
Research Article
Ferroptosis-Related lncRNAs Act as Novel Prognostic
Biomarkers in the Gastric Adenocarcinoma Microenvironment,
Immunotherapy, and Chemotherapy

Yushi Zheng,1 Shanshan Wu,2 Xueshan Huang,2 and Lianxiang Luo 3,4

1The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
2Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
3The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
4The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China

Correspondence should be addressed to Lianxiang Luo; luolianxiang321@gdmu.edu.cn

Received 11 August 2022; Revised 1 March 2023; Accepted 21 April 2023; Published 19 May 2023

Academic Editor: Xiao-Jie Lu

Copyright © 2023 Yushi Zheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ferroptosis, a form of programmed cell death akin to necrosis, is managed by iron and is distinguished by lipid peroxidation.
Gastric cancer is a highly aggressive form of cancer, responsible for the third highest number of cancer-related deaths globally.
Despite this, the potential of ferroptosis to predict the occurrence of this cancer is yet to be determined. In this research, a
comprehensive examination was conducted to explore the link between long noncoding RNAs (lncRNAs) and ferroptosis, in
order to uncover an lncRNA signature that can predict drug susceptibility and tumor mutational burden (TMB) in gastric
adenocarcinoma. We conducted an in-depth analysis of the GC immune microenvironment and immunotherapy, with a
particular focus on ferroptosis-related lncRNA prognostic biomarkers, and further explored the correlation between these
factors and prognosis, immune infiltration, single nucleotide variation (SNV), and drug sensitivity for gastric adenocarcinoma
patients. Through our investigations, we have discovered five lncRNA signatures related to ferroptosis that can accurately
forecast the prognosis of gastric adenocarcinoma patients and also regulate the proliferation, migration, and occurrence of
ferroptosis in gastric adenocarcinoma cells. In conclusion, this lncRNA signature associated with ferroptosis may be employed
as a prognostic indicator for gastric adenocarcinoma, thus presenting a potential solution.

1. Introduction

Gastric cancer (GC) is one of the five most commonly diag-
nosed diseases and the third leading cause of cancer-related
fatalities across the globe, making it a major challenge for
oncology [1]. Gastric adenocarcinomas (STAD) account
for approximately 95% of all GC cases [2]. Most of the early
symptoms of cancer are not evident, owing to the fact that
the majority of patients are diagnosed at an advanced stage
when the prognosis is poor, and the treatment options are
limited [3]. Regrettably, the tumor markers most commonly
used for the initial clinical diagnosis of GC have a low level
of sensitivity and specificity [4, 5]. Consequently, more accu-
rate biomarkers are urgently needed to reflect an individual’s
cancer risk and to develop new therapeutic strategies.

Generally, GC is a multifaceted condition, which
involves a variety of genetic mutations, epigenetic modifica-
tions, chromosomal translocations, deletions, and amplifica-
tions. These can all be contributory to the genesis of the
disorder. In contrast to mutations in or abnormal expression
of protein-coding genes, epigenetic modifications, such as
the overexpression or downregulation of long noncoding
RNA (lncRNA), not only play a role in cancer initiation
and progression [6]. Simultaneously, they can also display
tumor-suppressive or oncogenic effects. Owing to the
genome-wide expression patterns of lncRNAs in diverse tis-
sues, they may be used as biomarkers and therapeutic targets
for cancer [7]. Uncovering the key lncRNAs participating in
GC progression is essential for comprehending the mecha-
nisms at work.
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Ferroptosis, a recently identified form of cell death, is
caused by a massive lipid peroxidation process that requires
iron, leading to damage of the cell membrane [8]. Ferropto-
sis, initially induced by the small molecule erastin, is primar-
ily defined by the decrease of a cell’s volume and the
intensification of mitochondrial membrane density, without
the usual signs of apoptosis and necrosis [9]. It has been
established in prior research that lncRNAs are connected
to a range of PCD phenomena, including apoptosis, autoph-
agy, necroptosis, and ferroptosis. It has been observed that
certain lncRNAs can function as competing endogenous
RNA, thereby hindering oxidation and thus, ferroptosis; in
contrast, some lncRNAs are known to induce autophagy.
Research has indicated that examining the correlation
between lncRNA and ferroptosis in various cancers, includ-
ing GC and non-small cell lung cancer, has significant impli-
cations [10]. In order to explore the connections between
ferroptosis, ferroptosis-related lncRNA, and gastric adeno-
carcinoma, a comprehensive evaluation is necessary.

The TME consists of several stromal cells that are neces-
sary for cancer cells to flourish and propagate [11]. Accumu-
lating evidence has indicated that gastric adenocarcinoma
has a particular microenvironment that facilitates tumor
progression and metastasis [12]. It is essential to conduct
further research into the connection between the TME and
gastric adenocarcinoma, as the exact mechanism of interac-
tion is still unknown. Precision medicine and targeted ther-
apies have been incorporated into medical oncology, leading
to a transformation of the way cancer is treated [13]. Preci-
sion medicine has exposed significant heterogeneity in can-
cer pathways gone awry, and the employment of novel
targeted therapies, especially immune checkpoint inhibitor
therapies whose responsiveness is evaluated using a TIDE
score, has been especially effective [14] and has shown even
broader prospects in various cancer types [15]. Recently,
immune checkpoint inhibitors (ICIs) have been put forward
as a possible treatment option for gastric adenocarcinoma.
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
and programmed cell death protein 1 (PD-1), two immune
checkpoints that control lymphocyte activation and balance
immune responses, can shield tumor cells from the immune
system [16].

Our study makes use of prognostic biomarkers of
ferroptosis-related lncRNA to analyze the tumor-immune
microenvironment and immunotherapy in a comprehensive
manner. Five lncRNA signatures linked to ferroptosis were
established, as well as a relevant nomogram. lncRNA signa-
tures associated with ferroptosis have proved to be a reliable
predictor of the prognosis of gastric adenocarcinoma
patients. We have successfully created a prognostic model
to examine the connection between prognosis, immune infil-
tration, SNV, and drug sensitivity of STAD patients.

2. Materials and Methods

2.1. Data Acquisition and Preprocess. The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/
repository) provided access to the RNA sequencing
(HTSeq-Counts), simple nucleotide variation data, and clin-

ical information of 380 TCGA-STAD patients. Afterward,
we transformed the count data into FPKM (fragments per
kilobase of transcript sequence per millions of base pairs
sequenced) in order to carry out the following analysis.
The study encompassed 224 samples with comprehensive
clinical information (Table 1). The FerrDb database was
used to assemble a gene list comprising 291 ferroptosis-
related genes (http://www.zhounan.org/ferrdb) [17] and the
human gene database (Gene Cards) using the keyword “fer-
roptosis” (https://www.genecards.org/) [18]. Applying the
“edgeR” package, a differential analysis was conducted,
which yielded 18 ferroptosis-related differentially expressed
genes (DEGs) in TCGA-STAD [19, 20]. False discovery rate
ðFDRÞ < 0:05 and jlog 2 fold change ðFCÞj ≥ 1 are the statis-
tical parameters for significance. Subsequently, the STRING
database (https://string-db.org/) [21] was used to generate a
protein-protein interaction network (PPI) of 18 ferroptosis-
related genes and ran a Cytoscape plugin, CytoHubba [22],
to accurately determine which genes served as hubs in the
PPI network. Pearson’s correlation analysis (with jPearson
Rj > 0:5 and p < 0:001) was utilized to identify strong inter-
actions between TCGA-STAD lncRNAs and ferroptosis-
related genes, thus allowing the selection of ferroptosis-
related lncRNAs. Through differential analysis, we identified
142 upregulated and 121 downregulated ferroptosis-related
lncRNAs.

2.2. Establishment and Evaluation of a Ferroptosis-Related
lncRNA Signature Prognosis Model. Utilizing the criteria
stated above, we conducted an analysis of 200 patients with
complete clinical information. A total of 200 patients were
randomly divided into two groups: a training group of 100
and a test cohort of 100. The clinical characteristics of the
training cohort and the test cohort were identical. Through
the utilization of univariate and multivariate Cox regression
analysis and the “survival” R package, lncRNA signatures
pertinent to ferroptosis were determined [23] relevant to
the prognosis of gastric adenocarcinoma patients. A prog-
nostic risk model that is based on five ferroptosis-related
lncRNAs was developed through multivariate Cox regres-
sion analysis, allowing the prediction of the prognosis of
individuals suffering from gastric adenocarcinoma. The
risk score was obtained by the following equation: Risk
score = ðexprgene1 × coefficientgene1Þ +⋯+ðexprgene5 ×
coefficientgene5Þ. In order to validate the risk characteris-
tic model in the data set, we computed the risk score for
each patient with gastric adenocarcinoma in both the
training and test sets. By taking into consideration the
median value of the risk score, all samples were split into
two categories—a high-risk group and a low-risk group—-
for the purpose of examining the prognosis of individuals
suffering from gastric adenocarcinoma. To evaluate the
overall survival (OS) of the two patient cohorts, a
Kaplan-Meier analysis was performed. We selected the
“survminer” R package to calculate the optimal cutoff
expression. To evaluate the risk assessment model’s inde-
pendence from other clinical features, a multivariate Cox
regression analysis was employed. The AUC analysis eval-
uated the effectiveness of the ferroptosis-related lncRNA
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and the validity of this risk model. The Kaplan–Meier analy-
sis was employed to individually assess the five ferroptosis-
related lncRNAs, in order to investigate the correlation
between their expression and patient survival. Utilizing the
“rms” R package, a nomogram was constructed based on risk
score and independent clinical information, with calibration
curves established for 3, 5, and 7 years.

2.3. Comprehensive Immunoassay. A comparison of immune
cells between TCGA-STAD groups with high and low risk
was conducted with the help of seven algorithms [TIMER
[24], CIBERSORT [25, 26], CIBERSORT-ABS, QUANTI-
SEQ [27], MCPCOUNTER, XCELL [28], and EPIC [29]],
and the results were visualized by “limma” and “heat map”
R package. Applying the “GSVA” R package, single-sample
gene set enrichment analysis (ssGSEA) was carried out to
assess immune-related cells and pathways in each TCGA-
STAD sample [30]. The sample’s immune infiltration result
was found to be trustworthy, as the p value was below 0.05.
Samples from the TCGA-STAD were assigned a stromal
score, an immunological score, and an ESTIMATE score
using the “estimate” R tool [31]. Furthermore, CIBERSORT
was employed to illustrate the ratio of 22 different types of
immune cells in the sample.

Using the TIDE algorithm (http://tide.dfci.harvard.edu/),
to predict the response of each sample in the TCGA-STAD

cohort to anti-PD-1 and anti-CTLA4 immunotherapy, we
calculated the TIDE scores for each sample. According to the
official definition, immune checkpoint inhibitor therapy is
considered to be nonresponsive if the TIDE score is higher
than 0, while a TIDE score lower than 0 is indicative of a
responsive therapy.

Subsequently, we formulated the immunotherapy score
(IPS) by detecting the presence of immunosuppressive trans-
membrane proteins, PD-1 and CTLA4, on the surface of T
cells in GC patients. The TCGA-STAD immunotherapy
scoring file can be accessed from the TCIA website
(https://tcia.at/). By dividing the expression of PD-1 and
CTLA4 into four groups (PD-1 positive/CTLA4 negative,
PD-1 negative/CTLA4 positive, PD-1 positive/CTLA4 posi-
tive, and PD-1 negative/CTLA4 negative), we aimed to
investigate the immune prognostic signatures (IPS) in gas-
tric adenocarcinoma between high- and low-risk groups.
We further investigated the differences in PD-1, PD-L1,
and CTLA4 levels between gastric adenocarcinoma and nor-
mal patients using the “ggpubr” and “ggplot2” R packages.

2.4. Gene Enrichment and Function Analysis Gene Set
Enrichment Analysis (GSEA). An analysis of Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways was conducted on mRNAs related to fer-
roptosis, which exhibited varying expression levels, in order

Table 1: The clinical characteristics of TCGA-STAD.

Alive (n = 173) Dead with tumor (n = 47) Dead tumor free (n = 4) Total (n = 224) p value

Gender∗

Female 72 (41.6%) 9 (19.1%) 1 (25.0%) 82 (36.6%)

Male 101 (58.4%) 38 (80.9%) 3 (75.0%) 142 (63.4%) 0.016

Age∗∗∗

>65 89 (51.4%) 33 (70.2%) 4 (100.0%) 126 (56.2%)

≤65 84 (48.6%) 14 (29.8%) 98 (43.8%) 4.9e-20

AJCC stage∗∗

Stage I 33 (19.1%) 8 (17.0%) 1 (25.0%) 42 (18.8%)

Stage II 86 (49.7%) 7 (14.9%) 1 (25.0%) 94 (42.0%)

Stage III 39 (22.5%) 19 (40.4%) 2 (50.0%) 60 (26.8%)

Stage IV 15 (8.7%) 13 (27.7%) 28 (12.5%) 0.002

T (tumor)

T1 15 (8.7%) 1 (2.1%) 16 (7.1%)

T2 50 (28.9%) 11 (23.4%) 3 (75.0%) 64 (28.6%)

T3 94 (54.3%) 29 (61.7%) 1 (25.0%) 124 (55.4%)

T4 14 (8.1%) 6 (12.8%) 20 (8.9%) 0.151

M (metastasis)∗∗∗

M0 164 (94.8%) 40 (85.1%) 4 (100.0%) 208 (92.9%)

M1 9 (5.2%) 7 (14.9%) 16 (7.1%) 7.4e-45

N (lymph node)

N1 74 (42.8%) 12 (25.5%) 1 (25.0%) 87 (38.8%)

N2 56 (32.4%) 11 (23.4%) 1 (25.0%) 68 (30.4%)

N3 37 (21.4%) 14 (29.8%) 2 (50.0%) 53 (23.7%)

N4 6 (3.5%) 10 (21.3%) 16 (7.1%) 0.249
∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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to gain insight into the mechanism that distinguishes
between high- and low-risk groups of gastric adenocarcino-
mas. A potential gene set pathway was identified, with an
FDR of less than 0.05. GSEA (version 4.0.3) was employed
to assess the enrichment degree and statistical significance
of a ferroptosis-related gene set between two groups [32].
This algorithm was used to explore the potential functions
and pathways of the signature genes. It was determined that
a 25% FDR and a nominal p value of less than 0.05 would be
the threshold for significance.

2.5. Consensus Clustering Analysis and GSVA (Gene Set
Variation Analysis) Analysis. Utilizing the “ConsensusClus-
terPlus” R package, we clustered the TCGA-STAD cohort
into four groups based on the consensus expression of the
lncRNAs associated with ferroptosis [33]. To achieve con-
sensus clustering, 1000 k-means iterations were conducted,
and 80% of the genes or samples were bootstrapped. Subse-
quently, the Kaplan–Meier statistics were applied to analyze
the differences in OS across clusters. GSVA analysis revealed
the activation status of genes related to ferroptosis and the
associated biological pathways [34]. We graphically repre-
sented these biological processes using heatmaps, with red
representing activation and blue representing inhibition.

2.6. The Ferroptosis Potential Index (FPI) Model. The func-
tional profile index (FPI) is a metric for assessing the level
of ferroptosis and its significance. ssGSEA was employed to
calculate the gene set enrichment scores (ES) which either
stimulate or inhibit ferroptosis. Analyses of gastric adeno-
carcinoma samples showed that a higher FPI score is usually
associated with metastasis, medical characteristics, and drug
responsiveness [35]. This model enabled us to evaluate the
FPI value in each gastric adenocarcinoma sample, thereby
uncovering the ferroptosis level of each patient.

2.7. Drug IC50 Prediction and Secondary Structure
Prediction. We established the score of related immune cells
by comparing the immune cells of high- and low-risk
groups. The Genomics of Drug Sensitivity in Cancer
(GDSC) database provides an extensive list of drugs
(https://www.cancerrxgene.org/) [36]. Utilizing the PRRo-
phetic algorithm, we established a ridge regression model.
The “PRRophetic” R package was utilized to forecast the I
C50 values of high- and low-risk groups in TCGA-STAD
[37]. Twelve antitumor drugs were evaluated, and the IC50
values between the two groups varied significantly. A drug
with a lower IC50 was found to be more effective in inhibit-
ing cancer cells. Additionally, we investigated the steadiness
of lncRNA structure on the lnCAR database (https://lncar
.renlab.org/website), acquiring the secondary structure of
LINC00460 and miR205HG [38]. The stability of the
lncRNA secondary structure is indicative of the structure
and purpose of RNA. LINC00460 and miR205HG were
acquired showing a comparatively consistent secondary
structure.

2.8. Gene Mutation and m6A RNA Methylation Regulator. A
comprehensive analysis of gene mutation was conducted
using the maftools R package, and gastric adenocarcinomas

were divided into high- and low-risk groups. Additionally,
mutations of ferroptosis-related mRNAs were also evalu-
ated. We conducted a Pearson analysis to investigate the cor-
relation between CDKN2A and the five related lncRNAs,
given that the mutation pathway of cyclin-dependent kinase
inhibitor 2A (CDKN2A) in gastric adenocarcinoma was the
most significant. We obtained the mutation maf file of each
gastric adenocarcinoma patient from the TCGA database,
which enabled us to calculate the TMB score of each patient.
By analyzing the mutations of gastric adenocarcinoma and
based on the median score, we divided the samples into
high- and low-mutation groups. We employed the
“reshape2” and “limma” R packages to analyze the expres-
sion of m6A RNA methylation regulators between the high-
and low-risk groups.

2.9. Statistical Analysis. The data processing for this study
was done using R software (version 4.0.3; https://www.R-
project.org). The decision curve analysis (DCA) and operat-
ing characteristic curve (ROC) were employed to investigate
the sensitivity, specificity, and accuracy of the prognostic
features of STAD by leveraging “timeROC” and “ggDCA”
packages, respectively. This was done in comparison to other
clinicopathological characteristics. Utilizing the Kaplan–
Meier survival analysis, the overall survival of STAD patients
was evaluated in terms of the ferroptosis-related lncRNA
signatures. All analyses yielded a p value of less than 0.05,
indicating a statistically significant difference.

3. Results

3.1. Identification of Ferroptosis-Related Differentially
Expressed mRNAs and lncRNAs and Construction of a PPI
Network. As depicted in Figure 1, we combined data from
TCGA, FerrDb, and Gene Card databases to construct gene
matrices associated with ferroptosis. We utilized the “edgR”
package to conduct a differential analysis of 18 ferroptosis-
related genes with significant differential expression in gas-
tric adenocarcinoma, resulting in 12 upregulated genes
(ALB, ALOX15, GDF15, CDKN2A, HELLS, MIOX, TRIB3,
AURKA, NOX1, CP, NOS2, and MYB) and 6 downregu-
lated genes (ANGPTL7, PLIN4, ALOX12, TP63, HBA1,
and AKR1C1) (Figures 2(a) and 2(b)). To identify lncRNAs
associated with ferroptosis, a Pearson correlation analysis
(with Pearson R > 0:5 and p < 0:001) was performed, result-
ing in 142 upregulated and 121 downregulated ferroptosis-
related lncRNAs (Figures 2(c) and 2(d)). The correlation
between ferroptosis genes and lncRNAs was depicted in
Figure 2(e), and a PPI network in the STRING database
showed the relationship between 18 nodes and 11 edges
(Figure 2(f)). In addition, 12 hub genes were further pin-
pointed by the CytoHubba application (Figure 2(g)).

3.2. Establishment of Ferroptosis-Related lncRNA Prognostic
Signature. We conducted a screening of 200 TCGA-STAD
samples with complete clinical information and randomly
allocated them into two groups, with 100 samples in each
group for training and testing purposes (as depicted in
Figures 3(a) and 3(b)). The samples were divided into two
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groups, a high-risk group and a low-risk group, based on the
median value of the risk score, in order to assess the progno-
sis of gastric adenocarcinoma patients. The risk score and
survival status distribution are illustrated in Figures 3(c)–
3(f). Survival analysis revealed that the high-risk group had
a worse survival rate in the training set (p = 0:003) and test
set (p = 0:002) (Figures 3(g) and 3(h)). To gauge whether
the ferroptosis-related lncRNA signature acted as an inde-
pendent prognostic factor in STAD patients, univariate and
multivariate Cox regression analyses were employed, taking
into account TIDE, TNM, stage, risk score, gender, age,
and FPI (Figures 3(i)–3(l)). The results of the study con-
firmed that the risk score was a significant prognostic factor
(p < 0:001). Univariate Cox regression analysis identified 12
ferroptosis-related lncRNAs (RP11-186F10.2, RP4-781K5.5,
LINC01537, LINC00601, AC103563.8, AC103563.9, RP11-
1143G9.5, LINC00460, RP11-64B16.4, LINC00454, KB-
68A7.1, and miR205HG) as having a strong association with
the prognosis of gastric adenocarcinoma patients, as deter-
mined by the “survival” R package. Multivariate Cox regres-
sion analysis was used to screen for biomarkers in relation to
the prognosis of patients, and 5 ferroptosis-related lncRNAs
(RP11-1143G9.5, AC103563.8, LINC00460, RP11-186F10.2,
and miR205HG) were selected (Figures 4(a) and 4(b),
Supplementary Table 1 and Supplementary Table 2).
Additionally, a ferroptosis-related lncRNA signature and
the clinical features associated with this signature were
evaluated and constructed, including TMB, TIDE, FPI,
TNM stage, stage, age, gender, immune score, cluster, and
risk (Figure 4(c)). A prognostic model of gastric

adenocarcinoma was established with these five ferroptosis-
related lncRNAs. We then established a prognostic risk
score for the 5 ferroptosis-related lncRNAs, and the risk
score was equal to the following: ðexpression value of RP11
− 1143G9:5 × ð−0:423917081201679ÞÞ + ðexpression value
of AC103563:8 × 1:2071928010986Þ + ðexpression value of
LINC00460 × 0:40956647259787Þ + ðexpression value of RP
11 − 186F10:2 × 1:07891999972853Þ + ðexpression value of
miR205HG × ð−0:366418490206812ÞÞ.

3.3. Validation of the Ferroptosis-Related lncRNA Signature.
A nomogram was created to assess the precision and
dependability of the prognostic model, incorporating clinical
characteristics such as age, tumor (T) status, metastasis (M)
status, risk score, stage, and risk, as well as 1-, 3-, and 5-year
calibration curves (see Figures S1A and S1B). Results from
the examination of the relationship between microsatellite
instability and risk score demonstrated that microsatellite
stability (MSS) had a more significant influence on the
high-score group (70%) than on the low-score group
(62%), as shown in Figure S1C and S1D. Figure S1E–G
displays the DCA curves of 3, 5, and 7 years. The DCA curves
demonstrated that the features associated with the ferroptosis-
related lncRNA signature had a superior predictive value. The
Kaplan–Meier curves of the five ferroptosis-related lncRNAs
(AC103563.8, LINC00460, miR205HG, RP11-186F10.2, and
RP11-1143G9.5) between the high- and low-risk groups are
shown in Figure S2A–E. Except for RP11-1143G9.5, the OS of
the other four genes (AC103563.8, LINC00460, miR205HG,
and RP11-186F10.2) in the high-risk group was significantly

Training cohort
(TCGA-STAD, 100 cases)

mRNA lncRNA

Pearson correlation
analysis

291 ferroptosis-related genes

Ferroptosis-related
lncRNA

Differential expressed
analysis (263 DELs)

Univariate (12 lncRNAs) and
multivariate (5 lncRNAs)

Cox regression

Integrated ferroptosis-related
five-gene signature 

Consensus clustering
analysis

Survival analysis
and ROC analysis

Mutation
analysis

Comprehensive
immune analysis

DCA and nomogram
analysis

OS analysis

Drug 
screening

Differential expressed
analysis (18 DEGs)

MSI and FPI
analysis

Analysis of the
secondary structure

Test cohort
(TCGA-STAD, 100 cases)

Validation

Figure 1: A flow chart of overall study design.
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lower than that in the low-risk group. Additionally, we explored
the expression of these five ferroptosis-related lncRNAs in
various tissues and organs (Figure S3A–E). Among them,
RP11-1143G9.5, RP11-186F10.2, and AC103563.8 were
expressed in gastric tissues. It is worth mentioning that
AC103563.8 and RP11-1143G9.5 were highly expressed in
gastric tissues compared with other tissues and organs. The
ROC curves of 3, 5, and 7 years reflected the advantage of the
model, which included all sets (3 years, AUC = 0:754; 5 years,
AUC = 0:707; 7 years, AUC = 0:797), training set (3 years,

AUC = 0:874; 5 years, AUC = 0:786; 7 years, AUC = 0:786)
and test set (3 years, AUC = 0:753; 5 years, AUC = 0:682;
7 years, AUC = 0:737) (Figure S4A–I).

3.4. Gene Enrichment and Function Analysis. We further
investigated the biological functions of DEGs by utilizing
the “clusterProfiler,” “org.Hs.eg.db,” and “enrichplot” R
packages for GO annotation and KEGG pathway analysis.
The p filter and p adjust filter had a value of less than 0.05,
respectively. This study conducted GO pathway and process

lncRNA
Ferroptosis

(e)

Known interactions
from curated databases
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Predicted interactions
gene neighborhood
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Others
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Figure 2: Screening of differentially expressed ferroptosis-related lncRNAs in gastric adenocarcinoma. (a) Heatmap of ferroptosis-related
mRNA expression in gastric adenocarcinoma and normal tissues. (b) Volcano plot manifesting differentially expressed genes (DEGs) in
ferroptosis-related mRNAs. (c) Heatmap of ferroptosis-related lncRNA expression in gastric adenocarcinoma and normal tissues. (d)
Volcano plot manifesting DEGs in ferroptosis-related lncRNA. (e) The correlated network between 263 ferroptosis-related lncRNAs and
18 mRNAs. (f) Differentially expressed ferroptosis-related genes in PPI. (g) The selected 12 hub genes of ferroptosis-related genes via
Cytoscape.
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Figure 3: Continued.
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Figure 3: Continued.
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enrichment analysis, which included molecular function
(functional set), biological process (pathway), and cellular
component (structural complex). The top 21 clusters and
their representative enrichment terms are shown in
Figures 4(d) and 4(e). The consequence of GO functional
annotation demonstrated that the biological processes
related to oxygen metabolism were significantly correlated
with the differential expression of ferroptosis-related genes,
including GO:0006801 (superoxide metabolic process),
GO:0019372 (lipoxygenase pathway), GO:0072593 (reactive
oxygen species metabolic process), GO:0016701 (oxidore-
ductase activity, acting on single donors with incorporation
of molecular oxygen), GO:0016651 (oxidoreductase activity,
acting on NAD(P)H), GO:0016702 (oxidoreductase activity,

acting on single donors with incorporation of molecular oxy-
gen, incorporation of two atoms of oxygen), GO:0019825
(oxygen-binding activity), and GO:0016709 (oxidoreductase
activity, acting on paired donors, with incorporation or
reduction of molecular oxygen, NAD(P)H as one donor, and
incorporation of one atom of oxygen). In addition, the
ferroptosis-related genes were also related to cell proliferation,
such as GO:0048661 (positive regulation of smooth muscle
cell proliferation). KEGG pathway enrichment analysis
showed that the ferroptosis pathway was significantly enriched
(Figure 4(f)), which mechanism and regulation of intracellular
Fe2+ as shown in Figure S5A and S5B. GSEA for the
ferroptosis-associated lncRNA signature demonstrated that
gene silencing, negative regulation of gene expression, and
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Figure 3: Construction and evaluation of a ferroptosis-related lncRNA prognostic signature in training and test sets. (a, b) Clinical
characteristics of gastric adenocarcinoma patients in TCGA training and test sets. (c–f) Distribution of risk score, survival status,
and (g–h) OS Kaplan–Meier curves (training cohort: p = 0:003, test cohort: p = 0:002) of STAD patients in TCGA training and test
cohorts. (i–l) The independence of the ferroptosis-related lncRNA signature in OS was verified by univariate and multivariate Cox
regression analysis in TCGA training cohort.
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Figure 4: Continued.
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(d)

(e)

(f)

Figure 4: Screening of candidate genes and functional enrichment analysis. (a) Selection of ferroptosis-related lncRNAs related to prognosis
by univariate Cox regression analysis. (b) Five ferroptosis-related lncRNAs correlated to the prognosis of gastric adenocarcinoma were
obtained by multivariate Cox regression analysis. (c) Expression in different clinical characteristics (including TMB, TIDE, FPI, TNM
stage, stage, age, gender, immune score, cluster, and risk) of five ferroptosis-related lncRNAs in gastric adenocarcinoma. (d, e) Gene
Ontology (GO) analysis. (f) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
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posttranscriptional regulation of gene expression were
significantly enriched in high-risk groups of gastric
adenocarcinoma samples (Figure S5C–G).

3.5. Consensus Clustering Analysis of Ferroptosis-Related
lncRNAs and GSVA Analysis. The “ConsensusClusterPlus”
R package was used to cluster the ferroptosis-related
lncRNAs into four clusters, and the crossover between STAD
samples was found to be the lowest in this case (Figures 5(a)–

5(c)). Consequently, we divided the samples into four clus-
ters (A/B/C/D). Compared with other clusters, the Kaplan–
Meier algorithm found that the patients in cluster C had a
better OS than the patients in cluster A (Figure 5(d)). GSVA
enrichment analysis showed the activation status of
ferroptosis-related genes and related biological pathways.
As shown in Figures 5(e) and 5(f), ferroptosis-related genes
were enriched in allograft rejection, E2F targets, glycolysis,
p53 pathway, peroxisome, and spermatogenesis. Comparing
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Figure 5: The OS of STAD in the cluster A/B/C/D subgroups and GSVA enrichment analysis. (a) Consensus clustering matrix for k = 4.
(b, c) When k = 2 – 9, the consensus clustering cumulative distribution function (CDF) and relative change of the area under the CDF
curve. (d) Kaplan–Meier curves of the overall survival for patients with STAD in four clusters (cluster A/B/C/D). (e–h) GSVA
enrichment analysis showed the activation status of ferroptosis-related genes and related biological pathways. Heatmaps are used to
visualize these biological processes, with red indicating activation pathways and blue indicating inhibition pathways. The GC cohort
was annotated as a sample. (e, g) Cluster A vs. cluster B. (f, h) Cluster C vs. cluster D.
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the enrichment of cluster A and cluster B, the results demon-
strated allograft rejection and 8E2F significant enrichment in
cluster A, and cluster A was negatively regulated relative to
cluster B in the p53 pathway (Figure 5(g)). A comparison
between cluster C and cluster D revealed that cluster C had
a higher presence of peroxisome and E2F target, as illustrated
in Figure 5(h).

3.6. Comprehensive Immunoassay of Immune Infiltration,
Immune Checkpoints, and Immunotherapy Response. To
gain a better comprehension of the relationship between risk
scores and immune cells, we conducted an analysis of immune
cells between the high- and low-risk groups of TCGA-STAD,
utilizing seven algorithms. The heatmap plot presented the
expression of immune cells in both the high- and low-risk
groups, as well as various clinical features (Figure 6(a)).
Cancer-associated fibroblasts, hematopoietic stem cells,
stroma score, B cells, T cell CD4+memory, T cell CD4+ effec-
tor memory, CD8+ T cells, and T cell CD8+ central memory
were all significantly expressed in the high-risk group, with p
values of less than 0.01, 0.001, 0.05, 0.05, 0.05, 0.05, 0.05,
and 0.01, respectively. Tumor tissues exhibited a notable rise
in the expression of T follicular helper cells, resting NK cells,
and resting mast cells (Figure 6(b)). Correlation analysis was
used to show the interaction among immune cells, risk score,
and TMB. The results demonstrated that T cells, endothelial
cells, and myeloid dendritic cells had positive and negative
regulatory relationships with a risk score and TMB. As
depicted in Figure 6(c), red was indicative of a positive corre-
lation, whereas green was indicative of a negative correlation.
The ESTIMATE score displayed an inverse correlation with
tumor purity, as demonstrated in Figure S6A. In addition,
we analyzed the score of connected immune cells and
immune-related pathways in the high- and low-risk groups
(Figure S6B). The proportion of 22 immune cells in gastric
adenocarcinoma samples was manifested by heatmap and
box plot based on the CIBERSORT algorithm (Figure S6C
and 6E). We analyzed the expression levels of 23 regulatory
factors linked to m6A between high- and low-risk groups. It
was noteworthy that the expression of FTO (alpha-
ketoglutarate dependent dioxygenase) (p < 0:01), IGFBP3
(insulin-like growth factor-binding protein 3) (p < 0:05),
and VIRMA (p < 0:05) in the high-risk group was higher
than that in low-risk group (Figure S6D). Immunotherapy
scores were constructed by the expression of PD-1 and
CTLA4 in T cells of patients with gastric adenocarcinoma.
IPS was evaluated with four groups, including PD-1 negative
CTLA4 negative (Figure 7(a)), PD-1 positive CTLA4
negative (Figure 7(b)), PD-1 negative CTLA4 positive
(Figure 7(c)), and PD-1 positive CTLA4 positive
(Figure 7(d)). The data revealed that the high-risk group had
poorer scores than the low-risk group, signifying that their
immunotherapy was not as effective. The scoring file of
TCGA-STAD immunotherapy was downloaded from the
TCIA database. The expression of PD-1, PD-L1, and CTLA4
between tumor tissue and normal tissue was also explored
via the “limma” R package. The box plot indicated that
expression of PD-1 (Figure 7(e)), PD-L1 (Figure 7(f)), and
CTLA4 (Figure 7(g)) in tumor tissues was notably higher

than in normal tissues. PD-1 inhibited T cell activation and
induced T cell death by binding with PD-L1 (or PD-L2),
playing a paramount role in tumor immunotherapy. It
demonstrated that the tumor immune escape ability of the
high-risk group was stronger than that of the low-risk
group. The high-risk group was more likely to respond to
anti-CTLA4 immunotherapy, as indicated by a nominal p
value of 0.007, and its Bonferroni-corrected p value was
lower than that in other cases (Figure 8(a)). The data from
Figure 8(b) indicates that the ICIs connected to the research
were expressed in greater amounts in the high-risk group
than in the low-risk group.

3.7. Prediction of Antitumor Drug and Secondary Structure,
Immunotherapy Scores (IPS), Ferroptosis Potential Index
(FPI), and Mutation Analysis. As shown in Figures 8(c)
and 8(e), LINC00460 (MFE = −273:3 kcal/mol) and
miR205HG (MFE = −1109:3 kcal/mol) both showed stable
secondary structure, reflecting the function of RNA tran-
scription. We established a Ridge regression model for fore-
casting the IC50 of drugs. The p value of all 12 drugs
(ABT.263, AMG.706 (motesanib), AP.24534, CCT007093,
DMOG, imatinib, JNJ.26854165, JNK inhibitor VIII,
KIN001.135 (benzimidazole-thiophene carbonitrile), lenali-
domide, and nilotinib, AKT inhibitor VIII.) were less than
0.05 (Supplementary Table 3). Figure 8(d) demonstrated
that the IC50 value for the high-risk group was greater than
that for the low-risk group, demonstrating enhanced
antitumor effectiveness. To gain a better understanding of
the role of ferroptosis-related lncRNAs in gastric
adenocarcinoma, the secondary structure of the five lncRNA
biomarkers was determined using the lnCAR database. We
defined an FPI less than or equal to 0 as the low-score group
and an FPI greater than 0 as the high-score group. After
removing meaningless samples, we included 198 gastric
adenocarcinoma samples and divided them into four
groups, including (A) “FPI < 0 high-risk” group, (B)
“FPI < 0 low-risk” group, (C) “FPI > 0 high-risk” group, and
(D) “FPI > 0 low-risk” group (Figure S7A). The Kaplan–
Meier analysis concluded that the (D) “FPI > 0 low-risk”
group had the best OS, and “FPI < 0 low-risk” (B) had the
worst OS. The findings of the study suggested that a high
FPI score can reduce the risk of gastric cancer. A total of 198
cases of gastric adenocarcinoma were studied, out of which
122 had an FPI score greater than 0 (Figure S7B), and 76
had an FPI score less than 0 (Figure S7C). The Kaplan–
Meier analysis showed that the patients with an FPI score
greater than 0 had a worse survival rate in the high-risk
group (p = 0:0328). Moreover, the high and low FPI scores
were evaluated in the context of MSI (microsatellite
instability) analysis. Figures S7D and S7E illustrate that the
high-risk group, as determined by their FPI score, had a
greater prevalence of MSI-H (17%) than the low-risk group
(15%). Tumor tissues had a considerably greater FPI than
normal tissues (p = 8:3e − 17), as illustrated in Figure S7F. In
order to explore the mutations of ferroptosis-related genes
in STAD, a mutation panorama of STAD genes was
analyzed between the high-risk group and low-risk group
(Figures 9(a) and 9(b)). TTN, TP53, MUC16, SYNE1, and
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Figure 6: Continued.
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LRP1B were found to be highly mutated in both the high-risk
and low-risk groups. The highestmutation rate of ferroptosis-
related genes in gastric adenocarcinoma samples was
CDKN2A (Figure 9(c)). The results demonstrated that there
was a significant correlation between CDKN2A and
LINC0046 (R > 0:1, p < 0:05). The C > T occurred
frequently in single nucleotide variation (SNV) (Figures 9(d)

and 9(e)). The Pearson analysis was performed between
CDKN2A and five ferroptosis-related lncRNA biomarkers
(Figure 9(f)). RTK-RAS, Hippo, and TP53 pathways were
vulnerable to STAD gene mutations (Figure S8A). The erb-
b2 receptor tyrosine kinase 4 (ERBB4) showed a high
mutation state in the RTK-RAS pathway (Figure S8B).
Notably, CUL3 was the most highly mutated gene in the
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Figure 6: The results of immune cell infiltration were verified based on seven different algorithms. (a) A heatmap based on seven different
algorithms (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC) of the immune infiltration of
gastric adenocarcinoma patients with different clinical characteristics in TCGA. (b) The heatmap shows the expression of 16 types of
immune cells in tumor and normal tissues. (c) Correlation of T cells, endothelial cells, and myeloid dendritic cells with TMB and risk
score. Red represents positive correlation, and green represents negative correlation.
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Figure 7: Continued.
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NRF2 pathway (Figure S8C). The mutation rate of serine/
threonine kinase (ATM) was higher in the TP53 pathway
(Figure S8D). In the NOTCH pathway, the mutation rate of
contactin 6 (CNTN6) was the highest (Figure S8E), and in
the PI13K pathway, PIK3CA was the most highly mutated
gene. (Figure S8F). In the Hippo pathway, both FAT atypical
cadherin 3 (FAT3) and FAT atypical cadherin 4 (FAT4)
showed high mutation rates (Figure S8G). Interestingly, the
highest mutated gene in the cell cycle pathway was
CDKN2A, which was consistent with our previous research
conclusions (Figure S8H). ACVR2A and APC were
observed to have high mutation rates in the TGF-beta and
WNT pathways, respectively, as depicted in Figure S8I–J.

4. Discussion

As a novel modality of iron-dependent cell death character-
ized by the accumulation of lipid peroxides and reactive oxy-
gen species, ferroptosis presents an innovative viewpoint on
the treatment of cancer and provides the possibility of devel-
oping new strategies for the treatment of gastric adenocarci-
noma [8, 9]. Increased ferroptosis has been shown to aid in
the anticancer effectiveness of immunotherapy, according to
a recent research [39], which suggests a strong association
between ferroptosis and immunotherapy. Despite the lack
of research on the role of ferroptosis-related lncRNAs in gas-
tric adenocarcinoma, particularly the mechanism connect-
ing it to the immune microenvironment, our study seeks to
address this issue. We conducted a thorough investigation
of ferroptosis-related lncRNAs in gastric adenocarcinoma,

which included evaluating immunotherapy response,
immune infiltration, IPS scores, predicting somatic muta-
tions, analyzing tumor immune microenvironment, and
assessing tumor drug sensitivity, as well as analyzing the sta-
bility of the secondary structure of lncRNAs in RNA
transcription.

In this study, we conducted a comprehensive analysis of
the TCGA database to identify ferroptosis-related lncRNAs
and assess their potential predictive value. After differential
analysis, 18 mRNAs and 263 lncRNAs were found to be dif-
ferentially expressed between gastric adenocarcinoma and
normal tissues. Subsequently, a univariate Cox regression
analysis was employed to identify lncRNA signatures asso-
ciated with prognosis. Through multivariate Cox regres-
sion analysis, we identified five lncRNAs (LINC00460,
miR205HG, AC103563.8, RP11-186F10.2, and RP11-
1143G9.5) that were associated with overall survival and
used them to construct a risk model. In the following analy-
sis, the outcome of the Kaplan–Meier analysis suggested that
the high expression of LINC00460, miR205HG, AC103563,
and RP11-186F10.2 was strongly associated with poor prog-
nosis in gastric adenocarcinoma tissues, and in turn, RP11-
1143G9.5 high expression was closely related to a good prog-
nosis. In addition, we found that the survival rate of patients
in the low-risk group was significantly improved, indicating
that the low-risk score was closely related to longer survival.
In addition, the ROC graph showed that high AUC values
amongst the TCGA training set, TCGA training test set,
and TCGA entire set for 3, 5, and 7 years were all greater than
6.5, indicating good prediction performance of our model.
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Figure 7: Immunotherapy scores (IPS) and gene expression analysis of immune checkpoints. (a) IPS of CTLA4-negative and PD-1-negative
cells in high- and low-risk groups. (b) IPS of CTLA4-negative and PD-1-positive cells in high- and low-risk groups. (c) IPS of CTLA4-
positive and PD-1-negative cells in high- and low-risk groups. (d) IPS of CTLA4-positive and PD-1-positive cells in high- and low-risk
groups. (e–g) Expression of PD-1, PD-L1, and CTLA4 in the gastric adenocarcinoma and normal groups. The expressions of PD-1,
PD-L1, and CTLA4 in tumor tissues were significantly higher than those in normal tissues. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 8: Continued.
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We also evaluated the clinical characteristics of ferroptosis-
related lncRNAs in gastric adenocarcinoma patients in
TCGA training and test sets.

The findings of the GO analysis indicated a tight rela-
tionship with the principal molecular function of ferroptosis
regulation, such as the superoxide metabolic process and
iron ion binding. KEGG pathway analysis showed the four
important pathways—ferroptosis, arachidonic acid metabo-
lism, serotonergic synapse, and arginine biosynthesis. To
assess the correlation of genes related to ferroptosis, we
amalgamated the STRING online database and Cytoscape
software to create a PPI network comprising 18 nodes and
11 edges. The 10 most important hub genes were identified
by the Cytoscape plugin CytoHubba, including ALB,
CDKN2A, NOS2, GDF15, NOX1, HBA1, ALOX12,
ALOX15, AURKA, and CP. The CDKN2A gene showed an
important position in the network. We also summarized
genetic aberrations, including the incidence of somatic
mutations and copy number variations (CNVs) of 18 ferrop-
tosis regulators in gastric adenocarcinoma. We discover that
CDKN2A exhibited the highest mutation frequency, which
may improve our understanding of the genetic heterogeneity
in GC. Among single nucleotide variations, C > T was the
most commonly encountered. The cell cycle was affected
by gene mutations in CDKN2A. CDKN2A was shown previ-
ously to be a novel ferroptosis driver [40] and encodes the
ARF (alternative reading frame) protein [41]. It has been
previously demonstrated that cyclin-dependent kinase
inhibitor 2A (CDKN2A/ARF) causes cancer cells to be sen-
sitive to ferroptosis by inhibiting the ability of NRF2 and its
transcriptional target SLC7A11 [42] through pathways
dependent or independent of p53 tumor suppression gene
in the cancerous cells [43, 44]. Therefore, we examined the

correlation between CDKN2A, the five lncRNAs, and overall
survival (LINC00460, miR205HG, AC103563.8, RP11-
186F10.2, and RP11-1143G9.5). Data analysis revealed a
substantial correlation between LINC00460 and CDKN2A,
implying that these two elements may be related to the sur-
vival and prognosis of patients with gastric adenocarcinoma.

LINC00460 is a novel lncRNA with 935 nucleotides
located on chromosome 13q33.2. Growing research indi-
cates that the lncRNA LINC00460 has an oncogenic func-
tion in the advancement of many malignancies. It has been
confirmed that LINC00460 functioned as an oncogene regu-
lating prostate cancer progression through the promotion of
cell proliferation and a reduction in apoptosis [45]. Wang
et al. demonstrated that LINC00460 can promote the prolif-
eration and repress the apoptosis of non-small cell lung can-
cer cells by targeting miR-539 [46]. By sponging miR-4443,
LINC00460 promotes cell progression in squamous cell car-
cinoma of the head and neck [47]. By competitively binding
miR-489-5p to elevate FGF7 expression and enhancing
downstream AKT signaling, LINC00460 promotes breast
cancer progression [48]. LINC00460 can also function as a
molecular sponge to adsorb miR-1224-5p, thereby promot-
ing esophageal cancer (ESCA) metastasis and progression
[49]. Yuan et al. reported that the downregulation of
LINC00460 inhibits colorectal cancer metastasis via
WWC2 [50]. miR205HG, also known as LINC00510, is a
novel lncRNA with 4173 bp located at chromosome location
1q32.2. According to many studies, miR205HG was affirmed
as important in its oncogenic role in cancer progression. It
has been shown that lncRNA miR205HG drives the
advancement of esophageal squamous cell carcinoma
through the miR-214/SOX4 axis. [51]. Liu et al. concluded
that miR205HG expedited the cell proliferation and

(e)

Figure 8: Anti-CTLA4, anti-PD-1 immunotherapy, construction of secondary structure, and drug IC50 prediction. (a) The heatmap shows
the response of anti-CTLA4 and anti-PD-1 immunotherapy for gastric adenocarcinoma in the high-risk and low-risk groups. In terms of a
nominal p value, anti-CTLA4 immunotherapy was more likely to lead to a response in the high-risk group (p = 0:007), and the Bonferroni
corrected p value was less than that in other cases. (b) Expression of the five immune checkpoint inhibitors in the high- and low-risk groups.
(c) The secondary structure of LINC00460. (d) The IC50 values of 12 drugs expressed in the high-risk and low-risk groups were used to
screen drugs with substantial differences between the two groups. (e) The secondary structure of miR205HG. IC50, half-maximal
inhibitory concentration. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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progression of lung squamous cell carcinoma via targeting
miR-299-3p [52]. miR205HG also functions as a competing
endogenous RNA (ceRNA) to accelerate tumor growth and
progression via sponging miR-122e5p in cervical cancer
[53]. The results demonstrate that expression of lncRNA
LINC00460 is higher in tumors, and those with a decrease
in LINC00460 expression had a prolonged survival time. In

comparison to lncRNA LINC00460, the expression of
lncRNA miR205HG was lower in tumor samples than in
normal stomach tissue, and those with a decrease in
miR205HG had a poorer prognosis. Additionally, the strong
association between lncRNA LINC00460 with CDKN2A fer-
roptosis drivers suggested the potential that LINC00460
affected patient survival via CDKN2A.
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Figure 9: Landscape of TMB in STAD. (a, b) The top 20 mutant genes with the highest mutation rate in the high- and low-risk groups. (c)
Mutations of ferroptosis-related genes in STAD patients. (d) Chromosomemutation in gastric adenocarcinoma samples. (e) A comprehensive
plot of genetic alterations in STAD. C > T occurred frequently in single nucleotide variation (SNV). (f) The relevance between highly mutated
gene CDKN2A and a five ferroptosis-related lncRNA signatures (R > 0:1, p < 0:05). ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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It is widely accepted that epithelial–mesenchymal transi-
tion is a fundamental mechanism in the progression of can-
cer cells to invasion and metastasis [54]. lncRNAs can be
employed to forecast the clinical course, aggressiveness,
invasion, and metastasis potential of GC, in addition to pro-
viding a model for investigating ways to inhibit or reverse
metastatic potential. lncRNAs can be considered crucial ele-
ments of epigenetic regulation of gene expression in tumor-
igenesis and carcinogenesis, and their impact on the EMT
can be achieved by either directly regulating the vimentin
and E-cadherin function or by controlling the transcription
of these genes through various factors [55]. To further
explore the biological nature of the different ferroptosis sub-
types, we conducted a gene set variation analysis (GSVA)
enrichment. The results showed that four ferroptosis clusters
were enriched in the pathway related to immune (allograft
rejection), activation of cancer-related pathways (p53 path-
way, e2f targets, and peroxisome), cell proliferation-related
metabolic (glycolysis), and spermatogenesis, which sug-
gested an important role in tumor progression and a tight
association with the tumor microenvironment. An evalua-
tion of immune cell infiltration was conducted using seven
distinct algorithms, and it was determined that T cells and
macrophages had significantly infiltrated the gastric micro-
environment. Previous mouse models of gastritis and GC
revealed that a notable quantity of macrophages migrates
to the GC microenvironment, which influences angiogenesis
or tumor immunity [56–61]. Tumor-infiltrating lympho-
cytes (TILs) composed of T cells, natural killer (NK) cells,
B cells, and T-cell-mediated adaptive immunity are usually
considered the manifestation of the host antitumor immune
response. The upregulation of PD-L1 or CTLA-4 expression
can mediate the escape of tumor cells from the host immune
response, lead to an immunosuppressive state, and inhibit
the antitumor immune response in some tumor microenvi-
ronments [62]. Therefore, IPS and gene expression analysis
of immune checkpoints were also performed. We examined
the expression levels of PD-1 (PDCD1), PD-L1, and CTLA4
(cytotoxic T-lymphocyte associated protein 4) in tumor and
normal groups. The expression of PD-1, PD-L1, and CTLA4
in gastric adenocarcinoma was all higher than in the normal
group, with the expression levels of three common immune
checkpoints distinctly upregulated in high-risk cohorts.
Additionally, the high-risk group was more likely to respond
to anti-CTLA4 immunotherapy (p = 0:007). Interestingly, in
our immunotherapy analysis, the low-risk group achieved
higher CTLA4-negative/PD-1-negative, CTLA4-negative/
PD-1-positive, and CTLA4-positive/PD-1-positive scores,
indicating that patients with a low-risk score are better can-
didates for immunotherapy. It may be that high-risk patients
had a very serious gastric adenocarcinoma or that lncRNAs
were highly expressed, reducing immunotherapy effective-
ness. To explore immunotherapy responses, the TIDE algo-
rithm was used to identify significant differences in
immunotherapy responses between the high- and low-risk
groups (better responses in the low-risk group). The TIDE
score will help us better select patients who are more suitable
for immune checkpoint suppression therapy, and it will be
of interest to test the clinical efficacy of TIDE scores in

immune checkpoint suppression treatment decision-
making in prospective clinical trials. In addition, 12 antigas-
tric adenocarcinoma drugs were screened according to
lncRNA signals associated with iron drop: ABT.263,
AMG.706 (Motesanib), AP.24534, CCT007093, DMOG,
imatinib, JNJ.26854165, JNK inhibitor VIII, KIN001.135
(benzimidazole-thiophene carbonitrile), lenalidomide, nilo-
tinib, and AKT inhibitor VIII. All of the above drugs have
different degrees of antitumor effects and vital clinical signif-
icance [63–73].

In conclusion, our study identified five ferroptosis-
related lncRNAs (LINC00460, mirR205HG, AC103563.8,
RP11-186F10.2, and RP11−1143G9.5) involved in gastric
adenocarcinoma that are of great value in predicting OS in
gastric adenocarcinoma patients. It was discovered that five
ferroptosis-related lncRNAs could be used as significant
prognostic biomarkers to forecast long-term survival in gas-
tric adenocarcinoma patients and regulate the proliferation
and migration of gastric adenocarcinoma cells and the devel-
opment of ferroptosis. In addition, we evaluated the clinical
signs of FPI, TMB, and tide and completed a thorough
examination of immunotherapy and drug prediction. It
has been noted that immunotherapy, particularly anti-
CTLA4 immunotherapy and 12 antigastric adenocarci-
noma drugs, has resulted in a higher survival rate for
patients with gastric adenocarcinoma. Therefore, lncRNAs
(LINC00460, miR205HG, AC103563.8, RP11-186F10.2,
and RP11−1143G9.5) may serve as potential biomarkers
of prognostic value in gastric adenocarcinoma. This study
had certain limitations, such as the use of public databases
for mining and analysis. To improve the dependability of
our results and eliminate selection bias, larger population
and multicenter clinical trials are required. In order to gain
insight into the potential functions of the five ferroptosis-
related lncRNAs in gastric cancer, since all the mechanical
studies in our work were descriptive, further laboratory
experiments were necessary.
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