
www.landesbioscience.com	 Oxidative Medicine and Cellular Longevity	 325

Oxidative Medicine and Cellular Longevity 3:5, 325-331; September/October 2010; © 2010 Landes Bioscience

 Research paper research paper

*Correspondence to: João Quevedo; Email: quevedo@unesc.net
Submitted: 07/15/10; Revised: 07/20/10; Accepted: 07/21/10
Previously published online: www.landesbioscience.com/journals/oximed/article/13109
DOI: 10.4161/oxim.3.5.13109

Introduction

A growing body of evidence has suggested that reactive oxygen 
species (ROS) may play an important role in the pathogenesis of 
neurological and psychiatric diseases including bipolar disorder 
and major depression.1-9

ROS are free radicals or reactive anions/molecules contain-
ing oxygen atoms, such as hydroxyl radical, superoxide, hydro-
gen peroxide and peroxynitrite. ROS can cause cell damage by 
enzyme inactivation, lipid peroxidation and DNA modifica-
tion.10 Oxidative stress is well known to contribute to neuronal 
degeneration in the central nervous system (CNS) in the process 
of aging, as well, in neurodegenerative diseases.

Studies have consistently reported increase ROS in plasma 
on patients with major depression, especially with melancholia 
associated.11 Recent study showed evidences of oxidative stress in 
major depression as reflected in increased oxidative stress from 
frontal regions of patients compared to those of matched con-
trols.12 Moreover we showed that rats subjected to chronic mild 
stress (CMS) had increase in superoxide production in hippo-
campus, prefrontal cortex and cortex brain and thiobarbituric 
acid reactive in cortex.5 In addition we demonstrated that stressed 
rats had increase protein (prefrontal, hippocampus, striatum 
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and cortex) and lipid peroxidation (cerebellum and striatum), 
increase catalase (cerebellum, hippocampus, striatum and cortex) 
and a decrease in superoxide dismutase activity (prefrontal cor-
tex, hippocampus, striatum and cortex).6 Additionally, oxidative 
stress is able to affect a number of synaptic functions, resulting in 
impaired neurotransmission.13

The monoamine hypothesis posits that depression is caused 
by decreased monoamine function in brain.14 Actually, the 
clinically-used antidepressants increase the extracellular concen-
trations of monoamines serotonin or norepinephrine either by 
inhibiting their reuptake from the synapse or by blocking their 
degradation by inhibiting monoamine oxidase.15-17

Recently, studies have reported that β-carboline harmine 
possesses antidepressant properties.18-20 In fact, harmine interact 
with monoamine oxidase A (MAO-A) [21] and several cell-sur-
face receptors, including serotonin receptor 2A (5-HT2A), which 
are involved in antidepressant pharmacotherapy.22,23

Because of these findings, we designed the present study to 
investigate the effects of acute and chronic administration of har-
mine, imipramine (standard antidepressant) and saline on lipid 
and protein oxidation levels (markers of oxidative stress) and on 
superoxide dismutase (SOD) and catalase (CAT) activities (the 
major antioxidant enzymes) in rat brain.
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imipramine at doses of 10 and 30 mg/kg 
and harmine in all doses reduced the lipid 
peroxidation in prefrontal cortex; and in 
all doses both harmine and imipramine 
decreased the lipid peroxidation in hippo-
campus (F = 10.44; p < 0.05; Fig. 1B).

Protein carbonyls. As depicted in Figure 
2A, acute administration of imipramine in 
all doses decreased protein carbonilation 
in prefrontal cortex and in hippocampus; 
however, acute treatment with harmine 
reduced protein carbonilation at doses 
of 5 and 15 mg/kg in prefrontal cortex 
and at dose of 15 mg/kg in hippocampus  
(F = 2.18; p < 0.05). In the chronic treat-
ment only the higher (15 mg/kg) of harmine 
and decreased the protein carbonilation in 
prefrontal cortex and hippocampus and 
imipramine at dose of 20 mg/kg decreases 
protein carbonilation in hippocampus  
(F = 28.8; p < 0.05; Fig. 2B).

Catalase activity. The intraperitoneal 
acute treatment with imipramine in doses 
of 10 and 30 mg/kg and harmine in dose 
of 5 mg/kg increased catalase activity in 
prefrontal cortex; treatment with imipra-
mine in all doses and harmine at doses of 5 
and 10 mg/kg increased catalase activity in 
hippocampus (F = 4.9; p < 0.05; Fig. 3A). 
In the chronic treatment only imipramine 
at the dose of 20 mg/kg increased catalase 
activity in prefrontal cortex in comparison 
with control group (p < 0.05; Fig. 3B).

Superoxide dismutase activity. The 
superoxide dismutase activity increased in 
prefrontal cortex after acute treatment with 
imipramine at dose of 20 mg/kg and har-
mine at doses of 5 and 15 mg/kg. In hippo-
campus the superoxide dismutase activity 
increased only harmine at dose of 5 mg/
kg (F = 2.45; p < 0.05; Fig. 4A). Figure 4B 
showed the superoxide dismutase activity 
after chronic treatment with imipramine 
and harmine. Only the higher dose (30 
mg/kg) of imipramine increased superox-
ide dismutase activity in prefrontal cor-
tex; and only harmine at dose of 5 mg/
kg increased superoxide dismutase activity 
in hippocampus, compared to the control 

group (p < 0.05).

Discussion

In the present study we showed that both acute and chronic treat-
ments with imipramine and harmine reduce lipid and protein 
peroxidation and increased superoxide and catalase activities, 

Results

Thiobarbituric acid reactive species (TBARS). In the acute 
treatment (Fig. 1A), imipramine at doses of 20 and 30 mg/kg 
and harmine in all doses in prefrontal cortex and both imipra-
mine and harmine in all doses in hippocampus decreased the 
lipid peroxidation (F = 6.61; p < 0.05). Chronic treatment with 

Figure 1. Effects of acute (A) and chronic (B) administration of imipramine (10, 20 and 30 mg/kg, 
i.p.) and harmine (5, 10 and 15 mg/kg, i.p.) on lipidic peroxidation in rat brain. The formation of 
TBARS decreased in prefrontal cortex and hippocampus after acute (A) and chronic (B) treat-
ments with imipramine and harmine, compared to control group. Bars represent means±S.E.M. 
of 5 rats. * p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test.
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parameters in rat brain. Several studies have reported the role of 
imipramine in oxidative stress parameters. In fact, imipramine 
treatment reversed the lipid peroxidation in brain of Sprague 
Dawley rats induced by chronic ozone.33 In addition, acute 
treatment with imipramine (10 and 20 mg/kg) and venlafaxine  
(5 and 10 mg/kg) reversed immobilized stress-induced behav-
ioral and biochemical (such as malondialdehyde level, nitrite, 
glutathione and catalase enzyme) alterations in mice; in some 
study was showed that l-NAME and/or methylene blue potenti-
ated the effect of both imipramine and venlafaxine, suggesting 
the involvement of nitric oxide mechanism in the protective 
effect of imipramine and venlafaxine.34 In other hand, acute 

compared to saline group in hippo-
campus and prefrontal cortex.

The hippocampus is one of sev-
eral limbic structures that have been 
implicated in mood disorders. In 
addition, the hippocampus has con-
nections with the prefrontal cortex, 
region that is more directly involved 
in emotion and cognition and 
thereby contributes to other major 
symptoms of mood disorders.24,25

The brain is particularly vulnera-
ble to reactive oxygen species (ROS) 
production because it metabolizes 
20% of total body oxygen and has 
a limited amount of antioxidant 
capacity.10

The oxidative stress in rat brain 
structures may play a role in the 
pathogenesis of anxiety26,27 and 
depression.28 In fact, our group very 
recently showed that rats subjected 
to chronic mild stress (CMS) had 
an increase in superoxide produc-
tion and thiobarbituric acid reac-
tive protein and lipid peroxidation 
and catalase activity, and a decrease 
in superoxide dismutase activity 
in rat brain.5,6 Moreover, a previ-
ous study using an animal model of 
repeated restraint stress showed that 
this model induced an increase in 
TBARS levels in hippocampus.29 In 
another study, it was demonstrated 
that animal model of immobiliza-
tion stress causes significant increases 
in lipid peroxidation, which was 
found in cerebral cortex, cerebel-
lum and hippocampus compared to 
the unstressed controls; significant 
increases in levels of protein oxidation 
were also found in cortex, hypothala-
mus and striatum; oxidative nuclear 
DNA damage increased after stress in 
all brain regions, although only the cerebral cortex showed a sig-
nificant increase.30 In humans elevated ROS in plasma of patients 
with major depression, especially in those with melancholic type 
and increased oxidative stress in depressive woman, was demon-
strated.3,11 Additionally, Galecki et al.31 demonstrated that com-
bined fluoxetine antidepressant and acetylsalicylic acid therapy 
improvement of oxidative stress parameters in patients with 
depression. Moreover, exogenous administration of 5-hydroxy-
tryptophan prevented depletion of serotonin concentration and 
antioxidant status induced by p-chlorophenylalanine in rat brain.32

In this study we showed that acute and chronic treatment 
with imipramine antidepressant improvement of oxidative stress 

Figure 2. Effects of acute (A) and chronic (B) administration of imipramine (10, 20 and 30 mg/kg, i.p.) and 
harmine (5, 10 and 15 mg/kg, i.p.) on protein peroxidation in rat brain. The carbonyl groups decreased 
in prefrontal cortex and hippocampus after acute treatment (A) with imipramine and harmine and in 
prefrontal cortex and hippocampus with harmine and in hippocampus with imipramine after chronic 
treatment (B), compared to control group. Bars represent means ± S.E.M. of 5 rats. * p <0.05 vs. saline 
according to ANOVA followed by Tukey post-hoc test.
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Nevertheless, a significant recovery in 
the activities of superoxide dismutase, 
catalase, glutathione S-transferase, gluta-
thione redutase and glutathione levels by 
fluoxetine, imipramine and venlafaxine 
treatments following a restraint stress-
induced decline of these parameters, and 
accumulated lipid peroxidation product 
malondialdehyde and protein carbonyl 
contents in stressed animal were normal-
ized by some antidepressants.37

Moreover, we also demonstrated that 
β-carboline harmine improvement of 
oxidative stress parameters. Kim et al.38 
reported that harmine has a role in oxi-
dative stress. In fact, they showed that 
β-carbolines (harmaline, harmalol and 
harmine) attenuated the dopamine or 
6-hydroxydopamine-induced alteration 
of brain mitochondrial and synaptosomal 
functions, and viability loss in PC12 
cells, by a scavenging action on reactive 
oxygen species and inhibition of thiol 
oxidation.38

Our group has shown antidepres-
sant properties of harmine.19,20 In fact, 
treatment with harmine at doses of 10 
and 15 mg/kg and imipramine at doses 
of 20 and 30 mg/kg decreased immo-
bility time of rats, and increased both 
climbing and swimming time of rats 
compared to saline group, and were also 
showed that imipramine and harmine 
did not affect spontaneous locomotor 
activity in the open-field test.19 In this 
study were demonstrated that harmine 
(15 mg/kg) increased brain-derived neu-
rotrophic factor (BDNF) protein levels 
in rat hippocampus. In other study from 
our group showed that harmine reverted 
stress parameters induced by chronic 
mild stress model.20 In addition, Farzin 
et al.18 demonstrated that treatment with 
harmane, norharmane and harmine 
dose-dependently reduced the immobil-
ity time in the mouse forced swimming 
test. These studies suggest antidepres-
sant-like effects of harmine could be due 
to interactions of harmine with several 
receptor systems involved in the modula-

tion of behavioral and molecular actions of antidepressants.
In conclusion, considering that oxidative stress is probably 

involved in the pathophysiology of depression, the modulation 
by antidepressants could be an important mechanism of action of 
these drugs and harmine could be a positive effect in oxidative stress 
parameters, which may play a role in the pathogenesis of depression.

seizure activity promotes lipid peroxidation and increased nitrite 
levels in frontal cortex and striatum.35 Imipramine (10 and 20 
mg/kg) and trazodone (5 and 10 mg/kg) antidepressants restored 
depleted reduced glutathione levels and catalase activity and 
attenuated raised lipid peroxidation and nitrite concentrations 
in mice sleep-deprived, compared to untreated sleep-deprived.36 

Figure 3. Effects of acute (A) and chronic (B) administration of imipramine (10, 20 and 30 mg/kg, 
i.p.) and harmine (5, 10 and 15 mg/kg, i.p.) on catalase activity in rat brain. The catalase activity 
increased in prefrontal cortex after acute (A) and chronic (B) treatments with imipramine and in 
prefrontal cortex and hippocampus after chronic treatment (B) with harmine, compared to control 
group. Bars represent means ± S.E.M. of 5 rats. * p <0.05 vs. saline according to ANOVA followed by 
Tukey post-hoc test.
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a 12 h light/dark cycle (lights on at 7:00 AM). All experimental 
procedures involving animals were performed in accordance with 
the NIH Guide for the Care and Use of Laboratory Animals and 
the Brazilian Society for Neuroscience and Behavior (SBNeC) 
recommendations for animal care and with approval by local 
Ethics Committee under protocol number 325/2008.

Materials and Methods

Animals. Male Adult Wistar rats (60 days old) were obtained 
from UNESC (Universidade do Extremo Sul Catarinense, 
Criciúma, Brazil) breeding colony. They were housed five per cage 
with food and water available ad libitum and were maintained on 

Figure 4. Effects of acute (A) and chronic (B) administration of imipramine (10, 20 and 30 mg/kg, i.p.) and harmine (5, 10 and 15 mg/kg, i.p.) on super-
oxide dismutase activity in rat brain. The superoxide dismutase activity increased after acute treatment (A) in prefrontal cortex with imipramine and 
harmine and in hippocampus with harmine and after chronic treatment with imipramine in prefrontal cortex and harmine in hippocampus, compared 
to control group. Bars represent means ± S.E.M. of 5 rats. * p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test.



330	 Oxidative Medicine and Cellular Longevity	 Volume 3 Issue 5

trichloroacetic acid and were redissolved in DNPH; the absor-
bance was read at 370 nm. To determine CAT activity, the brain 
tissue was sonicated in 50 mmoL/L phosphate buffer (pH 7.0), 
and the resulting suspension was centrifuged at 3,000 g for 10 
min. The supernatant was used for enzyme assay. CAT activity 
was measured by the rate of decrease in hydrogen peroxide absor-
bance at 240 nm.43 SOD activity was assayed by measuring the 
inhibition of adrenaline auto-oxidation, as previously described 
by Bannister and Calabrese.44 All biochemical measures were nor-
malized to the protein content, with bovine albumin as standard.45

Statistical analysis. All data are presented as mean ± S.E.M. 
In the assessment of oxidative stress parameters were determined 
by one-way ANOVA, followed by Tukey post-hoc test when 
ANOVA was significant; p values less than 0.05 were considered 
to be statistical significant.
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(Criciúma, Brazil). Different groups of rats (n = 5 each) were 
administered intraperitoneally (i.p.) with saline or different doses 
of harmine (5, 10 and 15 mg/kg) or imipramine (10, 20 and 30 
mg/kg) once only (acute treatment) or once a day for 14 days 
(chronic treatment).20-23,39 Imipramine and harmine were dis-
solved in saline immediately before the injections. All treatments 
were administered in a volume of 1 mL/kg. After 60 min acute 
and chronic treatment, the animals were killed by decapitation. 
The hippocampus and prefrontal cortex were quickly isolated 
by hand dissection using a magnifying glass and a thin brush, 
dissection was based on histological distinctions described by 
Paxinos and Watson.40 Samples were stored at 70°C for subse-
quent analysis of oxidative stress.

Oxidative stress parameters. In order to assess oxidative dam-
age, was measured the formation of thiobarbituric acid reactive 
species (TBARS) during an acid-heating reaction, as previously 
described by Esterbauer and Cheeseman.41 The samples were 
mixed with 1 mL of trichloroacetic acid (TCA) 10% and 1 mL 
of thiobarbituric acid 0.67% and were then heated in a boiling 
water bath for 15 min. TBARS were determined by the absor-
bance at 535 nm. Oxidative damage to proteins was measured 
by the quantification of carbonyl groups based on the reaction 
with dinitrophenylhidrazine (DNPH), as previously described by 
Levine et al.42 Proteins were precipitated by the addition of 20% 
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