT-qPCR, and
the correlation between biomarkers and clinical features was further explored. Lastly, a nomogram and the companion website
were developed to predict the CE-risk rate. Three feature genes (C1QC, VSIG4, and CFD) were selected and validated in the
training and the external datasets. The qRT-PCR evaluation showed that the levels of blood biomarkers (C1QC, VSIG4, and
CFD) in patients with AF-CE can be used to differentiate patients with AF-CE from normal controls (P < 0:05) and can
effectively discriminate AF-CE from LAA stroke (P < 0:05). Immune cell infiltration analysis revealed that three feature genes
were correlated with immune system such as neutrophils. Clinical impact curve, calibration curves, ROC, and DCAs of the
nomogram indicate that the nomogram had good performance. Our findings showed that C1QC, VSIG4, and CFD can
potentially serve as diagnostic blood biomarkers of AF-CE; novel nomogram and the companion website can help clinicians to
identify high-risk individuals, thus helping to guide treatment decisions for stroke patients.

1. Introduction

Ischaemic stroke accounts for the majority of stroke cases
[1]. Approximately one-fifth of all ischaemic strokes are
CE, and atherosclerosis causes stroke in one-fifth of cases
[2]. The biochemical pathways differ between ischaemic
stroke subtypes (e.g., LAA stroke versus CE). Atrial fibrilla-
tion (AF), characterized by rapid and abnormal atrial electri-
cal activity, is the most common type of supraventricular
tachyarrhythmia.

Among patients with ischemic stroke, the presence of AF
is an important risk factor for ischemic stroke and for recur-
rent ischemic stroke, whether the type is paroxysmal AF
(PAF) or permanent AF [3]. Also, antiplatelet therapy is
applied to thrombotic stroke, while anticoagulant is indicated
for cardioembolism caused by AF [4]. However, patients with
embolic stroke of undetermined source may require long-
term monitoring to detect paroxysmal AF or silent. Addi-
tionally, neither clinical characteristics nor neuroimaging
findings alone can reliably classify the underlying cause of
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CE; in the absence of characteristic imaging features, the cli-
nician may miss diagnosing CE strokes located at extremely
unusual locations [5, 6]. Therefore, it is necessary to identify
biomarkers to distinguish patients with AF-CE from normal
controls and can discriminate AF-CE from other types of
ischaemic stroke.

Blood-based biomarkers for differentiating stroke sub-
types include but are not limited to interleukin-6 (IL-6) [7],
D-dimer [8, 9], C-reactive protein (CRP) [10], and B-type
natriuretic peptide (BNP) [11, 12]. In recent years, with the
development of microarray technology, machine learning,
and integrated bioinformatics analysis, novel disease-related
genes have been identified and demonstrated to be diagnostic
biological markers and treatment targets [13]. For example,
in a study using group least absolute shrinkage and selector
operation (LASSO) and support vector machine-recursive
feature elimination (SVM-RFE), Li et al. screened seven key
risk genes for Alzheimer’s disease [14]. In addition, Yang
et al. identified an 11-gene combination as an optimal post-
menopausal osteoporosis reference biomarker by using
machine learning [15]. Moreover, research has shown that
the immune system plays multiple roles in stroke, and key
immune cell subtypes have been increasingly recognized as
diagnostic factors [16]. Up to now, there is no blood-based
biomarkers for differentiating patients with AF-CE from
normal controls and discriminate AF-CE from ischaemic
stroke subtypes though machine learning.

In this study, following performing a comprehensive
analysis of coexpressed DEGs of persistent AF and CE, two
algorithms, LASSO and SVM-RFE, were used to select diag-
nostic markers for AF-CE. Then, the predictive value of bio-
markers was estimated in the training set, verification set,
and test clinical samples, in order to evaluate whether the
levels of blood biomarkers in patients with AF-CE can be
used to differentiate patients with AF-CE from normal con-
trols and can effectively discriminate AF-CE from ischaemic
stroke subtypes (LAA stroke).

2. Materials and Methods

2.1. Data Information and Processing. The GSE58294 [17],
GSE41177 [18], GSE14975 [19], GSE115574 [20], and
GSE20129 [21] datasets were obtained from the GEO database
(http://www.ncbi.nlm.nih.gov/geo) (Supplementary Table S1).
The GSE58294 (GPL570) dataset includes 23 blood samples
from patients with CE and 23 controls without symptomatic
vascular diseases and the results of analyses at three time
points (<3h, 5h, and 24h) following the stroke event. The
GSE41177 dataset contains 19 samples, including 16 left
atria junctions of patients with AF versus 3 controls with
sinus rhythm (SR). The GSE115574 dataset contains 29
samples, including 14 patients with AF and 15 with SR.
The GSE14975 dataset includes 5 patients with AF and 5
with SR. The GSE20129 dataset comprises 57 samples with
atherosclerosis and 78 normal controls. The GSE58294 and
GSE41177 datasets were merged as the training set, and
batch effects were directly adjusted using the combat func-
tion in SVA. The GSE14975 and GSE115574 datasets were
merged as the verification set, and the GSE20129 dataset

was utilized as the reverse validation set. All the datasets
were subjected to standardized data preprocessing.

2.2. Identifying DEGs. By using GEO2R (http://www.ncbi
.nlm.nih.gov/geo/geo2r), a tool provided by the GEO data-
base that relies on the R package “limma”, CE-related
DEGs were screened from GSE58294 (GPL570) dataset, at
each of the three time points (<3h, 5 h, and 24 h) separately
compared to the controls. AF-related DEGs were screened
from the GSE41177 dataset. Meanwhile, AF-CE-related
DEGs were also filtrated from the merged GSE58294 and
GSE41177 training set. Screening criteria for DEGs were an
adjusted P value < 0.05 and jlog 2 − fold − change ðFCÞj > 1.
The “ggplot2” package was used to create a volcano plot of
DEGs. Overlapping DEGs were extracted and visualized for
further analysis by using the Venn diagram web tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.3. Functional Enrichment Analysis. To understand the
function of DEGs in AF-CE patients, bioinformatic analyses
for clustering 316 AF-CE-related DEGs were performed
using Metascape and DO analyses. The Metascape data plat-
form (http://metascape.org) [22] was used for functional
enrichment analysis, and the results were visualized using
biological online tools. The human disease ontology (DO)
[23] (http://www.disease-ontology.org) is a community-
driven standard-based ontology that is focused on annotat-
ing genes based on human disease, which was performed
using the DOSE packages and “clusterProfiler” in R.

2.4. Diagnostic Biomarker Screening. Artificial intelligence
(AI) is achieved by using machine learning to analyse exist-
ing data and obtain rules or models that are then used to
predict unknown variables. Here, two algorithms, the
dimension reduction approach LASSO and SVM-RFE, were
used. Compared to regression analysis, LASSO algorithms
were performed with a turning/penalty parameter and were
better at evaluating high-dimensional data through the
“glmnet” package [24]. SVM-RFE algorithms [25] were
superior to linear discriminant analysis and mean square
error, which can be used to select relevant variables in place
of linear discriminant analysis, remove redundant variables
by deleting SVM-generated eigenvectors and cross-validate
tenfold, and were used to select candidate genes through
the “glmnet” package. We screened the overlapping genes
for further analysis.

2.5. Diagnostic Value of Feature Biomarkers in AF-CE. Next,
we estimated the predictive value of biomarkers by quantify-
ing their sensitivity and specificity using receiver operating
characteristic (ROC) curve analysis and measurement of
the AUC. Based on the ROC curves, the optimal cut-off
value was calculated for the predictive value of the feature
biomarkers in the training set and further validated in the
verification and reverse verification sets.

2.6. Patients and Variables. The data of the study population
were collected from August 2021 to April 2022. A total of 40
patients, 20 patients with LAA stroke and 20 patients with
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CE, were enrolled consecutively from Nanyang Central Hos-
pital (Nanyang, Henan, China).

Disease diagnosis was based on a history of illness, clini-
cal performance, auxiliary examination, and case notes by at
least two specialized expert neurologists. Stroke subtyping
followed the TOAST (Trial of Org 10172 in acute stroke
treatment) classification [26]. The inclusion and exclusion
criteria of CE were as follows: (1) cerebral embolism caused
by obstruction of blood vessels in the brain after they detach
from their cardiogenic emboli and (2) at least one cardiac-
derived risk factor. The inclusion and exclusion criteria of
LAA were as follows: (1) imaging showed that common
carotid artery, anterior and posterior cerebral artery and ver-
tebrobasilar artery occlusion or stenosis, was >50%; (2)
lesions were caused by atherosclerosis; (3) audible murmur
on neck auscultation; (4) imaging showed a lesion diameter
> 1:5 cm; (5) cardioembolic stroke and stroke from other
causes were excluded. Thirteen age- and sex-matched healthy
volunteers were recruited as healthy controls. The volunteers
had no history of neurologic events (cerebrovascular stroke
or transient ischaemic attack). All the experiments were car-
ried out in accordance with the Nanyang Central Hospital
Ethics Committee’s guidelines and regulations. Institutional
ethics committee approval was obtained for this study, and
informed consent was obtained from all patients or their
relatives.

2.7. Total RNA Extraction and Quantitative Real-Time
PCR Expression Analysis. Peripheral blood samples were
immediately preserved in blood RNA storage tubes (Bio-
Teke Corporation. Beijing, China) for all RNAs isolated
from peripheral blood samples. cDNA was synthesized
from total RNA by using an M5 Super plus qPCR RT
kit with gDNA (Mei5 Biotechnology, Co., Ltd., Beijing,
China). qRT-PCR was performed using the CFX96TM
Real-Time System (Bio-Rad, USA), and a comparative
quantification was conducted. GAPDH served as the internal
reference. The sequences of the primers used were as follows:
C1QC-F: CATCCTTGCCTAGACCATTC, C1QC-R: GTAC
CAGAAGGCATTGGTTA, VSIG4-F: AGAGAGTGTAA
CAGGACCTT, VSIG4-R: GTCACGTAGAAAGATGGTGA,
CFD-F: CTCCAAGCGCCTGTACGAC, CFD-R: CAGTGT
GGCCTTCTCCGAC.

2.8. Discovery of Immune Cell Subtypes. AF-CE samples were
analysed using the CIBERSORT algorithm [27] to determine
the immune cell infiltration. For each microarray experi-
ment, the putative proportion of immune cells as defined
by 22 sorted immune cell subtypes (LM22) was calculated
by using CIBERSORT (http://cibersort.stanford.edu/). Then,
the violin plots were created using the R package “vioplot”
with standard parameters to visualize and analyse differ-
ences in immune cell infiltration between AF-CE samples
at <3, 5, and 24 hours samples and control samples.

2.9. Nomogram and Online Prediction Tool. A nomogram
was generated using the nomogram function in the R library,
which is part of the R programming language. Calibration
curves were plotted to assess the performance and internal

validity of the nomogram with the development cohort.
Using the DecisionCurve package in R, decision and clinical
impact curves were generated. An online tool for predicting
risk was written in html, css, JavaScript, and jQuery lan-
guage using web-based software, which can be accessed at
https://www.origingenetic.com/CardiogenicStroke. With input
values of predictors for potential AF-CE patients, the online
calculator immediately returns predicted morbidity based
on the nomogram function constructed from the expression
values of candidate diagnostic genes.

2.10. Statistical Analysis. All statistical analyses in this study
were conducted using GraphPad Prism 8.0 (https://www
.graphpad.com/scientific-software/prism/) and R (version
4.1.3). The correlation between diagnostic gene expression
levels and clinical factors was determined using unpaired
Student’s t tests for continuous variables and Fisher’s exact
tests for categorical variables. This regression was carried
out using the R package glmnet to perform the LASSO test,
and we trained the SVM model with the help of R package
e107. To determine the diagnostic power and accuracy, we
applied ROC curve analysis. For all analyses, a two-sided
P < 0:05 was considered to indicate statistical significance.

3. Results

3.1. Identification of DEGs. In the GSE58294 (GPL570) data-
set related to CE, DEGs screening separately at each of the
three time points (<3h (Figure 1(a)), 5 h (Figure 1(b)),
and 24 h (Figure 1(c)) after stroke compared to the control.
Meanwhile, a total of 13962 AF-related DEGs were obtained
from GSE41177 (Figure 1(d)). Based on the DEGs for dif-
ferent time points in the GSE58294 dataset separately, we
found that the intersection of the results provided 418
DEGs (Figure 1(e)). Furthermore, 316 AF-CE genes were
obtained by intersecting with these DEGs (Figure 1(f)). In
addition, the GSE58294 and GSE41177 datasets were
merged as the training set. Using the limma package after
removing the batch effects, thirteen AF-CE related DEGs
genes (AP000525.9, POM121L9P, TIMM8A, MCEMP1,
C1QC, LOC100996760, BCL2A1, S100A12, VSIG4, OLAH,
ANKRD22, BMX, and CFD) were obtained from the merged
training set, including 9 upregulated genes and 4 downregu-
lated genes (Figure 1(g)).

3.2. Functional Correlation Analysis. Then, the Metascape
online tool was used to functionally annotate the 316 AF-
CE-related DEGs. The results revealed that AF-CE-related
DEGs were markedly enriched in oxidative stress-induced
senescence, oxidative stress response, regulation of response
to oxidative stress, programmed cell death, regulation of
epithelial cell proliferation, VEGFA-VEGFR2 signalling
pathway, complement and coagulation cascades, oestrogen
signalling pathway, snRNA 3′-end processing, MHC class II
protein complex assembly, regulation of cellular response to
growth factor stimulus, muscle structure development, nega-
tive regulation of interleukin-12 production, proteoglycans
in cancer, conjugation of salicylate with glycine, and append-
age morphogenesis (Figure 2(a)). The DO enrichment
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analysis results showed that AF-CE-related DEGs were
mainly associated with immune-mediated inflammatory dis-
eases (hepatitis, hepatitis B, and hepatitis C) and female
reproductive system diseases (female reproductive organ
cancer, ovarian epithelial cancer, malignant ovarian surface
epithelial-stromal neoplasm, ovarian carcinoma, and urinary
system cancer) (Figure 2(b)).

3.3. Selection of Diagnostic Markers via LASSO and SVM-
RFE Algorithms. Next, two distinct algorithms (LASSO and
SVM-RFE) were utilized for selecting feature genes screened
from the combined (GSE58294 and GSE41177) training set.
For the SVM-RFE algorithm, the results showed that the
classifier produced the minimum error when the feature num-
ber was 13, containing AP000525.9, POM121L9P, TIMM8A,
MCEMP1, C1QC, LOC100996760, BCL2A1, S100A12, VSIG4,
OLAH, ANKRD22, BMX, and CFD (Figures 3(a) and 3(b)).
For the LASSO algorithm, following tenfold cross validation, a
set of 10 genes was selected, including AP000525.9, TIMM8A,
S100A12, LOC100996760, VSIG4, C1QC, BCL2A1, OLAH,
BMX, and CFD (Figures 3(c) and 3(d)). Overall, 7 feature genes
(LOC100996760, VSIG4, C1QC, BCL2A1, OLAH, BMX, and
CFD) shared between the LASSO and SVM-RFE algorithms

and GEO2R-screened DEGs as diagnostic markers for AF-CE
patients were finally selected for further analysis (Figure 3(e)).
Notably, the AUC values of ROC analysis for the 7 feature
genes were all greater than 0.8, which suggested that these 7
genes might serve as diagnostic markers for AF-CE patients
(Figure 3(f)).

Moreover, to further validate the reliability and repro-
ducibility of the seven candidate diagnostic genes, we merged
two datasets (GSE115574 and GSE14975) as a validation set.
The results showed that CFD (P < 0:05), VSIG4 (P < 0:01),
and C1QC (P < 0:05) were differentially expressed between
AF and SR (Figures 4(a) and 4(b)). Then, a powerful discrim-
ination ability was confirmed in the ROC analysis. As shown
in Figure 4(c), there was an AUC of 0.672 in C1QC, an AUC
of 0.688 in VSIG4, an AUC of 0.671 in CFD, and an AUC of
0.794 in the combined three-genes (C1QC+VSIG4+CFD)
model. The AUC of model was higher than those of the indi-
vidual genes, which had a higher diagnostic value. However,
there was no significant difference between the expression of
C1QC, VSIG4 and CFD in the atherosclerosis dataset
GSE20129 (Figures 4(d)–4(f)). From the results above, the
feature biomarkers VSIG4, C1QC, and CFD were deter-
mined to have high diagnostic accuracy.
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Figure 1: DEGs representation by volcano plot diagrams and Venn diagram.(a–c) Identification of DEGs separately in cardioembolic
stroke (CE) obtained from patients with CE at each of the three time points ≤ 3 h (a), 5 h (b), and 24 h (c) following the stroke
event compared to controls in GSE58294. (d) DEGs from patients with AF compared to SR in GSE41177. (e) Venn diagrams
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compared to controls in GSE58294. (f) Venn diagrams representing the number of overlapping DEGs between CE (GSE58294) and
AF (GSE41177) by GEO2R. (g) DEGs obtained from training set (GSE58294 merged with GSE41177).
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3.4. Pathway Analysis of the Feature Biomarkers. To define
the biological relevance of VSIG4, C1QC, and CFD, we per-
formed enrichment analysis from the PathCards database
(https://pathcards.genecards.org/). The results showed that
the candidate diagnostic genes were mainly enriched in the
immune response lectin-induced complement pathway, for-
mation of fibrin clots (clotting cascade), creation of C4 and
C2 activators, innate immune system, complement pathway,
complement and coagulation cascades, response to elevated
platelet cytosolic Ca2+, and adipogenesis (Figure 5(a)). We
propose that VSIG4, C1QC, and CFD may be associated
with a regulated cellular immune response of AF-CE which
in turn influences AF-CE risk.

3.5. Immune Cell Infiltration. We then calculated the differ-
ence in the distribution of immune cell infiltration in the
GSE58294 dataset between patient samples, <3, 5, and 24 h
after stroke and control samples. When compared with the
control group, neutrophils (P < 0:05) were higher in the

AF-CE group at <3, 5, and 24 h after stroke; M0 (P < 0:05)
and M2 macrophages (P < 0:05) were higher in the AF-CE
group at 5 h after stroke; T cells gamma delta (P < 0:05)
and M2 macrophages (P < 0:05) were higher in the AF-CE
group at 24h after stroke; resting dendritic cells (P < 0:05)
were significantly lower at 3 h and 5h after stroke. In addi-
tion, naive CD4 T cells (P < 0:05) were lower at 3 h after
stroke, eosinophils (P < 0:05) were lower at 5 h, and CD8 T
cells (P < 0:05) and resting NK cells (P < 0:05) were lower
at 24 h (Supplement Figure S1).

For the feature biomarkers (VSIG4, C1QC, and CFD),
we found that CFD was positively correlated with neutro-
phils (P = 0:007) but negatively associated with naive B cells
(P = 0:034), naive CD4 T cells (P = 0:027), and resting NK
cells (P = 0:015, Figure 5(b)). C1QC was positively corre-
lated with neutrophils (P = 0:032) and resting mast cells
(P = 0:034) but negatively correlated with resting dendritic
cells (P = 0:05, Figure 5(c)). Moreover, VSIG4 was positively
associated with neutrophils (P < 0:001) and negatively
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Figure 2: Functional enrichment analysis of the AF-CE-related DEGs. (a) The enrichment analysis of 316 AF-CE-related DEGs was
performed using the Metascape online tool. (b) The DO enrichment analysis on 316 AF-CE-related DEGs.
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correlated with T follicular helper cells (P = 0:039), resting
dendritic cells (P = 0:010), and eosinophils (P = 0:001,
Figure 5(d)). These findings agree with the results of the
pathway analysis.

3.6. Expression of Diagnostic Genes in Clinical Samples. To
further confirm our findings, a total of 53 clinical blood
samples (20 patients with LAA, 20 patients with CE, and
13 controls) from patients were collected, and qRT–PCR
analyses were performed to measure the expression of
C1QC, VSIG4, and CFD. Clinical information of the patient
samples is summarized in Supplement Table S2. As shown
in Figures 6(a)–6(c), the expression of C1QC (P < 0:001)
and VSIG4 (P < 0:001) in the CE and LAA groups was sig-
nificantly increased, but the expression of CFD (P < 0:001)
was decreased in the CE and LAA groups compared with
the healthy control group, which was supported by the bio-
informatics analysis.

3.7. Assessment of C1QC, VSIG4, and CFD as Potential
AF-CE Biomarkers. To evaluate the diagnostic accuracy
of a candidate diagnostic gene, an ROC curve was constructed.
When comparing controls with CE patients, the AUC of
C1QC was 0.7885 (95% confidence interval (CI): 0.6352–
0.9417; P = 0:0057) (Figure 6(d)), the AUC of VSIG4 was
0.8769 (95% CI: 0.7599–0.9940; P = 0:0003) (Figure 6(e)),

and the AUC of CFD was 0.8250 (95% CI: 0.6776–0.9724;
P = 0:0024) (Figure 6(f)). In addition, when comparing
controls and LAA patients, the AUC of C1QC was 0.8632
(95% CI: 0.7346–0.9919, P = 0:0007) (Figure 6(g)), the
AUC of VSIG4 was 0.8423 (95% CI: 0.7054–0.9792, P =
0:0010) (Figure 6(h)), and the AUC of CFD was 0.9219
(95% CI: 0.8224–1.000, P = 0:0002) (Figure 6(i)). In addi-
tion, when comparing CE patients with LAA patients, the
AUC of C1QC was 0.7350 (95% CI: 0.5787–0.8913, P =
0:0110) (Figure 6(j)), the AUC of VSIG4 was 0.9675 (95%
CI: 0.9226–1.000, P < 0:0001) (Figure 6(k)), and the AUC
of CFD was 0.7575 (95% CI: 0.6060–0.9090, P = 0:0053)
(Figure 6(l)). These results firmly show that C1QC, VSIG4,
and CFD expression offers great value in differentiating
between controls and CE and LAA patients and is specific
for the two stroke subtypes analysed. As such, our findings
suggest that C1QC, VSIG4, and CFD may represent a diag-
nostic biomarker for AF-CE.

3.8. Construction and Evaluation of the AF-CE Diagnostic
Nomogram and Online Prediction Tool. A nomogram was
constructed to diagnose AF-CE based on the 3 diagnostic
genes (C1QC, CFD, and VSIG4) by using the “RMS” packa-
ge((Figure 7(a)). Then, to evaluate the clinical effect of the
nomogram model more intuitively, a clinical impact curve
was calculated based on the curve generated by decision
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genes used for fitting and SVM-RFE model accuracy via the SVM-RFE algorithm. (c) The partial likelihood deviation curve of the minimum
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related DEGs. (f) ROC curve to verify the diagnostic efficacy of diagnostic genes. CV: cross-validation.

8 Oxidative Medicine and Cellular Longevity



CFD⁎

VSIG4⁎⁎

C1QC⁎

Type

Type
con
CE

0

1

–1

2

–2

GSE115574 and GSE14975

(a)

⁎⁎ ⁎    ⁎

2.5

5.0

7.5

10.0

12.5

LO
C1

00
99

67
60

VS
IG

4

C1
QC

BC
L2

A1

OLA
H

BM
X

CF
D

G
en

e e
xp

re
ss

io
n

Type

con

CE

GSE115574 and GSE14975

(b)

Figure 4: Continued.

9Oxidative Medicine and Cellular Longevity



GSE115574 and GSE14975

0.0 0.2 0.4

1-Specifcity

0.6 0.8 1.0

0.0

0.2

0.4

0.6

Se
ns

iti
vi

ty

0.8

1.0

VSIG4, AUC = 0.688 

C1QC, AUC = 0.672
CFD, AUC = 0.671

C1QC + VSIG4 +
CFD, AUC = 0.794

(c)

0.087

4.1

Non-atherosclerosis

Non-atherosclerosis

Atherosclerosis

Atherosclerosis

4.2

4.3

4.4

4.5

C1
Q

C 
ex

pr
es

sio
n

GSE20129

(d)

Figure 4: Continued.

10 Oxidative Medicine and Cellular Longevity



curve analysis (DCA). The high-risk curve represented in red
was very close to the true positive patient curve represented
in blue. There was good discrimination efficacy with the
AF-CE nomogram, with an area under the curve (AUC) of

0.969 (95% CI: 0.940-0.991) (Figure 7(b)). This indicated that
the nomogram model was capable and acceptable for pre-
dicting discrimination accurately (Figure 7(c)). DCA showed
that the C1QC+CFD+VSIG4 curve was much higher than
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Figure 4: Validation of the feature biomarkers. Validation of the expression of the feature biomarkers by (a) heatmap and (b) boxplot in the
validation set (GSE115574 and GSE14975 pooled datasets). ∗P < 0:05, ∗∗P < 0:01. (c) ROC curve to verify the diagnostic efficacy of the
feature biomarkers in the validation set. (d–f) validation of the expression of the feature biomarkers (d)C1QC, (e)VSIG4, and (f) CFD in
the reverse verification set (GSE20129).
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the grey line, which explains the high accuracy of the nomo-
gram model (Figure 7(d)). In addition, a calibration curve
was constructed to determine the predictive ability of the
nomogram model. According to the calibration curve,
there was little difference between the actual and predicted
risk of AF-CE, indicating a high degree of accuracy in pre-
dicting AF-CE (Figure 7(e)). Collectively, the evidence
supports the ability of the new nomogram to assess and
predict the risk prediction of AF-CE. Furthermore, for
clinical utility, we developed an online prediction tool
(https://www.origingenetic.com/CardiogenicStroke) to pre-
dict the risk of AF-CE based on the constructed nomo-
gram. We entered the expression levels of the candidate
diagnostic genes (C1QC, CFD, and VSIG4) into the online
prediction tool. As expected, the results of the clinical val-
idation showed that all AF-CE patient test sample scores

were nearly 100%, whereas healthy controls were nearly
0%, which implies that the prediction software has high
delineation accuracy.

3.9. Correlations between Clinicopathological Parameters and
Candidate Disease Biomarkers. To clarify the roles of candi-
date disease characteristic biomarkers in the development of
AF-CE, the connections between the expression of the three
candidate genes (C1QC, CFD, and VSIG4) and clinical path-
ological features (including age, sex, TIA, cardiogenic dis-
eases, palpitation, dyspnoea, hypertension, smoking, left
atrial diameter, and diabetes) in AF-CE patients were ana-
lysed. As shown in Figure 8, in comparing the general data,
the expression of C1QC was positively correlated with age
(>60 years) (P < 0:05), history of diabetes (P < 0:05), history
of hypertension (P < 0:05), and current or recent smoking
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Figure 5: Function enrichment analysis of candidate diagnostic biomarkers. (a) Enrichment analysis of C1QC, CFD, and VSIG4. (b)
Correlation between CFD expression and infiltrating immune cells. (c) Correlation between C1QC expression and infiltrating immune
cells. (d) Correlation between VSIG4 expression and infiltrating immune cells.
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Figure 6: Diagnostic value of the three diagnostic genes in AF-CE. The expression levels of (a) C1QC, (b) VSIG4, and (c) CFD levels were
analysed by RT-qPCR. (d–l) ROC curves of C1QC, VSIG4, and CFD:∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. Horizontal lines represent median
levels and interquartile ranges. CT: control; CE: cardioembolic stroke; LAA: large-artery atherosclerosis stroke.
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(P < 0:05), while no interrelation was discovered between
C1QC expression and the other clinicopathological parame-
ters of the patients (P > 0:05). Interestingly, for CFD expres-

sion, there were significant differences in all of the above
clinical pathological features. For instance, compared with
no history of diabetes, a history of diabetes was associated
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Figure 7: Nomogram predicting the risk of AF-CE. (a) Nomogram with three peripheral blood biomarkers in AF-CE, (b) ROC curve, (c)
clinical impact curve, (d) decision curve, and (e) calibration curve.
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with a lower expression of CFD (P < 0:05); compared with
males, females had a lower expression of CFD (P < 0:05);
compared with a no history of hypertension, a history of
hypertension was associated with a lower expression of CFD
(P < 0:05). In addition, VSIG4 expression was remarkably
higher among patients who had a history of hypertension
(P < 0:05), cardiogenic diseases (P < 0:05), and palpitations
(P < 0:05); smokers (P < 0:05); patients aged >60 years (P <
0:05); females (P < 0:05).

4. Discussion

Cardiogenic stroke is one of the most lethal types of ischae-
mic stroke and is predominantly caused by a cardiogenic

embolus (or emboli) breaking off and cleaving to a corre-
sponding cerebral artery [28]. Ischaemic stroke is caused by
multiple factors, including environmental and lifestyle
causes, which can make phenotypic assortment difficult
[29]. AF is thought to be the most common form of arrhyth-
mia and the leading cause of cardioembolic stroke [30]. In
general, AF includes paroxysmal atrial fibrillation (PAF)
and persistent atrial fibrillation (PeAF) [31]. Moreover,
previous studies have demonstrated that patients with CE
or strokes with AF appeared to be at greater risk of hae-
morrhagic transformation [32]. In the diagnosis of CE,
echocardiography (ECG) is one of the most important
examinations [33]. However, AF is often paroxysmal and
asymptomatic; therefore, widely used rest ECG monitoring
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Figure 8: Correlation of C1QC, CFD, and VSIG4 with clinicopathological characteristics. TIA: transient ischemic attack; CD: cardiovascular
disease. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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could not detect all paroxysmal AF [34]. In this study, our
goal was to identify mRNAs that might serve as diagnostic
biomarkers for AF-CE.

The major purpose for subtyping cardiogenic cerebral
embolism patients is to develop a better therapeutic
decision-making process. Existing methods are outdated,
time consuming (hours to days), complex, and expensive.
Currently, blood biomarkers may be used to predict and
diagnose ischaemic stroke [35], including B-type natriuretic
peptide, interleukin-6, D-dimer, total cholesterol, interleu-
kin-1β, and high-density lipoprotein. In recent years,
mRNAs and miRNAs have been used as promising bio-
markers in cardiovascular and stroke diseases. For example,
during TIMP4 inhibition, miR-146b-5p promotes atrial
fibrosis in patients with AF [36]. In particular, serum miR-
125a-5p, miR-125b-5p, and miR-433-5p are potential bio-
markers for distinguishing between peripheral vertigo and
posterior circulation stroke [37]. With the development of
artificial intelligence, machine learning has recently become
utilized in the screening, diagnosis, and prognosis of disease
(e.g., the prediction of heart failure [38], the detection of
hepatocellular carcinoma [39], the diagnosis of diabetic ret-
inopathy [40], and the prediction of hip fractures [41]).
Regrettably, in the absence of early diagnosis and effective
therapies, the prognosis of AF-CE is currently unsatisfac-
tory. Therefore, we explored for the first time the specific
blood-based biomarkers that could enable the rapid diagno-
sis of patients with AF-CE, which may serve to support
treatment planning and secondary prevention programs,
by using machine learning.

According to our findings, the identified DEGs were
enriched in oxidative stress-induced senescence, programmed
cell death, the VEGFA-VEGFR2 signalling pathway, and the
complement and coagulation cascades signalling pathway.
Moskowitz et al. and Maida et al. reported that excitotoxicity,
oxidative stress, and inflammation were significant risk factors
for brain injury caused by ischaemia [42, 43]. Jiang et al. found
that oxidative stress and inflammation were associated with
the pathogenesis of cardio-cerebrovascular disease (CCVD)
and were closely associated with senescent vascular endothe-
lial cells [44]. In addition, stroke triggers an inflammatory
response, which may exacerbate brain injury. Li et al. con-
firmed that VEGFA-induced VEGFR2 homodimerization in
hypoxia-induced VEGFA/VEGFR2 signalling predicts the
treatment outcome for LAA stroke patients [45]. Additionally,
sex has been well established as a known risk factor for stroke
[46]. The primary female sex hormone, oestrogen, influences
cardiovascular functions through the ERα receptor [47]. Inter-
estingly, the DEGs were also enriched in the oestrogen signal-
ling pathway. Tang et al. reported that the increased risk of
ischaemic stroke is in part attributed to hypercoagulability
induced by oestrogen [48]. There is significant evidence sug-
gesting that oestrogen modulates cardiovascular physiology
[49]. According to this evidence, the findings of our study
are extremely accurate and acceptable.

In this study, three diagnostic markers were identified
based on the results from two machine learning algorithms.
Previous studies have found that C1QC encodes a major
constituent of the human complement subcomponent C1q,

which is widely expressed in various types of human malig-
nancies and diseases [50]. It has also been shown that C1QC
is associated with the complement system and increased in
the inflammatory response [51]. VSIG4 encodes an Mφ-
associated complement receptor. Previous studies have
found that VSIG4 is a potential biomarker of enhanced age-
ing in murine adipose tissue [52]. Recently, C1QC and
VSIG4 were identified as potential crucial genes associated
with the maintenance of cognitively normal brain ageing
via bioinformatic analysis by Xu et al. [53]. The CFD gene
encodes a C3-convertase that activates and amplifies alterna-
tive complement pathways. CFD is essential not only for
innate immunity but also for other physiological processes
[54]. Our findings showed that three diagnostic genes were
mainly enriched in the immune response lectin-induced
complement pathway and complement pathway. Immune
reactions can be considered a useful signal for the early
detection of CE as an early pathological change in this dis-
ease. A pathogen is first attacked by the complement system
[55]. Tomonobu et al. [56] reported that dysregulation of the
complement cascade may lead to a variety of chronic dis-
eases, which may contribute to the development of throm-
bosis, systemic inflammation, and autoimmune diseases.

We then analysed the expression levels of the 3 diagnostic
markers in blood samples by RT–qPCR which showed that
the levels of 3 blood biomarkers in patients with AF-CE can
be used to differentiate patients with AF-CE from normal
controls and can effectively discriminate AF-CE from LAA
stroke. Specifically compared with the control group, C1QC
and VSIG4 in AF-CE patients were significantly upregulated,
and the expression of CFD was significantly downregulated.
The expression of CFD was significantly higher in the control
group than in the test group, suggesting that CFD may be a
protective gene in the development of disease. Decreased
expression of CFD also implies dysregulation of the comple-
ment system, a precursor to thrombosis that predicts the
risks of AF-CE. Of note, we validated our results using clini-
cal samples, increasing the accuracy of the results. A complex
and substantial influence of sex and age can be seen in the
risk, outcome, and pathophysiology of ischaemic stroke
[57]. Past studies have shown that stroke is an illness of
ageing—most strokes occur in people >60 years old. The
mortality rate and poorer quality of life of older stroke
patients are higher than those of younger patients [58].
Many aspects of ischaemic stroke, including stroke risk,
outcome, and treatment are influenced by sex [59]. Stroke
rates continue to increase in women after middle age, and
older women (age > 85 years) have higher rates of stroke
than men of the same age, which is consistent with our
study [60]. Previous studies have shown that a high risk
of early stroke and poorer long-term survival are often
associated with untreated TIA [61]. Our results show that
the high expression of C1QC and VSIG4 was positively
correlated with age > 60 years old, sex, history of hyperten-
sion, diabetes, smoking, and transient ischaemic attack,
and the low expression of CFD was inversely related to
age > 60 years old, female sex, history of hypertension, dia-
betes, smoking, and transient ischaemic attack. In addi-
tion, the diagnostic values of these diagnostic genes were
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analysed using ROC curve analysis. Each of the diagnostic
genes had a reliable diagnostic value, and they all exhib-
ited significant specificity and sensitivity. In conclusion,
the above evidence demonstrates that C1QC, VSIG4, and
CFD can be used as independent factors and diagnostic
criteria for AF-CE.

Finally, based on these variables, we established a nomo-
gram model to help clinicians predict the risk of AF-CE.
The high concordance for the calibration curve indicates
that our nomogram’s discriminative ability and universal
clinical applicability were validated. Then, an online tool
based on the nomogram model was created. According to
the prediction tool, patients with disease risk are expressed
as a percentage; values closer to 100% indicate a greater
likelihood of AF-CE. Online prediction tool development
has largely facilitated the application of nomograms in the
clinic, thereby better assisting clinicians in the evaluation
and selection of treatment options for their patients. The
results of the clinical validation also showed the high delin-
eation accuracy of this online prediction tool.

However, this study had some limitations that should
be noted. First, this experiment involved a small sample
size and limited clinical characteristics for patient inclu-
sion, which may lead to a bias in the experimental results.
Second, several datasets with different numbers of controls
impair the interpretation of the results. In the next step,
we will continue to collect cases to conduct multicentre,
large-sample research to confirm our findings. In addition,
future research should also explore the pathogenesis of
AF-CE and the pathways related to C1QC, VSIG4, and
CFD in the disease in vivo and in vitro. Despite the short-
comings of this study, C1QC, VSIG4, and CFD will cer-
tainly play a remarkable role in the diagnosis and
treatment of AF-CE, thus providing new methods and tar-
gets for the study of this disease.

5. Conclusions

In conclusion, C1QC, VSIG4, and CFD should be consid-
ered novel diagnostic biomarkers for AF-CE. This was fur-
ther supported by bioinformatic analysis and experiments.
Moreover, we found that the three candidate diagnostic
genes were mainly enriched in the immune system and com-
plement pathways, which could form the basis for further
research. Finally, we constructed a nomogram and a suitable
and convenient online tool (https://www.origingenetic.com/
CardiogenicStroke) with three peripheral blood biomarkers
to assist clinicians in predicting the risks for estimating the
status of patients with AF-CE to make a better plan for the
treatment of stroke patients.
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