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Occupational therapists evaluate various aspects of a client’s occupational performance. Among these, postural control is one of the
fundamental skills that need assessment. Recently, several methods have been proposed to estimate postural control abilities using
deep-learning-based approaches. Such techniques allow for the potential to provide automated, precise, fine-grained quantitative
indices simply by evaluating videos of a client engaging in a postural control task. However, the clinical applicability of these
assessment tools requires further investigation. In the current study, we compared three deep-learning-based pose estimators to
assess their clinical applicability in terms of accuracy of pose estimations and processing speed. In addition, we verified which of
the proposed quantitative indices for postural controls best reflected the clinical evaluations of occupational therapists. A
framework using deep-learning techniques broadens the possibility of quantifying clients’ postural control in a more fine-
grained way compared with conventional coarse indices, which can lead to improved occupational therapy practice.

1. Introduction

Occupational therapy is provided to a wide range of clients,
from young children to elderly adults, to help people develop
or regain skills needed for participation in daily activities [1].
To achieve this goal, occupational therapists (OTs) perform
a holistic assessment of clients’ body functions, activities,
participation, personal and environmental factors, and their
interrelationships [2]. OTs evaluate patients’ abilities, such
as motor skills, sensations, perceptions, sociality, and human
communication skills through different tasks. In the field of
pediatric and school occupational therapy, body functions,

such as postural control, provide a fundamental basis for a cli-
ent’s occupational performance including self-care, human
communication, and academic learning [3]. A large propor-
tion of people with developmental disorders generally have
impaired postural control skills [4–10], although these impair-
ments are sometimes overlooked [11, 12]. Thus, evaluation of
postural control is essential for occupational therapy [13].

However, sufficiently sensitive indices are lacking in the
existing assessment batteries [14–16] as they tend to use
duration, speed, or the number of successful trials within a
certain time range, which often leads to a ceiling effect.
OTs, therefore, perform clinical qualitative evaluations based
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on observations, but such detailed descriptions are not
reflected in the quantitative measurements. They often use
specialized equipment (e.g., body sway machines) to quan-
tify and visualize a client’s motor skill performance despite
less clinical availability in terms of financial cost [17] or time
taken for preparation and/or processing.

One solution is to leverage deep-learning or computer
vision technologies to develop fine-grained quantitative
assessment tools that can be easily used in clinical settings.
These new-generation technologies do not require OTs to
buy expensive specialized equipment. Furthermore, if well
defined, it would provide them with detailed summary indices
calculated from just recorded videos. Over the last decade,
deep learning has been successfully applied to various fields
such as medicine, education, and psychology (e.g., [18–22]),
dramatically contributing to both basic and clinical research
related to human behavior. Our previous work focused on
pediatric occupational therapy [13] aimed to quantify OT’s
qualitative observational evaluations of a task called “bird
dog posture.” This task comes from the Japanese Playful
Assessment for Neuropsychological Abilities (JPAN) [16, 23,
24], which is a developmental assessment battery for evaluat-
ing children’s sensory integration abilities. In this task, partic-
ipants are instructed to maintain their right (left) arm and left
(right) leg as horizontal (or higher) as possible (see Figure 1).
The task ends when either the individual’s arm or leg touches
the floor or 60 seconds passes. Although this task is typically
scored by the duration of time, our previous work [13]
succeeded in quantifying children’s static postural balance
score (SPB) and antigravity score (AG) using only a video
recorded on a camera. It used a human pose estimation
method, OpenPose [25], to detect the keypoints of body parts
from a 2D image and calculate these quantitative indices.

Although our previous work [13] made an important
first step in utilizing deep-learning techniques in rehabilita-
tion settings, further investigation is necessary to fully eval-
uate the clinical applicability of the developed assessment
tools. The current study addresses two limitations of our
previous research, which would apply to other similar exist-
ing studies. First, the previous study [13] focused on only
one pose estimation algorithm, but there are other alterna-
tives, such as AlphaPose [26] or MediaPipe Pose [27, 28].
A substantial number of methods have been recently
proposed, and some of them are unique and have highly
accurate estimations. It would be beneficial to compare these
algorithms to determine which human pose estimation
method is best suited for clinical application. Second, in
[13], SPB and AG were intuitively formulated and devel-
oped; however, other candidate indices exist. The process
of how to combine and calculate keypoints obtained from
pose estimators should be further examined to develop indi-
ces that better reflect qualitative clinical evaluation.

In the present study, we address these limitations by
comparing the accuracy and processing speed of three rep-
resentative and well-established human pose estimation
methods: OpenPose, AlphaPose, and MediaPipe Pose
(Figure 1). We then propose and evaluate an automated
construction of indices that better reflects OTs’ observa-
tional qualitative evaluation of a client’s postural control

abilities. Specifically, we define two additional alternative
indices for both SPB and AG. Refinement of these indices
is significant, especially when assessing the postural control
of older children and adults. These refined methods can pro-
vide fine-grained quantitative scores for postural control
that can help with the limitations of simply using duration
time, such as the ceiling effect resulting from these individ-
uals easily reaching the maximum of 60 seconds.

The structure of this paper is as follows. First, we explain
in detail the participants and the datasets in addition to the
proposed method in Section 2. Then, we present comparison
results (1) of human pose estimation methods for accuracy
and calculation time and (2) pose evaluation indices for
reflection of OTs’ qualitative evaluation in Section 3. Next,
we discuss the results and their clinical applicability in Section
4. Finally, an overall conclusion is provided in Section 5. For
readers’ convenience, Supplementary Table S1 describes all
the acronyms and abbreviations used in this article.

2. Materials and Methods

2.1. Participants and Datasets. Two datasets were used for
this study: a child and an adult dataset. The child dataset
was identical to our previous study [13], in which 34 typically
developing preschoolers (Mean age = 4:7, SD = 1:0, range = 3
– 6 years old; 14 girls) participated. The adult dataset included
unpublished data, in which 23 adults (mean age = 23:8, SD
= 4:6, range = 19 – 35 years old; 11 females) participated.
The research was approved by the Research Ethics Committee
of Hakuho College (18012), and written informed consent was
obtained from each participant’s caregiver (child dataset) or
the actual participant (adult dataset).

Each dataset consisted of video data where participants
performed a postural control assessment called “One Arm
and One Leg Balance,” which is one of the subtests of the
Japanese Playful Assessment for Neuropsychological Abili-
ties (JPAN) [16, 23, 24]. The JPAN is a developmental
assessment battery for evaluating sensory integration abili-
ties for children aged 4 to 10 years old and was developed
in Japan based on existing assessment tools, such as Sensory
Integration and Praxis Tests [29]. In the One Arm and One
Leg Balance task, a participant is asked to maintain what is
called “bird dog posture” for a maximum of 60 seconds on
each side, in which the opposite arm and leg are lifted from
a four-point crawling posture. This task demands an unfa-
miliar postural balance [30]; therefore, a participant’s splin-
ter skills regarding their postural control would be less likely
to affect the task performance.

Each video has a mean task performance score where
three pediatric OTs evaluated the overall quality of postural
control based on their clinical viewpoint using a 7-point
Likert scale (7 indicates the most superior performance, see
our previous work [13] for more details).

2.2. Pose Estimation Methods. As noted, only OpenPose was
used in the previous study. In the current study, three open-
source human pose estimation methods are compared in
terms of estimation accuracy and processing speed. The num-
bers in parentheses are the versions of the methods used.
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(i) OpenPose (1.7.0) [25] is well-known and popular and
is one of the representative bottom-up human pose
estimation methods. Bottom-up methods first esti-
mate all positions that seem to be human keypoints
from the entire image, then group the keypoints for
each person afterward. Since bottom-up methods
process all people in the image simultaneously, they
have the advantage of inference at high speed, even
if the number of people increases. OpenPose can
detect a total of 137 keypoints (70 for the face, 25
for the body, and 21 for each hand)

(ii) AlphaPose (0.5.0) [26] is one of the representative
top-down human pose estimation methods. The
top-down methods first detect each person in the
input image, then the keypoints are estimated for
each detected person. In general, top-down methods
can estimate keypoints with higher accuracy than
bottom-up methods. AlphaPose also can track peo-
ple and detect a total of 136 keypoints (68 for the
face, 26 for the body, and 21 for each hand)

(iii) MediaPipe Pose (0.8.10) [27, 28] targets a single per-
son, but it runs on a mobile CPU in near-realtime.
This is expected to be suitable for clinical application.
In addition, 3D keypoint estimation is possible from a
single RGB image. Unlike OpenPose and AlphaPose,
Mediapipe can only detect keypoints of a single per-
son. MediaPipe detects 33 keypoints for the body
(they also provide many other solutions, such as
MediaPipe Hands and MediaPipe Face Mesh)

When applying AlphaPose to a high-resolution video, it
did not work properly. Therefore, when processing video,
the video size was reduced in all methods (when the height
of the video was 1000px (pixel) or more, the height and width
were one-third, and when the height was less than 1000 px, the
height and width was halved). Moreover, following the previ-

ous study, the input videos were rotated 90° to turn the partic-
ipants’ heads upward. Note that the heights of raw videos in
the dataset ranged from 720px to 1080px, and the widths
ranged from 1280px to 1920px. The FPS (frames per second)
was 30.When processing the image, only rotation was applied.
Hyperparameters were not adjusted, and the default values
were used for the three methods.

A comparison of the three methods revealed that Media-
Pipe Pose had better speed and accuracy than the others, so
it was selected as the main method for the current study (see
Section 3.1 for details). The keypoint positions estimated by
MediaPipe Pose were denoised using the following method.
The keypoints with visibility (see Section 3.1) less than 0.5
were considered outliers. Moreover, we calculated the expo-
nentially weighted moving standard deviation (EWMSD), σ,
and considered a keypoint position to be an outlier when
the difference between the exponentially weighted moving
average (EMA) of the keypoint positions was more than σ
apart. The window lengths of the EWMSD and EMA are
equal to the FPS of the input video. This procedure was
repeated five times to remove outliers. Removed outliers
were interpolated linearly.

2.3. Pose Evaluation Indices. Pose evaluation indices were
divided into six groups: three SPBs and three AGs. SPBs
aim to quantify how stable the body is, and AGs attempt
to quantify how much gravity can be resisted. SPB1 and
AG1 were designed based on the previous work [13] with
minor modifications.

To explain SPB1 and 2, we introduced moving distance
fDk

n−1g as follows:
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Figure 1: Flowchart of this study.
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between two consecutive frames i − 1, i of keypoint k. k is a
variable that represents the four keypoints of the extended
limbs: 1 (elbow), 2 (wrist), 3 (knee), and 4 (ankle). n is the
number of video frames, and t represents trunk length. t is
the average value of distance between the shoulder and hip
in all frames of the video. t could contribute to influences
due to differences in participants’ height and in the distance
between the camera and the participants. SPB1 is the average
value of fDk

n−1g over the frames and keypoints.

SPB1 = 1
4〠

4

k=1

1
n − 1〠

n−1

i=1
Dk

i

 !
: ð2Þ

SPB2 is similar to SPB1, but focuses on larger changes.
The four keypoints’ fDk

n−1g are summed for each element
to get the sequence fDn−1g. The maximum value of fDn−1g
for SPB2 is as follows:

Dn−1f g = 〠
4
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1,⋯, 〠

4
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4

k=1
Dk

n−1,

SPB2 =max Dn−1f gð Þ:
ð3Þ

Suppose the max function returns the maximum value in
the sequence.

Unlike SPB1 and SPB2, SPB3 is not based on the key-
points’ moving distance. The area of the convex hull drawn
by k’s movement is calculated. SPB3 is the total area of four
convex hulls divided by n.

Figure 2 explains the angles used in calculating the AGs.
The angle θ1i (θ

2
i ) at frame i is formed by the vector connect-

ing the shoulder (hip) and the midpoint of the elbow (knee)
and wrist (ankle), and the horizontal vector of the image.
AG1 is calculated as follows:

AG1 = 1
n
〠
n

i=1
θ1i + θ2i
À Á

: ð4Þ

However, AG1 has three problems. First, raising the arm
(foot) above the shoulder (hip) results in a negative evalua-
tion. This should not receive a poorer evaluated as it means
resisting gravity. The second is that AG might not be evalu-
ated properly when the arm or leg is bent. The third is that
AG1 assumes that the video is kept horizontally. In AG2
and 3, four angles φ1

i , φ2
i , φ3

i , φ4
i are calculated for each frame

i. φ1
i (φ2

i ) is formed by the vector connecting the shoulder
and hip and the vector connecting the elbow (knee) and
shoulder (hip). φ1

i (φ
2
i ) is 0 when the elbow (knee) is above

the shoulder (hip). φ3
i (φ

4
i ) is formed by the vector connect-

ing the elbow (knee) and shoulder (hip) and the vector con-
necting the wrist (ankle) and elbow (knee). AG2 and AG3
are calculated as follows:
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All programs in this study were implemented on Google
Colaboratory.

3. Results

3.1. Comparison of Human Pose Estimation Methods. First,
we assessed the three target human pose estimation methods
(i.e., OpenPose, AlphaPose, and MediaPipe Pose) in terms of
processing speed and accuracy. Processing speed was con-
sidered to practically reflect computational complexity
because, generally speaking, a more complex method takes
a longer time to process the input data. For processing speed,
we used 20 videos of 5 children and 5 adults (each partici-
pant performed the task on the right and left sides). We cal-
culated the total time taken to load the video, estimate the
postural landmarks, and complete the output for keypoint
positions for eachmethod.We then divided the processing time
by the number of input video frames. The mean time per frame
was equivalent for OpenPose (M = 0:045 s, SD = 0:013) and
MediaPipe (M = 0:030 s, SD = 0:001), whereas it took approxi-
mately three or four times longer in AlphaPose (M = 0:119 s,
SD = 0:068) than in the other methods (Figure 3).

For accuracy, we randomly extracted 10 frames from
each of the videos used for assessing processing speed
(10 frames × 10 participants × 2 sides = 200 target frames).
For each pose estimation method, to measure estimation
error, we calculated the distance (px) between manually
annotated and automatically estimated keypoints for the tar-
get keypoints of the shoulder, elbow, wrist, hip, knee, and
ankle for the extended limbs. Since frame resolutions and
the distance between the camera and participant varied
across videos, we divided the estimation error by the trunk
length t that was calculated based on the manual annotation
to control for individual differences. AlphaPose and Open-
Pose produce an estimation of keypoints with corresponding
“confidence values” ranging from 0 to 1. The higher value
indicates that the keypoint is more likely to be estimated
accurately. MediaPipe Pose produces a similar index called
“visibility.” We evaluated the acceptance rate of keypoints
and the estimation error distance per trunk length while
moving the threshold of such confidence or visibility values.

Acceptance rates dropped in OpenPose and AlphaPose
as the thresholds for confidence values were set higher (i.e.,
more strict exclusion criteria), whereas those in MediaPipe
Pose were less affected by the thresholds of visibility
(Figure 4(a)). In particular, almost all keypoints were
excluded in OpenPose (acceptance rate of 1.3% and 1.6%
for the child and adult samples, respectively) with a thresh-
old of 0.9 or greater for confidence values. On the other
hand, more than 80% of the samples remained in MediaPipe
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Pose, even when the threshold of visibility was set at 0.9
(84.7% of the child sample and 85.2% of the adult sample).

The mean estimation error distance per trunk length
decreased in OpenPose and AlphaPose as the threshold of
confidence values became higher (Figure 4(b)). The extent
of this decrease seemed greater in the child sample than in
the adult sample, and OpenPose was the most accurate
method among the three candidate algorithms. However,
the mean estimation error was consistent in MediaPipe Pose
regardless of the threshold of visibility values, particularly
for the adult sample. For the child sample, the error distance
in MediaPipe Pose decreased slowly, especially when the
threshold was set above 0.5.

Thus, in AlphaPose and OpenPose, there was a tradeoff
between the acceptance rate and accuracy of the keypoints,
whereas MediaPipe Pose showed a robust high acceptance
rate, although its accuracy was relatively lower than the
other two methods when the threshold was high. These
results were similar when the measurements were evaluated
for each keypoint (see Supplementary Figures S1 and S2).
Although the mean estimation error distance in MediaPipe
Pose with a threshold of visibility of 0.5 and above ranged
from 0.08 to 0.10 (i.e., approximately 10% of the trunk

length), these errors may be clinically acceptable for a
gross motor assessment. Based on data used in the current
study, this length is 20% of the forearm and 15% of the
lower thigh length.

Overall, based on the assessment of processing speed and
accuracy, we decided to use MediaPipe Pose with a visibility
threshold of 0.5 to maximize clinical usability.

3.2. Comparison of Pose Evaluation Indices. To select the
indices that best predict the clinical evaluation of OTs, linear
regression models were constructed using the entire child
and adult datasets for each of the SPBs and AGs. We used
a backward stepwise selection method with AIC (Akaike’s
Information Criterion) values. The smaller AIC value indi-
cated a better model in terms of the model’s predictability.

For the SPB models, we first created the full model in
which SPB1, SPB2, and SPB3 were entered as independent
variables. The best model (AIC = 0:14, adjustedR2 = 0:62)
included SPB1 (β = −1:88, SE = 0:19, p < 0:001) and SPB3
(β = 0:77, SE = 0:19, p < 0:001), but not SPB2. These selected
variables were consistent even when the model fitting was
performed for the child and adult datasets separately; how-
ever, the direction of the effects differed. The best model
using the child dataset (AIC = −22:26, adjustedR2 = 0:39)
showed a similar result to the model using both datasets,
where SPB1 had a negative effect on the occupational thera-
pists’ clinical evaluation score (β = −0:93, SE = 0:21, p <
0:001) and SPB3 had a positive effect on it (β = 0:27, SE =
0:18, p = 0:15). Meanwhile, for the best model using the
adult dataset (AIC = −28:7, adjustedR2 = 0:69), both SPB1
(β = −1:42, SE = 0:38, p < 0:001) and SPB3 (β = −2:39,
SE = 1:12, p = 0:039) showed negative effects. Thus, it is
plausible that the greater the SPB1 value, the lower the clini-
cal evaluation score of the OT.

For the AG models, we also created a full model in which
AG1, AG2, and AG3 were included as independent vari-
ables. AG1 and AG2, but not AG3, remained in the best
model identified using both datasets (AIC = 46:7, adjusted
R2 = 0:43). Both AG1 (β = −0:35, SE = 0:25, p = 0:16) and
AG2 (β = −0:74, SE = 0:25, p = 0:0036) were negatively asso-
ciated with the OTs’ clinical evaluations. When using the
child and adult datasets separately, the best model included
only AG2 (best model using the adult dataset: AIC = 4:94,

1𝜑i
2𝜑i

4𝜑i

3𝜑i

1
i𝜃

2
i𝜃

(a) (b)

Figure 2: A schematic diagram of the angles at frame i used in the calculation of AGs. θs are used for AG1 (a), and φs are used for AG2 and
AG3 (b). All angles range from 0 to 180 degrees.
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adjustedR2 = 0:33, AG2’s β = −1:32, SE = 0:27, p < 0:001;
best model using the child dataset: AIC = −8:30, adjusted
R2 = 0:24, AG2’s β = −0:52, SE = 0:11, p < 0:001). Therefore,
what was consistently confirmed was that a greater AG2
value indicates a lower clinical evaluation score.

Finally, we constructed a model including the selected
independent variables with and without duration time, and
compared these models with the conventional model includ-
ing only duration time as an independent variable (Table 1).
Regardless of which dataset was used (child and adult, child
only, or adult only), the model including the selected vari-
ables with duration time was superior to the model including
only duration time (ΔAIC = 56:49 for the model using both
datasets; ΔAIC = 22:96 for the model using the child dataset;
ΔAIC = 38:13 for the model using the adult dataset). For
reference, the mean scores of the selected variables for each
dataset are shown in Table 2.

4. Discussion

The primary objectives of this study were to compare which
of the three pose estimators (AlphaPose, MediaPipe Pose,
and OpenPose) was the most clinically applicable in terms
of accuracy for keypoints and processing speed and to verify
which of the proposed indices regarding postural control
abilities best reflected clinical evaluations of OTs.

Among the three pose estimators, OpenPose and Media-
Pipe Pose took relatively less time for processing. Given that
OpenPose needed additional time for the first implementa-
tion, MediaPipe Pose was the best choice in terms of speed
for estimating keypoints for our specific task. When apply-
ing AlphaPose to a high-resolution video, reduction of the
video resolution was needed. In terms of accuracy, Open-
Pose outperformed the other two methods at a certain

threshold of confidence values, but the acceptance rate of
keypoints drastically decreased as the threshold got higher.
AlphaPose showed a similar trend, but the accuracy of key-
points was relatively worse. On the contrary, MediaPipe
Pose was not sensitive to the threshold visibility values,
and the acceptance rate remained high. Its mean estimation
error remained at around 0.08 or 0.10 px with a threshold of
0.5. This error length was approximately 10% of the trunk
length, around 20% of the forearm, and 15% of the lower thigh
length. We considered these errors to be clinically acceptable
for a grossmotor assessment because, for instance, thekeypoint
estimation of a client’s wrist is still much closer to the correct
position of the wrist than other keypoints, such as the elbow.
Therefore, given the processing speed, ease of implementation
(i.e., it can work on CPU), and acceptable error distances, we
decided to use MediaPipe Pose for our study. However, if a
researcher or therapist attempts to detect each keypoint more
precisely (e.g., fine motor skills [14, 15]), it might be recom-
mended to use other methods, such as OpenPose.

When comparing the static postural balance scores,
SPB1 was consistently related to the clinical evaluation score
of OTs. This suggests that the greater the SPB1 value, the
lower the OTs’ score. The SPB1 definition was the same as
our previous work [13], so this intuitive index would be a
plausible quantification of the qualitative aspect of postural
control skills. On the other hand, SPB3 which was defined
by a convex hull also remained in the final model, although
the direction of its regression coefficient was incongruent
depending on the model. Using the adult dataset, the regres-
sion coefficients for SPB1 and SPB3 were negative, allowing
for the interpretation that the smaller the area of the convex
hull, the better the evaluation of postural control. However,
the regression coefficient for SPB3 sometimes turned out to
be positive, especially when using the child dataset. This
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might be due to the fact that the area of the convex hull
became smaller when the hand or foot touched the floor
for a relatively short time because it became like a long
and thin line. Alternatively, this counterintuitive result may
have happened due to multicollinearity between SPB1 and
SPB3. Although the convex hull is used as a quantitative
index of postural control, such as body sway (e.g., [31]), this
index may not be appropriate for the type of task where limb
movements are like a pendulum. Based on the study results,
SPB1 should be considered as an index of static balance in a
clinical setting.

For the model comparison of the antigravity scores, AG2
was consistently included in the final model. When the cli-
ent’s elbow (or knee) flexed, the wrist (or ankle) could be
located at a high position, leading to a seemingly well-
maintained antigravity posture. In fact, AG1 showed a better
score for this kind of posture in some cases. However, AG2
was defined in a way that the score would be worse for such
a “tricky” posture. This discernibility of AG2 would be more
reasonable for clinical settings.

Regardless of the type of dataset, the selected variables
contributed to lowering AIC. This suggests that the OTs’

Table 1: Regression modeling results.

Model Predictor β (SE) p value AIC Adjusted R2

Adult and child datasets (combined)

Selected variables with duration time

SPB1 -0.71 (0.14) <0.001

-112.10 0.86

SPB3 0.42 (0.12) <0.001
AG1 -0.22 (0.12) 0.081

AG2 -0.15 (0.13) 0.26

Duration time 0.97 (0.08) <0.001

Selected variables without duration time

SPB1 -1.47 (0.20) <0.001

-14.85 0.68
SPB3 0.60 (0.18) <0.001
AG1 -0.28 (0.19) 0.14

AG2 -0.21 (0.20) 0.30

Duration time only Duration time 1.41 (0.07) <0.001 -55.61 0.77

Child dataset only

Selected variables with duration time

SPB1 -0.27 (0.12) 0.032

-111.02 0.84
SPB3 0.10 (0.09) 0.28

AG2 -0.23 (0.06) <0.001
Duration time 0.82 (0.07) <0.001

Selected variables without duration time

SPB1 -0.76 (0.21) <0.001
-28.57 0.45SPB3 0.21 (0.17) 0.22

AG2 -0.30 (0.10) 0.0051

Duration time only Duration time 1.00 (0.07) <0.001 -88.07 0.77

Adult dataset only

Selected variables with duration time

SPB1 -1.11 (0.32) 0.0013

-54.73 0.83
SPB3 1.61 (1.16) 0.17

AG2 -0.69 (0.18) <0.001
Duration time 1.51 (0.28) <0.001

Selected variables without duration time

SPB1 -1.00 (0.42) 0.021

-31.51 0.71SPB3 -2.75 (1.09) 0.016

AG2 -0.47 (0.22) 0.039

Duration time only Duration time 1.89 (0.24) <0.001 -16.60 0.58

Table 2: Means and standard deviations for the selected variables.

SPB1 SPB3 AG1 AG2 Duration time

Adult M (SD) 0.00217 (0.00218) 0.0177 (0.0261) 26.1 (14.92) 74.3 (32.4) 57.5 (11.8)

Child M (SD) 0.00703 (0.00447) 0.1387 (0.1853) 47.7 (20.89) 131.6 (58.7) 29.2 (21.4)

Note: M: mean; SD: standard deviation.
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qualitative evaluation of postural control could be more
appropriately and quantitatively reflected when SPB and
AG indices are taken into account than when duration time
alone is used. This tendency was observed in the model
using the adult dataset where duration time showed a ceiling
effect. Of the 23 participants, 22 succeeded in maintaining
their posture for a maximum of 60 seconds. Although simple
duration time or the number of successful trials has been
conventionally used as quantitative indices (e.g., [16]), other
fine-grained quantifications, such as SPB and AG may be
more meaningful for more appropriately and precisely eval-
uating a client’s postural control abilities. Deep-learning
techniques enable therapists to perform such quantifications
simply by recording a client’s posture using an ordinary
video camera.

To apply the methodology proposed in the current study
for clinical settings, we provided Python codes to calculate
SPB and AG scores from video input, as well as mean scores
for each index for children and adults for reference. When
taking a video of a client’s posture, we recommend that (1)
the background and the client’s clothes should be easily dis-
tinguishable, and (2) the camera should be fixed at the same
height as the client’s trunk and kept in a horizontal position,
rather than hand-held. These points are important for accu-
rate pose estimation.

For future work, we raise three points here. First, the
application of deep-learning-based pose estimators for
other tasks should be thoroughly investigated. For instance,
there are other subtasks used for evaluating postural con-
trols in existing assessment batteries [14–16]. Furthermore,
it would be better if a therapist could obtain a quantitative
measurement by taking a video of a client engaging in daily
activity in a natural setting. Second, the provision of a stan-
dardized score for SPB and AG and their developmental
trends would be helpful as in other indices [32]. Notably,
a study with a large sample size would be required for this.
Third, deep-learning-based methods have not been per-
fected, so if the algorithm is improved, the indices of pos-
tural control would also be improved as a result. In fact,
there were some cases of failure in posture estimation in
the current study. Finally, explainable artificial intelligence
(XAI) is attracting attention to clarify and understand the
reasons for decisions made by AI and machine learning
models [33, 34]. In the future, by training a prediction
model of the postural control performance on large-scale
data and using XAI methods, it may be possible to extract
sensory indicators such as SPB and AG, which are consid-
ered interpretable features.

5. Conclusions

This study compared three pose estimators (AlphaPose,
MediaPipe Pose, and OpenPose) to determine which was
the most clinically applicable in terms of accuracy for key-
points and processing speed. Also, we verified which of the
proposed indices regarding postural control abilities best
reflected clinical evaluations of OTs. The framework using
deep-learning techniques expands the possibility of quanti-
fying clients’ postural control in a more fine-grained way

compared with conventional coarse indices. The develop-
ment of automated quantification shown in the current
study can be used to improve occupational therapy practice.

Data Availability

The codes for calculating each proposed index (SPB and
AG) from a video file (mp4) are available in the GitHub
repository (https://github.com/decobocollabo/Postural-
Control-Assessment). We did not make the raw video data-
sets used in this study publicly available owing to ethics
issues. Requests to access the anonymized datasets such as
calculated SPB for each participant should be directed to
the corresponding author.
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