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Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer.
Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study
investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine
cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus
and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and
the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and
microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian
cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and
chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-
free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental
evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit
the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic
applications of these unique mixtures to be used in treating cancers.

1. Introduction

Natural compounds isolated from fungi and microalgae have
various health benefits for humans, including in the treatment
of various cancers [1–3]. The effectiveness of cancer treat-
ments has significantly improved in the last 2 decades due
to the advancement in multimodal imaging, immunotherapy,
radiotherapy, neoadjuvant combinations, targeted therapies,
and improved vaccines and biomarkers [4, 5]. However, can-
cer treatments have mostly relied on specific cytotoxic che-
motherapy, and their impact on dividing healthy cells results
in adverse side effects. There is a renewed interest in natural
compounds that can inhibit the growth and metastasis of
cancer, and investigations of their adjuvant effects with tradi-
tional chemo-drugs are underway [6, 7].

Inonotus obliquus is a parasitic fungus infecting hard-
wood trees mostly from the genus Betula (birches), which

are commonly distributed in Russia, China, Japan, Korea,
Eastern and Northern Europe, and Northern America [8].
I. obliquus is already considered a traditional medicine and
has been used in the treatment of several human diseases,
including cancer [9, 10]. Recent studies have shown the anti-
cancer and anti-inflammatory potential of I. obliquus [10–12].
The fruiting body of I. obliquus produces a diverse range of
natural compounds, such as flavonoids, triterpenoids, alka-
loids, and inositol. Recently identified triterpenoid lanosterols
have elicited interest because of their potent in vitro cytotox-
icity in mammalian cells, regardless of p53 mutation status
[10, 11, 13].

Unicellular marine microalgae-derived compounds have
shown anticancer, antimicrobial, anti-inflammatory, and
immunomodulatory properties [14, 15]. Among microalgae,
Tetraselmis chuii has received increased interest as a sustain-
able source of supplemented food with low-carbon/nitrogen
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footprints and naturally healthy contents, including amino
acids, essential fatty acids, vitamins B, C, and E, and dietary
antioxidants [16]. T. chuii had the highest (poly)phenol con-
tent and DPPH radical scavenging activity among the tested
species of microalgae [17]. Similarly, a lipid-rich extract of
Nannochloropsis gaditana has shown a selective cytotoxicity
effect on colon carcinoma HCT-116 cells but not on non-
tumorigenic cells [18]. Methanol extracts of Chlorella vul-
garis exhibited cytotoxicity against human prostate cancer
(PC-3), hepatocellular carcinoma (HEPG-2), colorectal car-
cinoma (HCT-116), and epithelioid carcinoma (Hela) cells
in vitro [19]. Supplementation of diet with microalgae also
improved hematological and biochemical parameters in
athletes [20].

The combination of two different drugs has been a new
trend to treat human ailments, as it improves drug efficacy by
reducing the dose and limiting toxicity. This combination
therapy has been shown to be effective in overcoming the
chemoresistance problem in the treatment of cancer [21, 22].
Medicinal plant-derived phytochemical compounds have
been identified and characterized for low cytotoxicity compared
to synthetic chemotherapeutic drugs. In general, phytochem-
icals significantly induce apoptosis, suppress angiogenesis, and

modulate the activity of enzymes to inhibit the metastasis of
cancer [23, 24]. Thus, this study aims to understand the com-
bined effect of extracts from I. obliquus and microalgae using
human and canine cancer cell lines with the ultimate goal of
developing potential natural health products (NHP) for the
treatment of mammalian cancers.

2. Materials and Methods

2.1. Preparation of Five Extracts of I. obliquus. Five different
extracts from I. obliquus, namely MH-E1 (ethanol), MH-H2O
(hot water), MH-E1-SF (sugar-free), MH-SFE1b (supercritical
high pressure), and MH-SFE1c (supercritical with ethanol as
cosolvent), were used for cytotoxicity analyses (Table 1). Raw
materials of I. obliquus (Figure 1(a)) that were used in this
study were provided by Adored Beast Apothecary, Moncton,
NB, Canada.

To prepare MH-E1, 10 g of dry and finely ground I. obli-
quus powder was dissolved in 200mL of 100% ethanol (1 : 20
solid/solvent ratio), sonicated for 20min twice at room
temperature, centrifuged (3,000x g for 10min), and filtered
through P8 filters (Fisher Scientific, Ottawa, ON, Canada).
The filtrate was collected and bioactives were re-extracted

TABLE 1: Extraction methods and total yield of the extracts of I. obliquus and microalgae.

Extracts Extraction method Starting quantity (g) Final yield (mg) Yield (%)

I. obliquus
MH-E1 Ethanol (ultrasonication) 10 336 3.4
MH-E1-SF Ethanol sugar-free (chromatography) 30 804 2.68
MH-H2O Hot water 25 3,700 14.8
MH-SFE1b Supercritical (9,000 psi, 50°C, 1 hr) 40 41 0.1
MH-SFE1c Supercritical (7,500 psi, 50°C, 10% ethanol, 1 hr) 40 237 0.59
Microalgae
GLE1 Ethanol (ultrasonication) 30 1,442 4.8
GLE1-CF Ethanol (ultrasonication; chlorophyll-free) 2.5 270 10.8
GLE1-CF-SF Ethanol (ultrasonication; chlorophyll- and sugar-free) 2.5 176.6 7.06

ðaÞ ðbÞ
FIGURE 1: Dehydrated Chaga mushroom I. obliquus (a) and microalgae (b) materials were used for the extraction of natural compounds in this
study.
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using 100mL of 100% ethanol. The combined filtrates were
concentrated by rotary vacuum evaporation and the con-
centrated extracts were freeze-dried to obtain a dry extract.

For sugar-free I. obliquus extract (MH-E1-SF) prepara-
tion, 30 g of I. obliquus powder was dissolved in 600mL of
100% ethanol and sonicated for 20min twice at room tempera-
ture, centrifuged (3,000x g for 10min), and filtered (P8 filters).
The residues were re-extracted using an additional 300mL of
100% ethanol. Both filtrates from the first and second extracts
were combined and concentrated (about 200mL) using rotary
vacuum evaporation. A flash chromatography column (6.5 cm
× 45 cm, Sati International Scientific Inc., Dorval, QC, Canada)
was packed with 400 g of sorbent beads (Sorbent SP207-05
Sepabeads resin brominated styrenic adsorbent; 0.25mm diam-
eter, 630m2/g surface area; Sorbent Technologies, Atlanta, GA,
USA). After the column was equilibrated overnight using 50%
aqueous ethanol, the concentrated extract was mixed with deio-
nized (DI) water (1/1 v:v) and loaded into the chromatography
column. Sugars in the loaded extracts were eluted with DI water
while monitoring the Brix value to reach below 0.1% using a
digital refractometer (Model 300016, Sper Scientific, Scottsdale,
AZ, USA). Then, the bound bioactives were eluted using 2L of
95% ethanol. The ethanol elutes were concentrated by rotary
vacuum evaporation and the concentrate was freeze-dried.

To prepare a hot water extract (MH-H2O), 25 g of I. obli-
quus powder was mixed with 500mL of DI water and heated
at 80Æ 2°C for 2 hr in a shaking water bath (60 rpm). The
sample was centrifuged at 3,000x g for 15min and filtered
with vacuum-aided P8 filters, followed by freeze-drying to
obtain a dry powder.

Two supercritical extracts MH-SFE1b and MH-SFE1c
were prepared using the supercritical water extraction pro-
cess (Diversified Metal Engineering Ltd., Charlottetown, PE,
Canada). Forty grams of dried and finely ground I. obliquus
powder were processed with a pressure of 9,000 psi (for MH-
SFE1b) and 7,500 psi (for MH-SFE1c), a temperature of
50°C, and an extraction time of 1 hr. A cosolvent of 10%
ethanol was used for the MH-SFE1c supercritical fluid
extract. The resulting extracts were freeze-dried.

2.2. Preparation of Three Extracts of Microalgae. The source
of microalgae comprises 60% w/w N. gaditana, 15% w/w
T. chuii, and 25% w/w C. vulgaris (Figure 1(b)) that were
provided by Adored Beast Apothecary, Moncton, NB, Canada.
Three extracts of microalgae, i.e., GLE1 (ethanol), GLE1-CF
(chlorophyll-free), and GLE1-CF-SF (chlorophyll- and sugar-
free), were used for cytotoxicity analyses (Table 1). To prepare
the GLE1 extract, 30 g of dry microalgae mixture was dissolved
in 600mL of 100% ethanol (1 : 20 solid/solvent ratio), soni-
cated for 20min twice at room temperature, centrifuged
(3,000x g for 10min), and filtered through P8 filters (Fisher
Scientific, Ottawa, ON, Canada). The filtrate was collected,
and bioactive compounds were re-extracted using 300mL
of 100% ethanol. Filtrates were combined and concentrated
by rotary vacuum evaporation, and the concentrated extracts
were freeze-dried to produce the dry extract.

To prepare the chlorophyll-free microalgae extract (GLE-
CF), first, 2.5 g of microalgae mixture was added to 900mL of

extraction solvent (530mL of ethanol, 300mL of DI water,
and 70mL of acetonitrile) and sonicated for 20min twice at
room temperature. This combination of solvents provided the
best separation of chlorophyll fraction in the next step. The
sample was centrifuged at 3,000x g for 10min and filtered
through P8 filters. The filtrate was collected into a separatory
funnel, and 100mL n-hexane was added, which was then vig-
orously shaken while degassing. The chlorophyll-free aqueous
phase was collected and concentrated by rotary vacuum evap-
oration, followed by freeze-drying to generate a dry powder of
GLE1-CF.

For the preparation of the chlorophyll- and sugar-free
extract of microalgae (GLE1-CF-SF), a concentrated sample
of GLE1-CF was mixed in absolute ethanol (1 : 1 v/v) and
loaded into a flash chromatography column as explained
above for MH-E1-SF. Briefly, the sugars were eluted with
DI water until the Brix value of eluting fell below 0.1 (as
determined with a digital refractometer). The bound bioac-
tives to the stationary phase of the column were eluted with 2
L of absolute ethanol. The elute was concentrated by rotary
vacuum evaporation and the concentrated extracts were
freeze-dried to produce the dry extract. A stock solution of
50–100mg/mL was made in dimethyl sulfoxide (DMSO),
filtered using a 0.22 µm syringe filter, aliquoted, and stored
at −20°C.

2.3. Quantification of Major Phytochemicals of the Extracts
by Ultra-Performance Liquid Chromatography Coupled with
Electrospray Ionization andMass Spectrometry (UPLC-ESI-MS).
The standard stock solutions of extracts (1,000–10,000 µg/mL)
were prepared by accurately weighing the dried extracts and
dissolving them in methanol. Ultra-high performance liquid
chromatography (UPLC, Model H-class system, Waters, Mil-
ford, MA, USA) was used for analyzing the extracts. For the
analysis of isoprenoids, an xBridge™ phenyl column (4.6× 100
mm, 5μm) (Waters, Milford, MA, USA) was used with a gra-
dient elution carried out with 0.1% formic acid in water (solvent
A) and 0.1% formic acid in acetonitrile (solvent B), with a flow
rate of 0.4mL/min and an injection volume of 2.0μL. A linear
gradient profile was used with the following proportions of
solvent A applied at time t (min); (t, A%): (0, 90%), (1, 90%),
(7, 50%), (16, 0%), (18, 0%), (20, 90%). For the analysis of (poly)
phenols, an acquity UPLC BEH C18 column (2.1mm×
100mm, 1.7 μm) (Waters, Milford, MA, USA) was used
with gradient elution, carried out with 0.1% formic acid in
water (solvent A) and 0.1% formic acid in acetonitrile (solvent
B), with a flow rate of 0.2mL/min and an injection volume of
2.0 μL. A linear gradient profile was used with the following
proportions of solvent A applied at time t (min); (t, A%):
(0, 94%), (2, 83.5%), (2.61, 83%), (2.17, 82.5%), (3.63, 82.5%),
(4.08, 81.5%), (4.76, 80%), (6.75, 20%), (8.75, 94%), and (12, 94%).

MS analysis was performed with a Micromass Quattro
micro API MS/MS system, controlled by the MassLynx V4.1
data analysis system (Micromass, Cary, NC, USA), as
described by Rupasinghe et al. [25]. Electrospray ionization
in negative ion mode (ESI−) was used for the ionization of all
the analytes. The mass spectrometry conditions included a
capillary voltage of 3,000V with nebulizing gas (N2) at a
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temperature of 375°C. The cone voltage (25–50V) was opti-
mized for each compound. The analytes were identified using
single ion monitoring (SIM) mode and quantified using cali-
bration curves generated using external standards. The SIM
mode used (m/z) and retention time (RT) of each analyte are
given in Table 2.

2.4. Cell Lines, Culture Conditions, and Reagents. The follow-
ing mammalian cell lines were purchased fromATCC through
Cedarlane, Burlington, ON, Canada: MCF-7 (ATCC-HTB-22,
human breast epithelial adenocarcinoma), HepG2 (ATCC-
HB-8065, human hepatocellular carcinoma), HOS (ATCC-
CRL-1543, Human Osteosarcoma), D-17 (ATCC-CCL-183,
Canine osteosarcoma), DH-82 (ATCC-CRL-10389, canine
histiocytosis), MCF10-A (ATCC-CRL-10317, human breast
epithelial cell), AML-12 (ATCC-CRL-2254, mice liver epithe-
lial cell), THLE-3 (ATCC-CRL-11233, human liver epithelial),
and CnOb (cell applications-canine osteoblast). DH-82, HOS,
and D-17 cells were cultured in EMEM (Sigma–Aldrich, Oak-
ville, ON, Canada), MCF-7 and HepG2 in DMEM (Gibco),
CnOb in CnOb basal medium supplemented with growth
medium (cell applications), MCF-10A cultured in basal
medium supplemented with growth medium, and THLE-3
in BEGM with supplements (Lonza Bioscience, Burlington,
ON, Canada), as recommended. The cells were supplemented
with 15% fetal bovine serum as required (Fisher Scientific,
Ottawa, ON, Canada) and antibiotic (100U/mL penicillin
and 100 µg/mL streptomycin). The cells were maintained in
a 5% CO2 humidified incubator at 37°C (Fisher Scientific,
Ottawa, ON, Canada). All experiments were performed after
the second passage of the cells and repeated at least three times,
independently.

2.5. Cell Viability Assay. Crude ethanol- and water-based
extracts, a sugar-free extract, supercritical extracts from the
I. obliquus group, and ethanol-based chlorophyll- and sugar-
free extracts from the microalgae group were selected for cell
viability assays. IC50 values of the extracts in each cell line

were confirmed with MTS colorimetric assay [26]. Briefly,
the cells (5,000–10,000 cells/well) were seeded into 96-well
plates, incubated overnight, and then treated with either
DMSO control, 1, 50, 100, 300, or 500 µg/mL of each extract
for 24 hr. Next, MTS/PMS reagent (Promega, Madison, WI,
USA) was added and incubated 2–3 hr in the humidified CO2

incubator. Absorbance was measured at 490 nm (Infinite™
200 series, Tecan, Männedorf, Switzerland). Background absor-
bance from the culture medium, DMSO, and extracts was sub-
tracted to estimate the viability percentage. GraphPad Prism V
8.0 (GraphPad Software Inc., San Diego, CA, USA) was used to
calculate IC50 by the sigmoidal dose–response curve.

2.6. Combination Treatment and Determination of Combination
Index. With the IC50 scores from the MTS viability assay, MH-
E1-SF from the I. obliquus group and GLE1-CF-SF from the
microalgae group were selected for the determination of syn-
ergistic effects, as both extracts showed strong significance in
lower concentrations when compared with the other extracts.
A viability and synergy matrix of the two extracts with con-
centrations of 0, 25, 50, 100, 150, and 200 µg/mL in a ratio of
1 : 1, 1 : 2, and 1 : 4 in a 96-well plate was assayed after 24 hr.
The combination effect between the two selected ex-tracts was
quantified using the method of isoboles [27], and a dose–
response surface was mapped using the highest single agent
(HAS) model of synergy using Combenefit software [28]. The
isoboles method uses the IC50 doses of individual drugs as
intercept values in which doses are represented on x- and y-
axes, represented by a simple linear equation of a/A+ b/B= 1,
where a is the dose of drug A and b is the dose of drug B when
the two drugs are used in combination. The Chou–Talalay
method was applied to determine the combination index (CI)
in the analysis of the combination study [29, 30], which is
represented by CI= ((D)1/(Dx)1) + ((D)2/(Dx)2), where
(Dx)1 and (Dx)2 are the EC50 doses of drugs 1 and 2 alone,
respectively, that give the specified effect, and (D)1 plus (D)
2 is the combination dose that produces this effect. The
effect of the combination of the two drugs was confirmed

TABLE 2: Concentrations of major metabolites of various extracts of I. obliquus and microalgae.

Compound m/z RT (min)
Concentration (mg/g extract)

MH-E1 MH-H2O MH-E1-SF MH-SFE1b MH-SFE1c GL-E1 GLE1-CF GLE1-CF-SF

Betulinic acid 455.2 3.57 2.99 0.01 1.56 15.2 1.21 ND ND ND
Trametenolic acid 455.2 3.67 37.49 0.26 21.46 334.4 17.48 ND ND ND
p-Hydroxy benzoic acid 137.0 3.9 7.32 2.63 1.81 0.57 6.84 0.09 0.07 0.80
Cinnamic acid 146.9 7.4 0.00 0.35 0.23 0.00 0.00 0.00 0.17 0.00
Dihydro ferulic acid 195.0 8.25 0.59 8.33 0.95 0.91 0.55 0.66 0.41 5.90
Sinapic acid 223.0 5.4 0.13 0.14 0.01 0.01 0.04 0.00 0.00 0.01
Protocatechuic acid 152.8 2.5 0.86 0.30 0.36 0.00 0.13 0.00 0.08 0.03
Caffeic acid 179.0 4.3 0.08 0.03 0.02 0.00 0.12 0.00 0.00 0.01
Syringic acid 197.0 3.9 13.98 109.8 11.60 0.03 6.31 0.03 0.27 0.15
Taxifolin 303.0 0.95 0.08 0.17 0.02 0.03 0.09 0.32 0.01 0.36
Catechin 288.7 3.4 0.42 9.16 3.72 0.00 0.00 0.00 0.00 0.00
Quercetin 300.7 6.8 0.57 1.67 0.39 0.00 0.00 0.00 0.00 0.00

ND, not detected; m/z, mass/charge used for the single ion monitoring mode; and RT, retention time. For the abbreviations of the extracts, please refer to
Table 1.
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from theCI values, where CI<1 demonstrates synergism,CI=1
indicates additive effect, and CI> 1 indicates antagonism.

The HSA response surface model was also generated
using Combenefit software (Cambridge, UK) to map the
synergy. The HSA synergy model states that the expected
combination effect equals the higher effect of individual
drugs. Therefore, any additional effect over the higher single
drug will be considered as an HSA synergy [31]. In the color
map, light to dark blue shows increased synergy while
yellow–red shows an antagonistic effect on the Combenefit
mapped surface HAS plot and matrix plot.

2.7. Statistical Analysis. All the results are expressed as the
mean of triplicate experiments, and values are expressed as

meanÆ standard deviation (SD). Analysis of variance with
post hoc Tukey and Sidak’s test was used for multiple com-
parisons using GraphPad Prism 8. Analysis and data visuali-
zation of the synergy of drug combinations were performed
using Microsoft Excel, Combenefit software, and GraphPad
Prism 8. A value of p<0:05 was considered statistically sig-
nificant. ∗p<0:05, ∗∗p<0:01, and ∗∗∗p<0:001.

3. Results

3.1. Quantification of Major Metabolites of I. obliquus and
Microalgae Bioactive Using UPLC-ESI-MS. Extracts of I. obli-
quus and microalgae were analyzed by UPLC-ESI-MS using
the SIM mode and RT of the external standards. Triterpenes
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FIGURE 2: Effects of different I. obliquus extracts in mammalian cancer cell lines. Cells were treated with different extracts (see Table 1) and
doses of I. obliquus, and cell viability was measured using the MTS assay. Each graph represents mean viability expressed in percentage of
control. One-way ANOVA was used to compare the dose-dependent toxicity. ∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001, and ∗∗∗∗p<0:0001,
compared with control group. MCF-7, human breast epithelial adenocarcinoma; HepG2, human hepatocellular carcinoma; HOS, human
osteosarcoma; D-17, canine osteosarcoma; and DH-82, canine histiocytosis.
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(betulinic acid and trametenolic acid; only in I. obliquus
extracts), phenolic acids (p-hydroxy benzoic acid, cinnamic
acid, dihydroferulic acid, sinapic acid, protocatechuic acid,
caffeic acid, and syringic acid), and flavonoids (taxifolin,
catechin, and quercetin) were present in the extracts, and
their concentration varied depending on the source and
extraction method (Table 2). The presence of triterpenes
and various (poly)phenols has already been screened, and
these compounds have been verified as anticancer agents in
previous studies. The UPLC-ESI-MS analysis in our study
validated that the major bioactives of I. obliquus and micro-
algae had been recovered and concentrated via the extraction
methods used. Aqueous extracts contained high concentra-
tions of (poly)phenols, whereas ethanol-based extracts had
high concentrations of triterpenes. The trametenolic acid con-
tent was significantly high in the supercritical fluid extract.

3.2. Cytotoxic Effects of I. obliquus Extracts on Mammalian
Cancer Cells. I. obliquus extracts were assessed for dose-
dependent cytotoxicity using various mammalian cancer
cells (Figure 2 and Table 3). Compared to other extracts,
the IC50 of the water-based extracts (MH-H2O) was very
high for all the tested cell lines (≥1,000 µg/mL). Sugar-free
ethanol extracts showed a strong cytotoxic effect on the can-
cer cells with lower IC50 values (115–187 µg/mL) compared
to the ethanol extracts (208–769) (Table 3). Ultrasonication-
assisted ethanolic extracts of I. obliquus inhibited the growth
of human and canine sarcoma cancer cell lines significantly
with 100µg/mL concentration, while sugar-free ethanol extracts
significantly inhibited proliferation with as low as 50 µg/mL
in HOS cells and 100 µg/mL in HepG2 and DH-82 cells and
300 µg/mL in the MCF-7 and D-17 cell lines. MCF cells and
D-17 cells were relatively resistant to lower doses of the
extracts. Similarly, supercritical extracts were mostly effective
with higher doses in various cancer cell lines except for
HepG2. HepG2 cells were relatively resistant to supercritical
extracts, and only higher doses (>300 µg/mL) inhibited cell
proliferation. Supercritical extracts MH-SFE1b and MH-
SFE1c inhibited cancer cell proliferation with doses of 300

µg/mL. However, DH-82 cells were more susceptible to
supercritical extract MH-SFE1b, with the lowest effective
dose of 50 µg/mL. DH-82 cells showed stronger cytotoxicity,
even with the water extracts and supercritical extracts of
MH-SFE1b (50 µg/mL), and with concentrations as low as
100 µg/mL of ethanol extracts.

3.3. Cytotoxic Effects of Microalgae Extracts on Mammalian
Cancer Cells. Ethanol, chlorophyll-free, and chlorophyll- and
sugar-free extracts were assessed for their cytotoxic effects
against the MCF-7, HepG2, HOS, D-17, and DH-82 cancer
cell lines (Figure 3 and Table 3). The five selected cancer cell
lines represent common cancer types in both humans and
canines. HepG2 cells were resistant to the GLE1 extract,
while doses greater than 300 µg/mL were toxic to most of
the cancer cells. All the cancer cells were more susceptible to
the GLE-CF-SF extract compared to GLE1 and GLE1-CF.
IC50 doses were reduced significantly in HOS, D-17, and
DH-82 cell lines by removing the sugar of the extract. D-
17 and DH-82 canine osteosarcoma and histiocytic sarcoma
were susceptible to both ethanol, sugar-free, and/or chloro-
phyll extracts; however, HOS human osteosarcoma cells
were not affected by ethanol extracts, although 50 µg/mL
doses of sugar- and chlorophyll-free extracts significantly
inhibited the cell proliferation.

3.4. Supercritical Extracts of I. obliquus Selectively Inhibited
Breast and Osteosarcoma Cell Viability. Two supercritical
extracts MH-SFE1b and MH-SFE1c were assessed against
cancer cell lines and healthy, nonmalignant cell lines
(Figure 4). Interestingly, we found that these supercritical
extracts were selectively cytotoxic to the MCF-7 breast can-
cer cell line, human osteosarcoma (HOS), and canine osteo-
sarcoma (D-17), while sparing the corresponding healthy cell
lines, i.e., MCF-10A, human breast epithelial cell and canine
osteoblast (CnOb). Both breast epithelial cells and canine
osteoblast cells exhibited significantly higher viability at
300 and 500 µg/uL of the extracts than that of breast cancer
and osteosarcoma cells (Figure 4). Interestingly, MCF-10A

TABLE 3: IC50 values (µg/mL) of various extracts of I. Obliquus and microalgae against mammalian cancer cell lines.

Extracts
Mammalian cell lines

MCF7 HepG2 HOS D-17 DH-82

I. obliquus
MH-E1 769Æ 166 540Æ 7.9 219Æ 37.2 208Æ 8.6 196Æ 24.5
MH-H2O >1,000 >1,000 >1,000 934Æ 262 >1,000
MH-E1-SF 187Æ 7.07 115Æ 31.6 125Æ 10.7 172Æ 12.0 134Æ 29.3
MH-SFE1b 340Æ 23.8 559Æ 80.5 313Æ 21.0 342Æ 52.1 358Æ 31.9
MH-SFE1c 182Æ 43.0 640Æ 173 262Æ 12.2 235Æ 15.1 150Æ 9.4
Microalgae
GLE1 445Æ 22.9 >1,000 527Æ 3.9 465Æ 90.3 396Æ 27.3
GLE1-CF 322Æ 37.9 501Æ 58.6 281Æ 15.0 347Æ 53.2 246Æ 10.9
GLE1-CF-SF 199Æ 52.4 231Æ 13.2 108Æ 9.1 131Æ 16.6 131Æ 1.9

For the abbreviations of the extracts, please refer to Table 1. MCF-7, human breast epithelial adenocarcinoma; HepG2, human hepatocellular carcinoma; HOS,
human osteosarcoma; D-17, canine osteosarcoma; and DH-82, canine histiocytosis.

6 Oxidative Medicine and Cellular Longevity



cell proliferation was not affected, even at higher concentra-
tions of 300 and 500 µg/mL of the extracts, while the same
doses were cytotoxic to cancer cell line MCF-7. Similarly,
CnOb cells showed above 70% viability at 500 µg/mL of

MH-SFE1b, while the same concentration of the extract
was highly toxic in human and canine osteosarcoma cells,
i.e., HOS and D-17. However, murine hepatocyte cells
(AML-12), liver epithelial cells (THLE-3), and RAW 264.7

0
0

50

100

150
GL-E1 GLE1-CF GLE1-CF-SF

1 50 100 300 500

MCF-7

C
el

l v
ia

bi
lit

y 
(%

)

∗∗∗∗

∗∗∗∗

∗

∗

0
0

50

100

150

1 50 100 300 500

HepG2

C
el

l v
ia

bi
lit

y 
(%

)

0
0

50

100

150

1 50 100 300 500

0
0

50

100

150

1 50 100 300 500

HOS

D-17

DH-82

Concentration (μg/mL)

C
el

l v
ia

bi
lit

y 
(%

)

0
0

50

100

150

1 50 100 300 500

0
0

50

100

150

1 50 100 300 500

C
el

l v
ia

bi
lit

y 
(%

)

0
0

50

100

150

1 50 100 300 500

C
el

l v
ia

bi
lit

y 
(%

)

0
0

50

100

150

1 50 100 300 500

∗∗∗

∗∗∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗

∗

∗
∗∗

0
0

50

100

150

1 50 100 300 500

∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗∗

∗∗∗∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗∗

∗∗∗

∗∗

∗∗∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗∗

∗∗

∗∗∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗

∗∗∗∗

∗∗∗∗

0
0

50

100

150

1 50 100 300 500

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗

FIGURE 3: Effect of microalgae extracts in mammalian cancer cells. Cancer cells were treated with different extracts (see Table 1) of microalgae,
and cell viability was measured after 24 hr using MTS assay. Each graph represents mean viability expressed in percentage of control. One-
way ANOVA was used to compare the dose-dependent toxicity. ∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001, and ∗∗∗∗p<0:0001, compared with
control group. MCF-7, human breast epithelial adenocarcinoma; HepG2, human hepatocellular carcinoma; HOS, human osteosarcoma;
D-17, canine osteosarcoma; and DH-82, canine histiocytosis.
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macrophage cell viability were inhibited by supercritical
extracts when compared with cancer cells HepG2 and
DH-82 with the same drug dose (data not available). More-
over, other extracts used in this study did not show selec-
tive cytotoxicity to tested cancer cell lines (data not
available). These preliminary results suggest that supercrit-
ical extracts of I. obliquus are selectively cytotoxic to cancer
cell lines in vitro.

4. Synergistic Effect of I. obliquus and
Microalgae Extracts against Mammalian
Cancer Cells

In comparison to all the tested extracts, MH-E1-SF (MH)
and GLE1-CF-SF (GL) had the lowest IC50 in all the cell
lines. Thus, these two extracts were selected for the determi-
nation of the synergistic effect using various combinations of
the extracts (Table 4). MH and GL extracts were treated in a
synergy matrix alone or combination in 96-well plates. Can-
cer cells responded with a dose-dependent effect to the dif-
ferent tested combinations (Figure 5). An analysis of the CI
based on the Loewe additivity model can be visualized in
isobologram. The combination of MH and GL resulted in
an additive effect (combination values of two drugs in a
straight line) with a 1 : 1 combination in MCF-7, HOS, D-
17, and DH-82 cells and a synergistic effect (below the
straight line) in HepG2 cells. Similarly, the combination of
1 : 2 and 2 : 1 MH and GL had an additive effect in MCF-7
cells and a synergistic effect in other cell lines. Additionally,
the combination of 1 : 4 and 4 : 1 MH and GL resulted in a
synergistic effect in all the tested cell lines (Figure 4(c) and
Table 4). Similarly, the HSA model of drug synergy showed
strong synergism between MH and GL extracts. The data
obtained from three biological replicates mapped in 3D
graphs show the percentage of synergism (blue to dark
blue) with different combination ratios between the extracts
(Figures 5(a) and 5(b)). Each point represents the effective
concentration (EC50) of the different combinations of MH
and GL, whereby height above zero in the third dimension
indicates synergism. If the coordinates of the drug doses are
located on the plane, it represents additivity. Most of the
combinations mapped by the HAS model and isobolograms
showed strong synergism in osteosarcoma and histiocytic
sarcoma cells.

5. Discussion

Cancer is a condition whereby cells grow abnormally, invade
the surrounding environment, and metastasize to other
organs of the body. Several risk factors are associated with
cancer initiation and development [32]. Despite cancer treat-
ment approaches continuously being improved and tailored
to meet each patient’s needs, a greater number of cancer
cases are diagnosed every year. The age-standard cancer
mortality rate has decreased in many cancers with newer
drugs such as immunotherapy. However, the potential to
advance primary treatment exists through combination ther-
apy and adjuvant and neoadjuvant additives [5]. Chemother-
apy has been an advantage for metastatic cancer treatment
and increased survival of the patient; however, severe side
effects, drug resistance, and relapse remain challenges [1]. As
a result, treatment methods using phytochemicals as supple-
ments or in combination with chemo-drugs are being stud-
ied. These combinations have significantly reduced tumor
growth and metastatic potential; 25% of all newly approved
anticancer drugs from 1981 to 2019 are derived from natu-
ral products [27, 33]. Various terpenoids and (poly)phenols
such as flavonoids, catechin, and quinones have been
reported to have an anticancer effect in vitro, and mouse
studies and phytochemicals such as Vinca alkaloids, taxanes
(docetaxel, paclitaxel), podophyllotoxin (etoposide, tenipo-
side), and camptothecin are currently being used to treat
cancers, i.e., nonsmall-cell lung carcinoma (NSCLC), oste-
osarcoma, breast, prostate, gastric carcinoma, ovarian, colo-
rectal, and testicular carcinoma [33–36].

Several studies on I. obliquus extracts for their anti-
inflammatory and anticancer properties have highlighted gal-
lic acid, protocatechuic acid, caffeic acid, syringic acid, betu-
linic acid, syringic acid, and various triterpenoids including
inotodiol and lanosterol as the main bioactive metabolites
[37–39]. UPLC-ESI-MS characterization of the extracts
showed a strong presence of betulinic acid and trametenolic
acid, a moderate amount of phenolic acids such as ferulic acid,
cinnamic acid, and syringic acid, and a low amount of cin-
namic acid, sinapic acid, catechin, and quercetin. Most of
these phytochemicals are recognized for their strong antican-
cer properties. Triterpenes in I. obliquus are being extensively
studied for their anticancer properties in various mammalian
cancer cells and mouse models [11, 40]. Inotodiol, trametenolic

TABLE 4: Combination index (CI) from isobologram analysis of selected extracts of I. obliquus and microalgae with various ratios.

Cells
Ratios of the two extracts

MH :GL (1 : 1) MH :GL (2 : 1) MH :GL (1 : 2) MH :GL (4 : 1) MH :GL (1 : 4)

MCF7 1.27 1.15 1.15 0.42 0.41
HepG2 0.76 0.76 0.78 0.43 0.40
HOS 1.27 0.95 0.99 0.42 0.46
D-17 1.17 0.84 0.76 0.47 0.47
DH-82 1.17 0.80 0.82 0.49 0.45

MH, MH-E1-SF (sugar-free ethanol extract of I. obliquus), GL, GLE1-CF-SF (chlorophyll- and sugar-free ethanol extract of microalgae mixture); MCF-7,
human breast epithelial adenocarcinoma; HepG2, human hepatocellular carcinoma; HOS, human osteosarcoma; D-17, canine osteosarcoma; and DH-82,
canine histiocytosis. CI< 1: synergism, CI= 1: additive effect, and CI> 1: antagonism.
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acid, 3b-hydroxylanosta-8,24-dien-21-al, and betulin are fre-
quently identified in I. obliquus [9, 10, 41]. Several extracts
from I. obliquus have shown cytotoxicity to various mammalian
cancer cell lines, inducing cell cycle arrest and apoptosis signal-
ing [10, 41–43]. Moreover, I. obliquus busone A has been iden-
tified as an important cytotoxic triterpenoid against human lung
cancer cells [10]. Additionally, lanostane-type triterpenoid was
reported to have a cytotoxic effect in murine leukemia cells (via
caspase 3 dependent pathway) human lung adenocarcinoma
cells and human bronchial epithelial cells [9, 11, 44].

Similar to previous findings, the ethanol and supercritical
extracts of I. obliquus responded dose-dependently to human
breast carcinoma, hepatocarcinoma, osteosarcoma, canine
osteosarcoma, and histiocytic sarcoma cells [10]. Ethanol-
based sugar-free extracts of I. obliquus were cytotoxic to all
the cancer cell lines with lower IC50 values. HepG2 liver
carcinoma cells were relatively resistant to I. obliquus super-
critical extracts compared to other extracts. We tested the
cytotoxicity of I. obliquus extracts on human osteosarcoma
cells (HOS), canine osteosarcoma (D-17), and canine histio-
cytic sarcoma (DH-82) for the first time, and we found that
the cellular cytotoxicity with supercritical fluid extracts of
I. obliquus was relatively lower in breast epithelial cells and
canine osteoblast as compared to human breast cancer cells
and osteosarcoma cells. The supercritical extracts showed a
significantly greater concentration of triterpene trametenolic
acid. Further characterization of supercritical fluid extracts
and their role in selective cytotoxicity is to be investigated.

Marine microalgae have already become an important
source of dietary fiber, which has great health benefits, includ-
ing proven antioxidant activities [17, 45]. They are rich in
ascorbic acids, glutathione, tocopherols, poly-unsaturated fatty
acids, and (poly)phenols. Recent studies have also focused on
the potential health benefits of microalgae, including in the
management of high blood pressure, type 2 diabetes, nonalco-
holic fatty liver disease, obesity, inflammatory diseases, and
certain cancers [14, 45, 46]. Our study also showed that the
removal of chlorophyll and sugars from crude ethanol extracts
could significantly improve the anticancer properties of micro-
algae. This is the first report on the cytotoxicity of extracts of
microalgae in HOS, D-17, and DH-82 cell lines.

The combination of two extracts significantly reduced the
effective drug dose in five of the cancer cell lines tested, as
mapped by synergistic response surface analysis and isobolo-
grams. The combination effect with ethanol-based sugar-free
extracts of I. obliquus and chlorophyll- and sugar-free extracts
of microalgae resulted in a synergistic reduction of cell viabil-
ity in the selected cancer cells. As several studies are seeking to
discover new drugs and reduce the doses of chemo drugs used
in cancer treatments, the effect of these two extracts in com-
bination has the potential for use as a natural anticancer
therapeutic. Moreover, these extracts could have the potential
to sensitize the effect of chemotherapeutic drugs, which would
significantly improve patient health. However, one of the
limitations of synergy maps is possible “overfitting.” There-
fore, the in vivo efficacy of these extracts should be further
studied using experimental animal models to elucidate the
therapeutic efficacy and mechanism(s) of action.

6. Conclusions

In our search for alternative natural health products for
mammalian cancers, we found that the cytotoxicity of I. obli-
quus and microalgae extracts in various human and canine
cell lines exhibited strong anticancer activities. In conclusion,
osteosarcoma cells were more susceptible to the supercritical
extracts of I. obliquus and chlorophyll-free and sugar-free
ethanol extracts of microalgae. Moreover, the combined
effect of these extracts resulted in synergistic and additive
drug dose effects. The phytochemical constituents of these
extracts have been studied for their anticancer effect, focus-
ing on their pharmacological and molecular mechanisms.
The preliminary analysis has demonstrated the triterpenoid
and phenolic acid classes of metabolites have contributed to
the observed cytotoxicity activity. Taken together, the com-
binations of extracts of I. obliquus and microalgae exhibited
potential for developing natural cytotoxic agents against vari-
ous cancer cells. This strong cytotoxicity and drug synergism
should be further investigated to validate their therapeutic
applications clinically.
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