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Pirarubicin (THP) is one of the classic chemotherapy drugs for cancer treatment. It is often clinically limited because of its
cardiotoxicity. The occurrence and development of THP-mediated chemotherapy-related cardiotoxicity (CRC) may be reversed
by RING finger protein 10 (RNF10). This study was performed with the aim of evaluating the inhibitory effect of RNF10 on
THP-mediated CRC and its molecular mechanism. In vivo, we found that the expression of RNF10 decreased in THP-induced
CRC rats, accompanied by Meox2 inhibition and AP-1 activation, resulting in increased cardiomyocyte apoptosis. After small
interfering RNA (siRNA) and lentivirus transfection (Lv) of RNF10 in vitro, the expression of RNF10, Meox2, and AP-1
proteins and the degree of cardiomyocyte apoptosis were detected. We found that overexpression of RNF10 in H9C2
cardiomyocytes significantly promoted Meox2 and inhibited AP-1, alleviated apoptosis, and showed further inhibitory activity
on THP-induced cardiomyocyte toxicity. Silencing RNF10 showed the opposite result. Our study showed that RNF10 inhibited
THP-induced CRC through the activity of Meox2 and AP-1 proteins. RNF10 may be the next drug target for the treatment of
CRC and other related cardiovascular diseases.

1. Introduction

Malignant tumors and cardiovascular and cerebrovascular
diseases are the main diseases endangering human health
[1, 2]. Due to the progress of modern tumor treatment
methods, the 5-year survival rate of tumor patients has
been significantly improved [3]. However, the impact of
chemotherapy-related cardiotoxicity (CRC) on patients is
also increasingly prominent [4]. Most patients have histolog-
ical changes before the decline in cardiac function, accompa-
nied by irreversible injury, and miss the best time window of
treatment [5]. In the process of CRC, many chemotherapeu-
tic drugs cause disordered myocardial energy and ion metab-
olism in the metabolic process of cardiomyocytes, resulting
in extensive changes in myocardial structure and finally lead-
ing to cardiac dysfunction [5, 6]. Our previous studies have

shown that abnormal cardiomyocyte apoptosis may be the
ultimate executor of cardiac injury, but what and how
apoptosis is caused have not been fully clarified [7, 8]. There-
fore, in-depth study of the pathogenesis of CRC and early
prevention and treatment of CRC have extremely important
theoretical and clinical significance.

As the main pathway of intracellular protein degrada-
tion, the ubiquitin proteasome system (UPS) regulates
almost all life cycle activities in organisms, including apopto-
sis, inflammation, transcriptional regulation, signal trans-
duction, and the cell cycle [8, 9]. In particular, when the
myocardium is damaged, the myocardial UPS system is sig-
nificantly activated to regulate the generation and degrada-
tion of a large number of signal proteins, which directly
affects energy metabolism, the inflammatory response,
apoptotic autophagy, myocardial interstitial fibrosis, and
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so on [9–11]. Therefore, regulating the production and
degradation of key proteins in CRC through UPS may
be an important entry point to solve its occurrence and
development.

As the most critical component of the UPS, ubiquitin
ligase E3 is responsible for the connection between protein
substrates and the UPS pathway, which determines the spe-
cific degradation of protein substrates by the UPS [12, 13].
E3, by determining the timeliness and specificity of ubiquiti-
nation, can target, recognize, and promote the degradation
of substrate proteins; affect the posttranscriptional regula-
tion of genes; and regulate myocarditis, apoptosis, fibrosis,
etc. [13–15]. Therefore, the selection of the appropriate
ligase E3 for intervention or specific regulation of key pro-
teins in the occurrence and development of CRC is helpful
to clarify the key molecular mechanism(s) and explore new
prevention and treatment targets.

RING finger protein 10 (RNF10) is a member of the
ring finger protein family (ring E3s) in ubiquitin ligase E3
[16, 17]. Its gene is located in the long arm of chromosome
12 (12q24.31), which is widely expressed in various tissues
of mammals [16]. For example, the homology of the
RNF10 amino acid sequence between mice and humans
may be up to 90% [17, 18]. Its structure consists of two
parts: a tyrosine kinase-binding domain (TKB domain)
and a ring domain [19]. The ring domain is the most char-
acteristic structure with a ring finger domain. Its function is
to recruit ubiquitin ligase E2 and substrates [17, 19]. The
heart develops from the cardiac plate of the embryo body,
which folds into the endocardial tube. The source of the
germ layer is homologous to the development of blood
vessels, which is an important expression site of RNF10
[17, 20–22]. Our previous studies confirmed that RNF10
is an important regulator in the vascular remodeling model
of diabetes. Overexpression of RNF10 significantly reduces
carotid intima formation in diabetic rats after balloon
injury and vice versa. The mechanism may be related to
regulating the cell cycle, mediating the inflammatory
response, and inducing cell proliferation and apoptosis
[17, 21, 22]. Therefore, we speculate that RNF10 may also
be involved in the regulation of cardiomyocyte structure
and function and play an important role in the process of
cardiomyocyte apoptosis. At the same time, it plays an
important role in CRC and apoptosis. Therefore, studying
the regulatory mechanism of RNF10 in CRC may have very
important basic and clinical significance.

2. Materials and Methods

2.1. Materials. From Shanghai Aladdin Reagent Co., Ltd.,
THP was purchased (Shanghai, China). The Nanjing
Jiancheng Bioengineering Institute sold a commercial lactate
dehydrogenase (LDH, A020-2-2) kit. Jiangsu Meibiao
Biotechnology Co., Ltd. (Jiangsu, China) sold test kits for
cardiac troponin T (cTnT, MB-7278A), brain natriuretic
peptide (BNP, MB-1608A), and creatine kinase MB (CK-
MB, MB-6930A). Biosharp developed the CCK-8 cell
viability and toxicity detection kit (BS350B) (Anhui, China).
Absin (Shanghai, China) sold the antibodies RNF10

(abs127972); Proteintech (Wuhan, China) sold the anti-
bodies activator protein-1 (AP-1, 24909-1-AP), mesenchyme
homeobox 2 (Mexo2, 12449-1-AP), B cell lymphoma-2 (Bcl-
2, 12789-1-AP), and Bcl-2-associated X (Bax, 9664s).

2.2. Animal Studies

2.2.1. Animal Model and Diet. The Chongqing Medical
University’s First Affiliated Hospital’s Animal Care Use
Committee approved the studies. The researcher conducted
a blind study regarding the group assignment during the
animal experiment. The Chongqing Medical University
Experimental Animal Center sold a total of 20 male SD rats
(180–200 g, 6–8 weeks). The rat groups were as follows: nor-
mal (ND) group (rats were injected with an equal volume of
normal saline through the caudal vein once a week, n = 10)
and THP group (rats were injected with 3mg/kg THP
through the caudal vein once a week, n = 10). The survival
of rats was recorded every day, and the food consumption
and body weight were recorded twice a week.

2.2.2. Electrocardiogram and Doppler Echocardiography. The
lead IV ECG and Doppler echocardiography of the rats in
each group were assessed at the end of the eighth week while
anesthetized (inhaled isoflurane, the initial dose and main-
tenance dose were both 2 percent) using the BL-420F bio-
logical function measurement system (Chengdu Taimeng
Science and Technique Company) and the Vivid E95 ultra-
sonic diagnostic apparatus (General Electric Company).

2.2.3. Sample Collection and Preparation. Rats that had been
fasting overnight were sacrificed by cervical dislocation
(inhalation of 2% isoflurane). Blood samples from rats were
collected and centrifuged at 3000 rpm for 30min at 4°C to
separate the serum.

2.2.4. Biochemical Analysis. BNP, CK-MB, cTnT, and LDH
levels in the serum were assayed according to the kit
protocols.

2.2.5. Histological Analysis and TUNEL Staining. Heart tis-
sue was cleaned with saline solution before being preserved
in 10% formalin. The heart tissue was paraffin embedded
through fixation, dehydration, transparency, wax penetra-
tion, and embedding and finally sectioned into 4-5μm thick
paraffin sections. Then, paraffin sections were used for
hematoxylin and eosin (H&E) staining for histopathology.
The TUNEL staining procedure was carried out in accor-
dance with the TUNEL staining kit’s instructions. With a
Nikon Eclipse 80i microscope (Nikon, Chiyoda, Japan)
magnified 200x, staining images were viewed.

2.2.6. Immunohistochemistry. The prepared heart tissue was
dewaxed for antigen repair, and then, the heart tissue was
sealed in the sealing solution at 37°C for 30min. After
cleaning, the tissue was incubated in the primary antibody
diluent of RNF10 at 4°C overnight. The next day, the heart
tissue was incubated with a secondary antibody at 37°C for
30 minutes. After cleaning, DAB color development,
redyeing, dehydration, and sealing were carried out. Staining
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images were observed with a Nikon Eclipse 80i microscope
(Nikon, Chiyoda, Japan) at 200x magnification.

2.3. Cell Experiments

2.3.1. Small Interfering RNA Processing. In this study, the
RNF10 gene was silenced by small interfering RNA (siRNA).
The specific siRNAs of RNF10 and nontargeted control
siRNA were purchased from Tsingke Biotechnology Co.,
Ltd. (Beijing, China). H9C2 cardiomyocytes were trans-
duced with Lipofectamine™ 3000 reagent (Thermo Fisher
Scientific Inc., Waltham, MA, USA) according to the
manufacturer’s instructions. In short, H9C2 cardiomyocytes
at a density of 1 × 106 cells/well were inoculated into 6-well
plates overnight. When H9C2 cardiomyocytes grew to
approximately 50% confluence, Lipofectamine™ 3000 and
an Opti-MEM medium mixture, small interfering RNA,
and Opti-MEM medium were prepared. Then, the two
mixtures were incubated at room temperature for 15min
and added to the cells. H9C2 cardiomyocytes were trans-
fected at 37°C for 24 hours and treated with THP (5μM)
for 24 hours.

2.3.2. Construction and Transfection of Lentivirus. Lentivirus
particles carrying RNF10 (Lv-RNF10) and empty vector (Lv-
CON) were constructed by Beijing Qingke Biotechnology
Co., Ltd., and the lentivirus vector was transferred into
H9C2 cells in the presence of 15μg/mL polybrene with a
complex number of infections (MOI) of 10. The growth fluid
was changed 24 hours after infection. After 72 h, H9C2
cardiomyocytes were screened with 2.0μg/mL purine and
cultured in a humidified incubator (95% air, 5% carbon
dioxide, 37°C).

2.3.3. H9C2 Cardiomyocyte Grouping and Treatment. In
short, H9C2 cardiomyocytes were divided into 10 groups:
CON group (control), THP group (5μM THP, 24 h), Si-
CON group (nontargeted control siRNA, 24 h), Si-THP
group (nontargeted control siRNA+5μM THP, 24 h), Si-
RNF10 group (siRNAs of RNF10, 24 h), Si-RNF10-THP
group (siRNAs of RNF10+5μM THP, 24 h), Lv-CON group
(lentivirus particle empty vector, 24 h), Lv-THP group
(lentivirus particle empty vector+5μM THP, 24h), Lv-
RNF10 group (lentivirus particles carrying RNF10, 24 h),
and Lv-RNF10-THP group (lentivirus particles carrying
RNF10+5μM THP, 24h).

2.3.4. A CCK-8 Kit Was Used to Determine the Cell Viability.
According to the instructions of the CCK-8 test kit, the cell
viability of cardiomyocytes in each group was detected.
The cell viability of CON was defined as 100%.

2.3.5. Apoptosis Was Detected by Flow Cytometry. After
collecting the cells from each group, Annexin V-FITC
binding solution was added to resuspend the cells, and the
cells were incubated at room temperature in the dark for
10min. After centrifugation, Annexin V-FITC binding solu-
tion was added again to resuspend the cells, propidium
iodide staining solution was added to mix well, and flow

cytometry was carried out in the dark at 4°C. Annexin V-
FITC is green fluorescence, and DAPI is red fluorescence.

2.3.6. Immunofluorescence. According to the abovemen-
tioned grouping, cell creep was made, and the cell creep
was fixed with 4% paraformaldehyde for 15min. Then, the
sections were soaked in 0.5% Triton X-100 at room temper-
ature for 20min and then sealed at room temperature in
goat serum for 30min. Then, RNF10 primary antibody was
added and incubated overnight at 4°C. The next day, the
cells were incubated with the fluorescent secondary antibody
at room temperature for 1 h and then with DAPI staining
solution for 5min. Finally, the samples were sealed with
antifluorescent quenching agent, and the images were
observed and collected under a fluorescence microscope.
Staining images were observed with a Nikon Eclipse 80i
microscope (Nikon, Chiyoda, Japan) at 200x magnification.

2.4. Real-Time qPCR. For real-time qPCR, total RNA was
extracted from frozen pulverized rat hearts and H9C2 car-
diomyocytes using TRIzol (Invitrogen) and then transcribed
by a two-step method with a SuperScript™ First-Strand
Synthesis System. The PCR products were quantified with
SYBR Green PCR Master Mix (Applied Biosystems), and
the results were normalized to β-actin gene expression.
The primer sequences were as follows: β-actin-F: CTCTTC
CAGCCTTCCTTCCT; β-actin-R: AGCACTGTGTTGGC
GTACAG; RNF10-F: ATTTTAGCAACCAGTCCCGTCG;
and RNF10-R: CCTCATCCCGTCTTCCACCAT.

2.5. Western Blotting. Cardiac tissue and H9C2 cardiomyo-
cytes were lysed in radioimmunoprecipitation lysis buffer
containing 1% protease inhibitor to obtain a pure protein
solution. Then, a BCA kit was used to determine the protein
concentration. In total, approximately 40μg of heart tissue
lysate or 20μg of cell lysate was used for 12% sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis, and then, the
proteins were transferred to PVDF membranes. After
blocking with rapid protein-blocking solution, the following
primary antibodies were added and incubated: RNF10
(1 : 1000), AP-1 (1 : 1000), Mexo2 (1 : 1000), cleaved
caspase-3 (1 : 1000), Bax (1 : 1000), Bcl-2 (1 : 1000), and
GAPDH (1 : 5000). Subsequently, membranes were added
and incubated in HRP-conjugated goat anti-rabbit IgG (H
+L) secondary antibodies (1 : 10,000; Thermo Fisher Scien-
tific, Inc.; 31460). BeyoECL Plus (Beyotime Institute of Bio-
technology) and Image Lab software (version 5.2.1; Bio-Rad
Laboratories, Inc.) were used to analyze protein expression.
The specific protein expression levels were normalized to
GAPDH.

2.6. Statistical Analysis. Data are expressed as the mean ±
standard error of themean. The normal distribution and
homogeneity of variance of the data were detected using
one-way or two-way ANOVA, and Tukey’s multiple com-
parison post hoc test was used to analyze the significant
differences between the groups. P ≤ 0:05 was considered
statistically significant.
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3. Results

3.1. THP Decreased the Body Weight, Food Intake, and
Survival Rate of Rats. During the 8-week model establish-
ment period, THP led to body weight loss in the rats
(Figure 1(a)). The difference was significant from the 4th

week, and the difference was more significant from the 5th
week. Similarly, THP reduced the food intake of rats
(Figure 1(b)). The difference was significant from week 3,
and the difference was more significant from week 4.

In addition, normal rats were generally in good condi-
tion during the 8-week test, without obvious abnormalities
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Figure 1: THP causes general conditions and ECG abnormalities in rats. Compared with the ND group, THP resulted in a decrease in the
(a) body weight and (b) food intake of rats. In addition, one rat in the THP group died every day on the 38th, 43rd, 44th, 48th, and 53rd
days, while no death occurred in the ND group (c). (d) ECG showed that compared with the ND group, rats in the THP group had elevated
(e) R waves, (f) S waves, and (g) T waves and (h) prolonged QT intervals. Values are expressed as the mean ± SEM. (a, b) n = 10: two-way
ANOVA; (c–h) n = 3: one-way ANOVA. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. ND.
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Figure 2: Continued.
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and with no death. In THP-treated rats, the general state of
the rats was poor, and the mortality was high, up to 50%
(Figure 1(c)).

3.2. THP Caused ECG and Echocardiographic Changes in
Rats. At the end of model establishment, THP caused
ECG (Figure 1(d)) and echocardiography (Figure 2(a))
abnormalities in rats. The specific manifestations were
the elevation of the R wave (Figure 1(e)), S wave
(Figure 1(f)), and T wave (Figure 1(g)) and the prolonga-
tion of the QT interval (Figure 1(h)); EF (Figure 2(b)) and
ES (Figure 2(c)) decreased, and LVIDd (Figure 2(d)) and
LVIDs (Figure 2(e)) thickened.

3.3. THP Leads to Abnormal Biomarkers of Myocardial
Injury and Cardiac Tissue Morphology in Rats. THP caused
an increase in the biomarkers BNP (Figure 2(f)), CK-MB
(Figure 2(g)), cTnT (Figure 2(h)), and LDH (Figure 2(i)) of
myocardial injury in rats. Similarly, THP caused abnormal
cardiac tissue morphology in rats (Figure 2(j)).

3.4. THP Caused Abnormal Expression of the RNF10 Gene
and Protein in Rat Hearts. Immunohistochemical results
showed that THP caused a decrease in RNF10 expression
in the rat heart (Figure 3(a)). Similarly, the results of PCR
(Figure 3(c)) and WB (Figures 3(d) and 3(e)) also showed
that THP decreased the gene and protein expression of
RNF10 in the rat heart. In addition, THP also resulted in

increased AP-1 protein expression and decreased Meox2
protein expression (Figures 3(d) and 3(e)).

3.5. THP Increased Cardiomyocyte Apoptosis in Rats. THP
led to an increase in cardiomyocyte apoptosis in rats,
which was characterized by increased expression of cleaved
caspase-3 and a decrease in the Bcl-2/Bax ratio (Figures 3(d)
and 3(e)). TUNEL staining also showed that THP led to an
increase in cardiomyocyte apoptosis in rats (Figure 3(b)).

3.6. Effect of Inhibition or Activation of RNF10 on the
Activity and Apoptosis Rate of H9C2 Cardiomyocytes
Induced by THP. Flow cytometry showed that THP caused
an abnormal increase in the apoptosis rate of H9C2 cardio-
myocytes, while silencing the expression of RNF10 also led
to an abnormal increase in the apoptosis rate of H9C2
cardiomyocytes. Overexpression of RNF10 reversed the
increase in the apoptosis rate of H9C2 cardiomyocytes
caused by THP (Figure 4(a)). Similarly, both THP and
silencing RNF10 expression resulted in a decline in H9C2
cardiomyocyte survival (Figure 4(b)), while overexpression
of RNF10 reversed the decline in H9C2 cardiomyocyte sur-
vival caused by THP (Figure 4(c)).

3.7. Effect of Inhibition or Activation of RNF10 on THP-
Induced RNF10 Protein Expression in H9C2 Cardiomyocytes.
The results of immunofluorescence staining showed that
THP caused the fluorescence intensity of RNF10 to decrease,

ND

HE

THP

(j)

Figure 2: THP induced cardiac dysfunction in rats. (a) Echocardiography showed that compared with the ND group, THP caused
a decrease in (b) EF and (c) FS, while (d) LVIDd and (e) LVIDs thickened. In addition, compared with the ND group, (f) BNP, (g) CK-MB,
(h) cTnT, and (i) LDH in the THP group were abnormally increased. (j) HE staining showed that compared with the ND group, the
morphology of heart tissue in the THP group was abnormal. Values are expressed as the mean ± SEM. One-way ANOVA (n = 3).
∗P < 0:05 vs. ND.
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and the fluorescence intensity also decreased after silencing
RNF10 (Figures 5(a) and 5(b)). Similarly, overexpression of
RNF10 reversed the THP-induced decrease in RNF10 fluo-
rescence intensity (Figures 5(a) and 5(b)).

3.8. Effects of Inhibition or Activation of RNF10 on THP-
Induced RNF10 Expression and the Downstream Signal
Transduction Pathway in H9C2 Cardiomyocytes. In cellular
studies, RNF10 expression in cardiomyocytes after RNF10
silencing decreased, increased AP-1 protein expression
and decreased Meox2 protein expression (Figures 5(c) and
5(d)). After silencing RNF10, the corresponding changes
were more significant after THP treatment. After overexpres-
sion of RNF10, the corresponding changes were reversed
(Figures 5(e) and 5(f)).

3.9. Effect of Inhibiting or Activating RNF10 on THP-Induced
Apoptosis of H9C2 Cardiomyocytes. After silencing RNF10,
cardiomyocytes showed the same apoptotic trend as the
THP group, which was characterized by an increased expres-
sion of cleaved caspase-3 and a decrease in the Bcl-2/Bax
ratio (Figures 5(c) and 5(d)). After silencing RNF10 and
THP treatment, apoptosis was more significant. After over-
expression of RNF10, the corresponding apoptosis trend
was reversed (Figures 5(e) and 5(f)).

4. Discussion

CRC has become a serious public health problem in cancer
treatment in China and the world, significantly increasing
the cardiovascular incidence rate and death risk as well as
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Figure 3: THP causes RNF10 protein and gene abnormalities and cardiomyocyte apoptosis in rat hearts. (a) Immunohistochemistry showed
that THP caused a decrease in RNF10 protein expression in rat hearts compared with that in the ND group. (b) TUNEL staining showed
that THP caused increased apoptosis of rat cardiomyocytes compared with the ND group. (c) PCR results showed that THP caused a
decrease in RNF10 gene expression in rat hearts compared with the ND group. (d, e) WB results showed that compared with the ND
group, THP caused the expression of RNF10, Meox2, and Bcl-2/Bax proteins to decrease, while the expression of AP-1 and cleaved
caspase-3 proteins increased. Values are expressed as the mean ± SEM. One-way ANOVA (n = 3). ∗P < 0:05 vs. ND.
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the difficulty of cancer treatment [23]. Cardiomyocyte apo-
ptosis caused by CRC is not only an important factor in
the development of cardiac damage but also the main cause
of cardiac dysfunction [24, 25]. In this process, the ubiquitin
proteasome system may be an important entry point to solve
the occurrence and development of CRC, and RNF10 may
be a potential intervention target. Studying the specific
regulatory mechanism of RNF10 will help to clarify the
important role of ubiquitination in CRC and identify new
therapeutic targets. In our study, we found that the general
condition of SD rats induced by THP was poor, and the
performance of cardiac function impairment (ECG, echo-
cardiography, and biomarkers of myocardial injury) and
the survival rate decreased, indicating that THP successfully
induced chemotherapy-related cardiotoxicity in rats. In the
further detection of the rat heart, it was found that THP
decreased the expression of RNF10 gene and protein, regu-

lated the expression of AP-1 and Meox2, and finally caused
cardiomyocyte apoptosis. In vitro, we found that silencing or
overexpressing RNF10 could regulate THP-induced cardio-
myocyte apoptosis. Specifically, overexpression of RNF10
can inhibit AP-1 and activate Meox2 expression and
ultimately reverse THP-induced cardiomyocyte apoptosis.
In contrast, inhibition of RNF10 showed the opposite effect
and aggravated cardiomyocyte apoptosis. The use of chemo-
therapy drugs can be traced back to the beginning of the last
century, and research on CRC has become a hot spot in the
last century and continues to this day. However, it is still a
medical problem that has not been completely solved
[26–28]. In nearly a century of research, it has been gradu-
ally clarified that oxidative stress and inflammation in CRC
are the main initiating factors leading to cardiac progression,
and cardiomyocyte apoptosis is the ultimate executor and
final outcome of most CRCs [29–31]. Many researchers
have tried to use antioxidants and anti-inflammatory drugs
to fight CRC [24, 32]. In our previous studies, we found
that apoptosis in CRC could be induced by ROS-induced
changes in mitochondrial membrane permeability, but
improving mitochondrial membrane permeability could
not completely reverse apoptosis [7, 8]. Therefore, we
speculate that there are other inducing factors of apoptosis
in CRC.

RNF10 is an important member of the ring finger pro-
tein family of ubiquitin ligase E3 in UPS, which regulates
almost all life activities in organisms. Cardiomyocytes are
important sites of RNF10 expression [16, 33]. When the
myocardium is damaged, the expression and transcription
of RNF10 in the myocardial UPS system are affected, result-
ing in the production and degradation of a large number of
signal proteins, which directly affect cardiac energy metabo-
lism, the inflammatory response, oxidative stress, and apo-
ptotic autophagy [17, 21, 22, 34]. The key is that RNF10
can target and regulate the expression of AP-1 and Meox2
[17, 20–22]. AP-1 is a transcriptional activator in cells and
is a heterodimer composed of c-fos and c-Jun [35, 36].
Appropriately inhibiting the expression of AP-1 can effec-
tively alleviate the cardiovascular toxicity caused by various
factors, such as intimal hyperplasia, myocardial hypertro-
phy, hypertension, and myocardial fibrosis [37–39]. Homeo-
box proteins are a group of phylogenetically conserved
transcription factors that regulate tissue growth and devel-
opment, and homeobox genes are the main genes that con-
trol development and play a key role in the regulation of
animal organogenesis and cell differentiation [40, 41]. There
is no Meox2 expression in the early stage of heart develop-
ment and only in the relatively late stage of heart develop-
ment; that is, when the proliferation of cardiac cells begins
to decline, Meox2 begins to be expressed [42]. Meox2 is
involved in a variety of cellular processes, including cell
differentiation and apoptosis [43, 44]. The expression of
RNF10 enhanced Meox2-mediated activation of the
p21WAF1 promoter, indicating that RNF10 is an activator
of Meox2 [20, 45]. Our previous studies confirmed that
the overexpression of RNF10 promotes the apoptosis of
arterial intimal cells and significantly reduces the forma-
tion of carotid intima after balloon injury in diabetic rats
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Figure 4: THP caused H9C2 cardiomyocyte apoptosis and
decreased the survival rate. (a) The results of flow cytometry
showed that compared with the CON group, THP caused an
increase in the apoptosis rate, while the RNF10 silencing group
also increased the apoptosis rate. Compared with the THP group,
the apoptosis rate of the RNF10 overexpression group decreased
significantly. The results of CCK-8 showed that compared with
the CON group, THP caused a decrease in cell survival, while the
RNF10 silencing group also reduced cell survival (b); compared
with the THP group, the cell survival rate of the RNF10
overexpression group was significantly higher (c). Values are
expressed as the mean ± SEM. One-way ANOVA (n = 3). ∗P < 0:05
vs. ND, #P < 0:05 vs. THP.
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and vice versa [17, 21, 22]. Surprisingly, in the rat model
of CRC, the expression of RNF10 decreased, which seems
to indicate that RNF10 plays a central, active role in CRC.
In vivo, overexpression of RNF10 alleviated cardiomyocyte
apoptosis, while silencing RNF10 promoted apoptosis,
which was contrary to the results of balloon injury in dia-
betic rats. We speculate that this may be due to the differ-
ence in the role of RNF10 in different cell types. In
general, RNF10 is a gene or protein that plays a positive
role in life activities. Just as the human body needs normal
and healthy myocardial cells without excessive hyperplasia

of the endocardium, the UPS where RNF10 is located is
an orderly whole and always maintains dynamic balance.

Therefore, we believe that RNF10 may be a potential
intervention target in the occurrence of CRC. It is necessary
to further study what role RNF10 plays in the occurrence
and development of CRC, how to participate in it, and how
to play the corresponding role, as well as its specific target
and mode of action. Finally, we clarify the important role of
ubiquitination in CRC and identify new therapeutic targets
to provide an important theoretical basis for intervention
targets for the prevention and treatment of clinical CRC.

RNF10

CON THP Si-RNF10 Si-RNF10-THP Lv-RNF10 Lv-RNF10-THP

Merge

DAPI

(a)

2.0

1.5

1.0

0.5

0.0

#

Im
m

un
ofl

uo
re

sc
en

ce
in

te
ns

ity

CO
N

TH
P

Si
-R

N
F1

0

Si
-R

N
F1

0-
TH

P

Lv
-R

N
F1

0

Lv
-R

N
F1

0-
TH

P
⁎

⁎

(b)

RNF10
AP-1

Meox2
Bcl-2

Bax
Cleaved-caspase 3

GAPDH
THP

si-CON
si-RNF10

–
–
–

+
–
–

–
+
–

+
+
–

–
–
+

+
–
+

(c)

5

CON
THP
si-CON

4

3

2

siR
N

A
-F

ol
d 

ch
an

ge

1

0

RN
F1

0

A
P-

1

M
eo

x2

C
le

av
ed

-c
as

pa
se

 3

Bc
l-2

/B
ax

⁎⁎

⁎
⁎

⁎
⁎

⁎⁎

⁎
⁎

si-CON-THP
si-RNF10
si-RNF10-THP

(d)

RNF10
AP-1

Meox2
Bcl-2

Bax
Cleaved-caspase 3

GAPDH
THP

Lv-CON
Lv-RNF10

–
–
–

+
–
–

–
+
–

+
+
–

–
–
+

+
–
+

(e)

4

3

2

Lv
-F

ol
d 

ch
an

ge

1 #

#

#

#

#

0

RN
F1

0

A
P-

1

M
eo

x2

C
le

av
ed

-c
as

pa
se

 3

Bc
l-2

/B
ax

⁎

⁎

⁎

⁎

⁎

CON
THP
Lv-CON

Lv-CON-THP
Lv-RNF10
Lv-RNF10-THP

(f)

Figure 5: THP causes RNF10 protein abnormalities and cardiomyocyte apoptosis in H9C2 cardiomyocytes. (a, b) Immunofluorescence
showed that compared with the CON group, THP caused a decrease in RNF10 expression, while RNF10 expression in the RNF10
silencing group also decreased; compared with that in the THP group, the expression of RNF10 in the RNF10 overexpression group
was significantly increased. (c, d) WB results showed that compared with the CON group, THP and RNF10 silencing resulted in
decreased expression of RNF10, Meox2, and Bcl-2/Bax proteins, while the expression of AP-1 and cleaved caspase-3 proteins
increased; (e, f) compared with the THP group, overexpression of RNF10 resulted in increased expression of RNF10, Meox2, and Bcl-2/
Bax protein, while the expression of AP-1 and cleaved caspase-3 protein decreased. Values are expressed as the mean ± SEM. One-way
ANOVA (n = 3). ∗P < 0:05 vs. ND, #P < 0:05 vs. THP.
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