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Introduction

Calcific uremic arteriolopathy (CUA), previously termed calci-
phylaxis, characteristically occurs in patients with chronic kid-
ney disease (CKD), especially those nearing or at end stage renal 
disease (ESRD) with secondary hyperparathyroidism.1 However, 
CUA has been observed in patients with normal renal function 
and calcium/phosphate metabolism.2-4 Its etiology is multifacto-
rial and its estimated prevalence is reported in up to 4% of patients 
on dialysis.5,6 Risk factors are multiple and include female gender, 
diabetes mellitus, hyperphosphatemia, CKD, ESRD, mineral 
and bone disorders, obesity, warfarin anticoagulation, Caucasian 
ethnicity and others (Table 1).6-14

The term calciphylaxis was originally coined by Hans Seyle 
in 1962.15 In this context, he created a rodent model of systemic 
and local soft-tissue calcification characterized by sensitizing fac-
tors such as parathyroid hormone, vitamin D or a diet high in 
calcium and phosphorus followed by challenging factors such 
as trauma, iron salts, egg albumin, polymycin and glucocorti-
coids. Through his pioneering work, Seyle laid the foundation 
for understanding this debilitating disease in humans, describing 
it as a rare complication of CKD and secondary hyperparathy-
roidism involving the dermis and vasculature. Subsequently, our 
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contributes to the excess morbidity and mortality associated 
with chronic kidney disease and end stage renal disease. 
These same histopathologic conditions also occur in patients 
without uremia and therefore, the term calcific obliterative 
arteriolopathy could be utilized in these conditions.

Calcific uremic arteriolopathy (CUA)/calciphylaxis is an 
important cause of morbidity and mortality in patients with 
chronic kidney disease requiring renal replacement. Once 
thought to be rare, it is being increasingly recognized and 
reported on a global scale. The uremic milieu predisposes 
to multiple metabolic toxicities including increased 
levels of reactive oxygen species and inflammation. 
Increased oxidative stress and inflammation promote 
this arteriolopathy by adversely affecting endothelial 
function resulting in a prothrombotic milieu and significant 
remodeling effects on vascular smooth muscle cells. These 
arteriolar pathological effects include intimal hyperplasia, 
inflammation, endovascular fibrosis and vascular smooth 
muscle cell apoptosis and differentiation into bone forming 
osteoblast-like cells resulting in medial calcification. Systemic 
factors promoting this vascular condition include elevated 
calcium, parathyroid hormone and hyperphosphatemia with 
consequent increases in the calcium x phosphate product. 
The uremic milieu contributes to a marked increased in 
upstream reactive oxygen species—oxidative stress and 
subsequent downstream increased inflammation, in part, 
via activation of the nuclear transcription factor NFkB and 
associated downstream cytokine pathways. Consitutive 
anti-calcification proteins such as Fetuin-A and matrix GLA 
proteins and their signaling pathways may be decreased, 
which further contributes to medial vascular calcification. 
The resulting clinical entity is painful, debilitating and 
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arterioles and proximal regions, which are frequently associ-
ated with marked adiposity (Figs. 2B–D and 3). Once adipo-
subdermal fibrotic-thrombotic occlusion develops, the skin and 
the underlying subdermal layers become necrotic and ulcerated, 
subject to infection with an associated increase in morbidity and 
mortality from systemic infection—sepsis. This model of media 
calcified vasculature, intimal hyperplasia, endovascular fibrosis, 
inflammation and associated procoagulant milieu predisposes 
to fibrotic—thrombotic ischemia with ensuing necrosis (Figs. 1, 
2B–D and 3).5-14

Recent evidence suggests that this clinical entity is multifac-
torial and increasingly common in patients of Caucasian eth-
nicity and female gender. Additionally, there has been noted 
an association with the risk factors of hyperphosphatemia, high 
alkaline phosphatase, low serum albumin and elevated calcium 
x phosphate product even though normal or low calcium levels 
may be present at the time of diagnosis in patients with CUA/
calciphylaxis.13

Histopathologic Diagnosis

Although CUA is a clinical diagnosis, histological confirma-
tion is suggested and remains the gold standard for definitive 
diagnosis. Biopsies have described the pathognomonic lesions 
of small arteries and arteriolar medial calcification (up to 600 
micrometer) with intimal hyperplasia, inflammatory responses, 
endovascular fibrosis, associated panniculitis, extravascular cal-
cium deposition, thrombosis and tissue necrosis (Figs. 1–3).5,6,9,12 
This description has helped differentiate CUA from other similar 
vasculopathies that may be present in a variety of patient popu-
lations presenting with isolated medial arteriolar calcification. 
While medial vascular calcification itself may be an isolated find-
ing endemic to patients with renal insufficiency, diabetes melli-
tus, and atherosclerotic peripheral vascular disease not consistent 
with CUA, intimal calcification is unique to the intimal athero-
sclerotic process.

Pathogenesis

CUA is associated with multiple histologic abnormalities that 
collectively result in medial calcific, pro-stenotic—fibrotic, 
proinflammatory and prothrombogenic arterioles compat-
ible with a calcific obliterative arteriolopathy—vasculopathy  
(Fig. 2B–D).1,5-14 While vascular calcification was initially 
described as a mere passive degenerative process, the present 
understanding indicates that it is an active coordinated process 
similar to bone modeling osteogenesis and physicochemical 
deposition of mineral.4,5,13,16 The existing model for vascular cal-
cification begins with differentiation of vascular smooth muscle 
cell(s) (VSMC) into chrondrocyte, osteoblast-like cellular phe-
notypes.16-18 This mechanism is initiated with the interaction of 
uremia [hyperphosphatemia, multiple uremic toxins, and reac-
tive oxygen species (ROS)] and the decrease of local vascular cal-
cification inhibitory proteins such as Matrix Gla protein (MGP) 
and the systemic globulin: fetuin-A—(a2-Heremans-Schmid 
glycoprotein) AHSG (Fig. 4).

improved understanding of this complex clinical condition indi-
cates that the calcific changes in the vascular and dermal layers 
of the skin involve a myriad of signaling and structural abnor-
malities. Indeed, these abnormalities include intimal hyperplasia, 
inflammation, obliterative endovascular fibrosis, arteriolar medial 
calcification, thrombotic cutaneous ischemia with necrotic der-
mal, subdermal and adipose tissue necrosis with skin ulceration, 
and an undeniable increase in morbidity and mortality (Figs. 1 
and 2).

CUA/calciphylaxis has been increasingly reported in the 
literature over the past five years with new case reports or dis-
cussions published almost monthly.6 This may be attributed, in 
part, to the increasing prevalence of CKD and its association 
with the epidemic of obesity and the aging population in west-
ernized societies.6,8,14 Increased clinical recognition of CUA may 
also be related to a better understanding of the pathophysiology 
and mode of presentation. In this context, it is important to note 
that up to 80% of the patients with CUA/calciphylaxis have 
a very short life span and frequently die because of infectious 
complications.1,6-14

Clinical Presentation

The initial presenting complaint is often that of a dull deep der-
mal pain with periods of neuritic-type dysesthesia associated with 
palpable subcutaneous masses or dermal plaques. The dermal 
changes are associated with erythema, violaceous mottling and 
livedo reticularis (Fig. 2A), which progress to blackened regions 
of eschar formation and eventually non-healing ulcerations  
(Fig. 3A and B). Skin lesions were initially felt to occur primarily 
on the lower limbs (acral or distal); however, these lesions seem 
to be increasingly reported to involve the more obese tissues of 
the abdomen, trunk, genital and inner thigh regions (proximal). 
The eschars are quite painful, with involvement of the subdermal 

Table 1. Risk factors for the development of CUA/calciphylaxis

1.	 Female gender* (5,6,13,17,18,64)

2.	 Diabetes mellitus* (5,6,14,17,18,29,64)

3.	� Hyperphosphatemia and concomitant calcium times phosphorus 
product* (5,6,13,18,51,64)

4.	� Chronic Kidney Disease (CKD)—End Stage Renal Disease (ESRD)
(5,6,13,14,17,18,64)

5.	 Hemo and peritoneal dialysis duration(6,13,14,17)

6.	� Secondary hyperparathyroidism—Increased parathyroid 
hormone(5,6,13,14,17,18,51,64)

7.	 Caucasian ethnicity(5,6,14,17)

8.	 Obesity(5,6,13,14,18,51,64)

9.	 Hypoalbuminemia (malnutrition and weight loss)(5,6,13,18,51,64)

10.	Protein C and/or S deficiency(5,64)

11.	 Elevated alkaline phosphatase(13,18,64)

12.	� Warfarin anticoagulation—inhibits vitamin K interfering with 
matrix GLA protein(5,18,64)

13.	 Use of calcium phosphate binders(5,18,64)

Asterisks indicate strongest factors identified in multivariate analysis.13
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adipocyte biology. Obesity is responsible for elevations in the det-
rimental cytokines—adipocytokines tumor necrosis factor alpha 
(TNFα), interleukin-1 (IL-1) and interleukin-6 (IL-6) produc-
tion. Obesity and the obesity epidemic may be the driving force 
behind the development of the cardiometabolic syndrome (insu-
lin resistance), type 2 diabetes mellitus, cardiovascular disease, 
CKD, and increased oxidative stress—ROS.24,25 Obese subjects 
have higher fasting levels of oxidative stress biomarkers compared 
to non-obese subjects. Recently, it has been determined that 
obese females experienced significantly increased oxidative stress 
biomarkers (xanthine oxidase, malondialdehyde), ROS (H

2
O

2
), 

triglycerides, glucose and significantly lower antioxidant capac-
ity in response to high fat meals that were sustained for longer 
time periods as compared to non-obese subjects.25 This increase 
in ROS could certainly be one of the mechanisms activating the 
upstream NFκB and subsequent downstream adipocytokines—
cytokines allowing further insight for potential mechanisms 
related to obesity-mediated morbidity.

Bone morphogenic proteins belong to the transforming 
growth factor superfamily and are actively involved in induc-
ing de novo bone formation/osteoclast differentiation and 
extraosseous calcification.16-19 Of note, this action is dependent 
on increased production of ROS, which are known activators of 
nuclear factor kappa B (NFκB).20 MGP, a vitamin K dependent 
localized protein, has been shown to inhibit bone morphogenic 
protein-2. Fetuin-A is a hepatic synthesized systemic inhibitor 
of hydroxyapatite formation (vascular calcification) and has 
been noted to be reduced in states of renal failure, inflamma-
tion, and in patients with CUA/calciphylaxis (Fig. 4).21,22

Chronic inflammatory states, including alcoholic steatohepa-
titis, insulin resistance and CKD/ESRD are associated with 
increased generation of NFκB and receptor activator of NFκB 
ligand (RANKL) suggesting that the NFκB—osteoprotegerin/
RANK/RANKL axis is an important system in bone homeosta-
sis and vascular calcification (Fig. 4).23 In this regard, the afore-
mentioned disease states are associated with obesity and altered 

Figure 1. Arteriolar remodeling and vascular calcification in calcific uremic arteriolopathy (CUA)/calciphylaxis. Arteriole model depicted is derived 
from the pull out model of a normal small artery (upper right insert—boxed in area). This model demonstrates the four most common arteriolar find-
ings observed in histologic sections in CUA/calciphylaxis: Vascular calcification, endovascular fibrosis, intimal hyperplasia, and inflammatory response. 
Intimal hyperplasia consists of the cellular expansion of the intima including endothelial hyperplasia (green). Excessive reactive oxygen species (ROS) 
due to uremic toxins may be the driving force promoting this calcific obliterative arteriolopathy due to either endovascular fibrosis or thrombosis.  
Ca, calcium; EEL, external elastic lamina; eNOS, endothelial derived nitric oxide synthase; IEL, internal elastic lamina; MΦ, macrophage; PO4, phosphate; 
VSMC, vascular smooth muscle cell.
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Unfortunately, attempted management of hyperphosphatemia 
with calcium based phosphate binder’s upregulates gene tran-
scription of the cotransporter Pit-1.27 Increased expression of the 
bone matrix protein osteopontin (an inducible inhibitor of vascu-
lar calcification), by immunostaining, has been identified in the 
VSMC of the calcified vasculature in human patients with CUA 
lesions and may predispose to sloughing of vascular cells into the 
vessel lumen contributing to arteriole obliteration even prior to 
arteriole thrombosis (Figs. 1 and 4).11,18,28

As previously noted, vascular calcification may precede the 
development of the skin changes and ulcerations associated with 
CUA/calciphylaxis. This important concept has resulted in the 
two stage concept set forth by Wilmer and Magro.29 Stage one is 
the development of the actual vascular lesion (period of sensitiza-
tion induced by parathyroid hormone, vitamin D or high cal-
cium and phosphorus) (Figs. 1 and 2). Stage two comprises the 
development of end-organ ischemia secondary to the expanding 

Importantly, the vasoconstrictor and vascular growth pro-
moting substance endothelin-1 (ET-1) appears to be upregulated 
through the facilitation of the NFκB pathway in CUA, promot-
ing VSMC calcification, vasoconstriction and loss of lumen 
diameter.26 TNFα and other cytokines elicit a hypercoagulable 
state through endothelial dysfunction with resultant release of 
tissue factor, reduced endothelial cell protein C and S receptor 
expression, decreased thrombomodulin expression, and ablation 
of natural vascular heparin-like molecules.

Following the reduction in the above described inhibitory 
molecules (MGP—fetuin-A) and accelerated ROS production, 
VSMC are more susceptible to morphologic differentiation and 
bone formation. Hyperphosphatemia is thought to be the trig-
gering factor for the transition from the constitutive VSMC to 
osteoblast gene expression (osteogenic switch). The sodium/
phosphorus cotansporter (Pit-1) is the key protein involved in 
hydroxyapatite deposition and vascular calcification (Fig. 4). 

Figure 2. Early skin changes and histologic findings in calcific uremic arteriolopathy/calciphylaxis. (A) depicts the dermal changes of livedo reticularis 
(left anterior leg) prior to the initiation of hemodialysis. This image along with painful-palpable subcutaneous masses and plaques represent early skin 
changes associated with CUA/calciphylaxis. (B) is an inverted colorized hematoxylin and eosin (H&E) stained image, which demonstrates medial calci-
fication (arrows) in an arteriole and adjacent venule. This image is from biopsy of a breast mass one year prior to the development of CUA/calciphylaxis 
depicted in Figure 3. (C) portrays an outer adventitial location of vascular calcification (arrows) with H&E staining. (D) depicts arteriolar remodeling 
including intimal hyperplasia, endovascular fibrosis (asterisks) and vascular calcification (arrows) resulting in calcific obliterative arteriolopathy with 
endothelial fibrosis and arteriolar obliteration. H & E stain.
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endothelial dysfunction with endothelial nitric oxide synthase 
(eNOS) enzyme uncoupling resulting in decreased bioavail-
able endothelial derived nitric oxide (NO) (Figs. 4 and 5).17,30-33 
Decreased bioavailable endothelial derived NO has a devastating 
effect on the small arteries and arterioles resulting in a proinflam-
matory, proconstrictive and prothrombotic vasculature, which 
may contribute significantly to the development of CUA/calci-
phylaxis and end-organ skin ulceration (Figs. 4 and 5).

Hyperglycemia, hyperhomocysteinemia, elevated β-2 micro-
globulin in uremia, elevated oxidized low density lipoprotein-
cholesterol (LDL-C), and low levels of antioxidant high density 
lipoprotein-cholesterol (HDL-C) in atherogenic dyslipidemia are 
additional factors that may increase ROS and contribute to vascu-
lar calcification.31-33 In addition to endothelial NOS uncoupling 
(Fig. 5), there are other mechanisms that contribute to reduced 
bioavailable NO. For example, non-phagocytic nicotinamide 
adenine dinucleotide phosphate reduced (NADPH) oxidase 
enzyme due to activation by increased local levels of angiotensin 
II and aldosterone via their respective angiotensin type 1 and 
mineralocorticoid receptors result in increased ROS production. 

calcific vascular lesions now associated with obliterative endo-
vascular fibrosis and/or vascular thrombosis (period of challenge 
such as trauma, surgery or any provoking inflammatory cytokine 
surge). These stages may be concurrent or be separated by months 
or years (Figs. 2 and 3).6,14,17,29

Reactive Oxygen Species (ROS)  
in Pathogenesis of CUA/Calciphylaxis

ROS are known to be important signaling molecules in health. 
However, excessive ROS are damaging to proteins, lipids, car-
bohydrates and nucleic acids, which prompt a classic “response 
to injury” mechanism including inflammation (both acute and 
chronic) supporting a cytokine surge, granulation and fibro-
sis.30-33 Figure 4 emphasizes the potential importance of ROS in 
the development of vascular calcification in CUA and demon-
strates the salient relationship of the endothelium and VSMC in 
this pathological process. ROS are excessive, robustly produced 
in uremia, associated with multiple uremic toxins and the viscous 
cycle of the inflammatory cytokine surge, VSMC apoptosis, and 

Figure 3. Intravenous sodium thiosulfate (STS) induced wound healing. Images of CUA eschar (A), clean granulating bed following two weeks of 
STS (B), healing phase (C) advancing to complete healing 3 months later in a 58 year old female treated with STS (D). Note the proximity of the skin 
ulceration to the patient’s ileostomy and although this ulcer was small, it was highly vulnerable to infection and subsequent sepsis due to proximity 
to ileostomy. The large subcutaneous palpable nodule (C) was outlined demonstrating its relation to the skin ulceration (∼7 x 14 cm) and gradually 
regressed after 4 months of STS treatment.
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Systemic events, such as surgical stress, promote ROS gen-
eration, which activate the nuclear transcription factor NFκB 
via its receptor RANK and activate the innate wound healing 
mechanism. The NFκB—ANK/RANKL axis activation, in 
turn, activates multiple downstream cytokines such as tumor 
necrosis factor alpha (TNFα), interleukin (IL-1 and IL-6), 
which may create a viscous cycle resulting in “inflammatory 
cytokine surges” (Fig. 4) and may promote the development of 
CUA/calciphylaxis. These inflammatory cytokine surges and 
markers such as highly sensitive C reactive protein (hsCRP) 

Xanthine oxidase, lipooxygenases and cyclooxygenases are capa-
ble of generating ROS via both NADPH oxidase dependent and 
independent pathways,32,33 while asymmetrical dimethyl arginine 
(ADMA) will complete for L-arginine and result in decreased 
endothelial NO availability independent of eNOS uncoupling. 
Due to the chronicity of these conditions, the natural occurring 
antioxidants: catalase, superoxide dismutase and glutathione may 
become depleted and add to the overall redox stress. Thus, exces-
sive production of ROS may play an important and integral role 
in the development of CUA/calciphylaxis.

Figure 4. Potential mechanisms involving uremic toxins and reactive oxygen species (ROS) in vascular calcification. Uremic toxins: Increased parathy-
roid hormone (PTH), phosphorus (Pi) and phosphate (PO4

-3), calcium, calcium x phosphorus product, vitamin D3, and ROS significantly contribute to 
vascular smooth muscle cell (VSMC) and/or pericyte (Pc) differentiation into an osteoblast-like phenotype. Phosphate absorption into these cells is fa-
cilitated by the sodium phosphate cotransporter (Pit-1) resulting in an osteogenic switch due to activation of transcription factors: osteoblast-specific 
cis-acting element (Osf2)—core binding factor alpha1 (Cbfa-1/Runx2). Osteocalcin, osteonectin, bone morphogenic protein-2alpha and alkaline phos-
phatase (ALP) are inducers of calcification. In contrast, the systemic and local inhibitors of calcification fetuin-A—alpha2-Heremans-Schmid glycopro-
tein (AHSG) and matrix Gla protein (MGP) are decreased in uremia and calciphylaxis. Further, ROS and inflammatory cytokine surges may contribute 
to decreased hepatic synthesis of fetuin-A (insert a). Uremic toxins—ROS promote uncoupling of endothelial nitric oxide synthase (eNOS) enzyme via 
the oxidation of the requisite tetrahydrobiopterin (BH4) cofactor and results in the endothelium becoming a net producer of superoxide—ROS (insert 
b). Additionally, decreased bioavailable eNO due to eNOS enzyme uncoupling promotes a proinflammatory, proconstrictive, prothrombotic vascular 
endothelium. ROS are also capable of promoting VSMC apoptosis in the arterial vascular wall (AVW) and when this occurs the matrix vesicles and 
apoptotic bodies serve as nucleating sites for further calcium deposition in the extracellular matrix of the arteriole media (inserts b–e) (Fig. 1).
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metabolic parameters as close to normal as possible utilizing 
available dialysis techniques and medications. The following 
seven therapeutic approaches are introduced randomly.

Calcium and phosphorus strategy. Initially all oral calcium 
phosphate binders should be replaced with non-calcium phos-
phate binders (sevelamer, lanthanum carbonate, magnesium car-
bonate) and all oral calcium supplements should be discontinued. 
The clinician may also attempt to lower the calcium concentra-
tion in the dialysate bath sequentially to 1.0–1.5 mEq/L as toler-
ated, while carefully monitoring serum calcium levels. Instead of 
the standard three days/week dialysis regime, consider increas-
ing dialysis sessions from four to six treatment sessions per week 
in order to lower the metabolic abnormalities associated with 
ESRD.6,14,17,34

Improvement of hypoxia approach. The beneficial role of 
hyperbaric oxygen (HBO) therapy has been reported in reviews 
and multiple trials.1,18,34,35 Most of these reports utilize the 

and elevated sedimentation rates in CKD and ESRD patients 
on dialysis may decrease both local and systemic calcification 
inhibitors such as matrix GLA protein (MGP) and fetuin-A 
respectively. Elevated levels of ROS seem to be playing an 
important role at each turn of events in vascular calcification 
in addition to inflammation (Fig. 4). Importantly, ROS are 
upstream of inflammatory events and play an important role 
via the activation of NFκB and its receptor in the subsequent 
downstream activation of inflammatory mediators as well as 
vascular calcification.

Therapeutic Approaches to Prevent  
and Treat CUA/Calciphylaxis

Importantly, the clinician should attempt to reach designated 
national kidney foundation kidney disease outcomes quality ini-
tiative (NFK KDOQI) guidelines in order to bring all abnormal 

Figure 5. Uncoupling of the eNOS enzyme results in the endothelium becoming a net producer of superoxide. This cartoon depicts many of the sig-
nificant metabolic events leading to endothelial nitric oxide synthase (eNOS) enzyme uncoupling in the endothelium. Reactive oxygen species (ROS) 
and their oxidative effects of the requisite cofactor tetrahydrobiopterin (BH4) result in eNOS uncoupling. Excessive oxidation of BH4 resulting in the 
generation of BH3 and BH2 will not run the eNOS reaction to completion. Instead the reaction uncouples and shifts to the C terminal reductase domain 
and oxygen reacts with the nicotine adenine dinucleotide phosphorus reduced (NADPH) oxidase enzyme resulting in the generation of superoxide 
[O2

-]. These dynamic metabolic sequences, involving the uncoupling of the eNOS, reaction result in a proinflammatory, proconstrictive and prothrom-
botic endothelium, which contributes to endothelial dysfunction. Adapted and expanded with permission.17
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STS has two unpaired electrons (one at the exposed singly 
bonded oxygen and the other occurring at the exposed singly 
bonded sulfur moiety of the disulfide bond), which it readily 
donates to scavenge the unpaired electrons associated with ROS 
(Fig. 6).17 The quenching of ROS associated with the increased 
oxidative stress may allow recoupling of the uncoupled eNOS 
enzyme and this effect may well contribute to the rather rapid 
relief of the subdermal ischemia and the horrific pain associated 
with CUA/calciphylaxis.6,14,17 Additionally, as STS reacts with 
superoxide and unpaired electrons it may generate the potent nat-
urally occurring antioxidant glutathione (GSH).17 Recently, oral 
STS has been shown to increase depleted hydrogen sulfide (H

2
S) 

in an AV fistula mouse model of congestive heart failure sug-
gesting that STS is capable of reacting via various thiol reactions 
and transsulfuration enzymes reacting with the endogenous sub-
strate, L-cysteine to generate H

2
S (Fig. 6).65 Some of the positive 

effects produced by recoupling the uncoupled eNOS enzyme and 
restoring bioactive endothelial derived NO include the following: 
promotion of vasodilation of VSMC and counteracting VSMC 
proliferation, decreasing platelet adhesiveness and monocytic 
white blood cells reestablishing the teflon effect of the restored 
endothelium, promotion of the endothelium’s anti-inflammatory, 
antioxidant, antithrombotic, antiatherosclerotic and anti-fibrotic 
function via quieting the activity of redox sensitive matrix metal-
loproteinases (MMPs).17

While the antioxidant effects of STS occur early in the 
treatment of CUA, the chelating effects take longer; how-
ever, over time the chelation effects result in disappearance 
of subcutaneous and vascular calcification and healing ensues  
(Figs. 3 and 7).6,17,46,61,63,64,66 Improved endothelial dysfunction 
and increased bioavailable NO via recoupling of the uncoupled 
eNOS enzyme is currently thought to be playing an important 
role in the rapid improvement of pain associated with CUA/
calciphylaxis.6,14,17 The positive effects of increased bioavail-
able NO may help to reverse the activation of the endothelium 
with multiple vesicles and microparticle formation, endothelial 
denudation and ultrastructure capillary—arteriolar vasocon-
striction (Fig. 8).

Side effects of intravenous STS consist of nausea, abdominal 
cramping, vomiting and/or diarrhea if infused too rapidly (less 
than one hour). Bone density should be monitored if STS is used 
long term, since STS was demonstrated to decrease bone strength 
in the recent rat model preventing vascular calcification.63

Most studies support the use of intravenous STS at a dosage 
of 25 grams (two 12.5 gram vials diluted in 100 cc of normal 
saline) during the last hour of hemodialysis and some suggest 
that 12.5 grams per 100 cc of normal saline be used initially over 
a one hour infusion as a test dose and if tolerated proceed to 25 
grams.6,14,48-62,64 Additionally, STS has been used with peritoneal 
dialysis52 and in pediatric patients (25 g/1.7 m2).54 The duration 
of therapy depends on each individual patient; however, current 
thoughts are that intravenous STS should be used for at least 
two months beyond complete healing of the skin ulcerations.6,14,17 
The relief from pain is usually rapid (days to weeks), while heal-
ing of skin ulcerations usually require several weeks to months of 
treatment with longer treatment dependent on original size and 

standard of care for reducing the known risk factors involved 
with the addition of HBO therapy. Mechanisms include coun-
teracting local tissue hypoxia while improving wound healing 
via increased angiogenesis and fibroblast proliferation with col-
lagen formation to promote wound healing. Additionally, HBO 
therapy may increase bactericidal activity in infected wounds 
by increasing the respiratory oxidative burst from neutrophillic 
phagocytic NADPH oxidase.

Parathyroid hormone approach. Oral cinacalcet hydrogen 
chloride to lower intact parathyroid hormone (iPTH) should be 
considered initially while reserving parathyroidectomy (PTX) for 
patients with markedly elevated iPTH levels or poor responders 
to cinacalcet therapy.1,6,14,36

PTX with or without autotransplantation is a safe and effec-
tive surgical procedure for the treatment of resistant second-
ary hyperparathyroidism.37 Some retrospective studies and case 
reports evaluating the use of PTX in patients resistant to medical 
therapy have been positive,38 while others have not shown any 
difference in survival rates with PTX,9 therefore, the role of PTX 
remains controversial.39

Wound care approach. In patients with CUA/calciphylaxis 
the importance of proper wound care and debridement was 
recently reported to be associated with improved survival in a 
retrospective study.9 Appropriate local wound care is recom-
mended with gentle wound debridement while avoiding deep or 
wide surgical debridement and skin grafting. Appropriate sterile 
dressings should provide a moist environment while removing 
excessive exudates and be easy to apply and remove in order to 
reduce surrounding skin trauma.1,6,9,14,17,28,40

Anti-inflammatory approach. Antiresorptive bisphospho-
nates are known to inhibit osteoclastic activity and possess 
anti-inflammatory actions. These agents have the capability of 
reducing local macrophage infiltration and activity including 
decreased secretion of proinflammatory cytokines, thus facili-
tating the healing of CUA/calciphylaxis lesions.1,6,14,41,42 TNFα, 
IL-6, and C-reactive protein are known positive regulators of 
vascular calcification and may contribute to medial vascular and 
tissue calcification in CUA. Therefore, the use of bisphospho-
nates such as intravenous pamidronate and ibandronate and oral 
etidronate should be carefully considered in patients failing to 
respond to other therapeutic modalities.43-46

Antithrombotic approach. Low-dose tissue plasminogen acti-
vator (tPA) has been reported to be beneficial in a single case 
report with predominately distal calciphylaxis.47 This type of 
therapy seems logical since many cases of CUA are found to have 
concurrent obliterative thrombus formation in addition to the 
obliterative endovascular fibrosis in arterioles. However, further 
studies are needed in order to properly evaluate this therapy.

Antioxidant approach. The potent antioxidant sodium thio-
sulfate (STS) has received considerable attention during the 
past five years for the treatment of CUA/calciphylaxis.6,14,17,48-62 
Importantly, intravenous STS has recently been shown to pre-
vent vascular calcification in a uremic rat model.63 Some leading 
authors in this exciting field of study have even commented that 
the most significant progress in the treatment of CUA/calciphy-
laxis has been the use of STS.64
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is unknown with only 10 case reports identified to date (cen-
sus date 25 January 2010).54,67-70 Previous reviewers have noted 
the following pertinent findings regarding the pediatric popula-
tion: Increased risk in males (90% of the cases reported to date) 
with ESRD and secondary hyperparathyroidism, frequent distal 
extremity and visceral organ involvement, worse prognosis with 
acral-distal involvement, and increased resistance to medical 
treatment compared to the affected adult population.69 However, 
clinicians should keep in mind that with the continuing increase 
in childhood obesity there may be a changing trend in the future 
involving more proximal adipose tissue related skin ulceration. 
There are now four successful outcomes regarding mortality 
with intravenous STS.54,67 Recently, it has been suggested that 
CUA/calciphylaxis requires early and aggressive intervention 
with the use of multi-faceted therapeutic approaches as previ-
ously described with the recommendation of including conver-
sion from peritoneal dialysis to hemodialysis, intravenous STS 
infusions, and hyperbaric oxygen therapy.67 Appropriate dose 
adjustments should be made for the pediatric population71 and 
intravenous STS at a dose of 25 g/1.7 m2 diluted in 100 cc of 

number of ulcerations. In summary, one could say that the STS 
story has evolved from Selye to Sulfates.

With each of the therapeutic approaches, it is wise to monitor 
temperatures daily and aggressively obtain blood cultures should 
there be any fever or chills suggesting sepsis, as these patients 
have a weakened immune response and are extremely high-risk 
for developing sepsis and endocarditis secondary to chronic skin 
ulcerations.6,14,17 Also, it is appropriate to minimize each of the 
positive regulators of vascular calcification. Special attention 
should be given to the discontinuation of warfarin, as it has been 
incriminated in the development of CUA/calciphylaxis due to 
blocking vitamin K-dependent carboxylation of the matrix GLA 
protein.17

CUA/Calciphylaxis in the Pediatric Population

The current literature regarding CUA/calciphylaxis and its man-
agement in the pediatric population is limited.67 Vascular and 
soft tissue calcification is common in children occurring in up 
to 60% in those with ESRD; however, the incidence of CUA 

Figure 6. Potential mechanisms of sodium thiosulfate allowing for its antioxidant, vasodilator and chelation properties. This cartoon demonstrates the 
molecular structure of sodium thiosulfate (STS) and its two readily donated unpaired electrons, which facilitate quenching of unpaired electrons, gen-
eration of the antioxidant glutathione (GSH), vasodilator hydrogen sulfide (H2S), and calcium chelation forming the highly soluble calcium thiosulfate. 
Adapted with permission.17
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factor(s) precipitating CUA remain elusive at this point in time. 
Similarly, the observation that a large number of patients can 
share a similar constellation of risk factors and not develop CUA 
remains unclear. In this review we have suggested that the reduc-
tion of inhibitors of calcification, especially fetuin-A, as a result 
of a vicious ROS—inflammatory cytokine surge may be play-
ing an important role for this rapid deposition of calcium with 
remodeling arteriolar obliterative and/or thrombotic occlusion. 
Indeed, the liver plays an important role in protein synthesis and 
it is known that a ROS-cytokine-inflammation axis is capable 
of inducing the synthesis of innate acute phase reactant proteins 
such as fibrinogen, serum amyloid A, and C reactive protein. 
Concurrently, the ROS-cytokine-inflammation axis is capable 
of inhibiting the hepatic synthesis of protective antioxidant pro-
teins such as albumin resulting in hypoalbuminemia (a known 
risk factor for the development of CUA/calciphylaxis, Table 1) 
and the systemic constitutive inhibitor of vascular calcification, 

normal saline infused over one hour after each hemodialysis ses-
sion three times per week has been recommended (see section on 
therapeutic approaches).6,54

Conclusion

CKD, ESRD, uremic toxins and dialysis (Fig. 4) result in a met-
abolic milieu creating the “perfect storm” for the development 
of accelerated medial vascular calcification and remain a major 
underlying predisposing factor for the development of CUA/
calciphylaxis.6,14,17,64,72

Physiological serum concentrations of calcium and phosphate 
are several orders of magnitude above their solubility product, 
which suggests that systemic (fetuin-A) and/or local (MGP) 
mechanisms are operative in order to prevent extraosseous and 
medial vascular calcification. While Wilmer and Magro’s two 
stage theory helps to understand this situation,29 the exacting 

Figure 7. No vascular calcification following four years of intermittent (3 times/week) intravenous sodium thiosulfate. These histopathologic figures 
depict numerous open arterioles (arrows) (A–C) with no evidence of calcific obliterative arteriolopathy in the subdermal interstitium from biopsy of 
skin adjacent to previously healed ulceration in Figure 3. In (D), note the specific stain for calcium (alizarin red) is negative. Insert (d) demonstrates 
normal periarteriolar adventitial collagen (arrows), while insert (d’) depicts the positive control for alizarin red. Concurrently, this same patient as in 
Figures 2 and 3 did not have any subcutaneous calcifications when evaluated with bone scan (figure not shown).
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thiosulfate may be of great value and serve as future biomarkers 
for the early identification of CUA/calciphylaxis.

Biomarkers, in addition to oxidant stress and inflammation 
that may be considered in the future, may relate to an activated, 
dysfunctional or damaged—apoptotic endothelium and libera-
tion of endothelial microparticles (EMP) in CUA/calciphylaxis 
(Fig. 8). EMP and multiple activated endothelial biomarkers 
have been described including E-selectin, intercellular adhe-
sion molecule 1 (I-CAM-1), vascular cell adhesion molecule 1 
(V-CAM-1), and von Willebrand factor (vWF).75 Interestingly, a 
recent report has demonstrated that hypoxia is capable of induc-
ing both V-CAM-1 and a novel biomarker (S100A12), a calcium 

fetuin-A (a negative acute phase protein).73,74 While this concept 
is not proven and currently remains speculative, it may help to 
provide a better understanding how the puzzling—post surgi-
cal patients (including those who are post renal transplant and 
post parathyroidectomy) develop this devastating clinical con-
dition. This speculative concept may also help to explain why 
some and not others with similar risk factor profiles and similar 
laboratory values develop CUA/calciphylaxis and others do not. 
Hopefully, the new fetuin-A knockout mouse model will aid in 
a better understanding of the role of fetuin-A and its relation-
ship to CUA/calciphylaxis. Also, future experiments that mea-
sure fetuin-A in those patients treated with and without sodium 

Figure 8. Microcirculation ultrastructure in calcific uremic arteriolopathy. (A) depicts a normal small arteriole (approximately 25–30 µm diameter) with 
normal lining endothelial cell(s) (EC), and a single layer of supportive vascular smooth muscle cell(s) (VSMC), also note the open lumen with numer-
ous red blood cells (RBC), bar = 1 µm. (B) (in contrast) demonstrates a closed arteriolar lumen in a small arteriole (approximately 12–15 µm diameter) 
from a patient’s subcutaneous skin ulceration with CUA compatible with endothelial dysfunction, vasoconstriction, and closed arteriolar lumen (CAL), 
bar = 1 µm. (C) is a higher magnification of the boxed in region of the endothelium in (B) and may portray an activated endothelium demonstrating 
multiple cytoplasmic projections containing numerous vesicles, bar = 0.2 µm. Additionally, note the free particles in the lumen, which may represent 
endothelial microparticles (EMP) from the activated endothelium. Insert (c) displays an arteriole with endothelial denudation (arrows) and abnormal 
ballooning of ECs with vacuole formation from same patient, bar = 2 µm. (D) depicts an open capillary lumen (CL) in the subcutaneous tissue of skin 
biopsy adjacent to previous skin ulceration due to CUA (four years earlier, Fig. 3) treated with sodium thiosulfate (STS) for 4 years. Also note the normal 
appearing pericytes (Pc) and multiple pericyte processes (PcP), which are restored and known to be very sensitive to oxidative stress. Insert (d) por-
trays a normal open arteriole suggesting that STS may promote both capillary and arteriolar vasodilation.
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therapy and some have stated that it is unlikely that such tri-
als will be conducted.18 Therefore, CUA/calciphylaxis reg-
istries that record various therapeutic approaches would be 
extremely useful to identify further risk factors, biomarkers, 
and potential abnormalities to gain a better insight into its 
pathogenesis, early diagnosis, and treatment. Furthermore, 
monitoring and creating evidence based guidelines for future 
treatment modalities in contrast to empirically based regimes 
based on case reports and reviews as recommended in a recent 
publication by Schlieper et al. may be of considerable ben-
efit.78 Current web based registries have been established in 
Germany, US and UK (Table 2). We strongly urge clini-
cians treating patients with CUA/calciphylaxis to enter their 
patient’s data and submit specimens into these registries when 
appropriate.

When patients present with risk factors for CUA/calci-
phylaxis (Table 1) complaining of dermal pain and have the 
associated skin changes of livedo reticularis or painful subcu-
taneous nodules or plaques, we as clinicians should be highly 
suspicious for the future development of skin ulcerations. 
Since it is these very non-healing skin ulcerations that place 
our patients at such high risk for sepsis and increased mortal-
ity, we should not wait for the development of skin ulcerations 
in order to aggressively treat the underlying metabolic abnor-
malities that are known to be risk factors for the development 
of CUA/calciphylaxis.
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binding protein belonging to the S100 family, may function 
as biomarkers76,77 and could potentially contribute to the early 
identification of CUA/calciphylaxis prior to skin ulceration and 
possibly monitor therapy. Additionally, future refinement of 
endothelial microparticles assays could provide new vistas both 
for evaluating and monitoring therapeutic approaches in CUA/
calciphylaxis.

Each of the seven therapeutic approaches (except the wound 
care approach) offers the potential to reduce metabolic abnormali-
ties associated with CKD and ESRD requiring renal replacement 
therapy. While each approach is very important, it may be noted 
that the antioxidant approach with STS is directly or indirectly 
involved in five of the seven therapeutic approaches and may rep-
resent an emerging component of most therapeutic strategies to 
treat CUA.6,14,17,30,48-62 Not only is STS a potent antioxidant but 
also an integral component of the hypoxia, anti-inflammatory 
and antithrombotic approaches. Additionally, through its more 
delayed calcium chelation properties, it may be involved with the 
calcium and phosphorous approach.

Currently, there are no randomized prospective controlled 
clinical trials available upon which we can base our plan of 

Table 2. Calcific uremic arteriolopathy/calciphylaxis registries

Germany: �Calciphylaxie Register, International Collaborative 
Calciphylaxis Network 
www.calciphylaxie-register.ukaachen.de/ 
www.calciphylaxie-register.klinikum-coburg.de/ 
www.calciphylaxie.de/

US: �Calciphylaxis Registry, KU Medical Center, University  
of Kansas 
www2.kumc.edu/calciphylaxisregistry/

UK: �UK Calciphylaxis Registry, International Collaborative 
Calciphylaxis Network 
www.calciphylaxis.org.uk/
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