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Aim. Accurate diagnosis of prostate cancer (PCa) has a fundamental role in clinical and patient care. Recent advances in diagnostic
testing and marker lead to standardized interpretation and increased prescription by clinicians to improve the detection of
clinically signi�cant PCa and select patients who strictly require targeted biopsies.Methods. In this study, we present a systematic
review of the overall diagnostic accuracy of each testing panel regarding the panel details. In this meta-analysis, using a structured
search, Web of Science and PubMed databases were searched up to 23 September 2019 with no restrictions and �lters. �e study’s
outcome was the AUC and 95% con�dence interval of prediction models. �is index was reported as an overall and based on the
WHO region and models with/without MRI. Results. �e thirteen �nal articles included 25,691 people. �e overall AUC and 95%
CI in thirteen studies were 0.78 and 95% CI: 0.73–0.82. �e weighted average AUC in the countries of the Americas region was
0.73 (95% CI: 0.70–0.75), and in European countries, it was 0.80 (95% CI: 0.72–0.88). In four studies with MRI, the average
weighted AUC was 0.88 (95% CI: 0.86–0.90), while in other articles where MRI was not a parameter in the diagnostic model, the
mean AUC was 0.73 (95% CI: 0.70–0.76). Conclusions. �e present study’s �ndings showed that MRI signi�cantly improved the
detection accuracy of prostate cancer and had the highest discrimination to distinguish candidates for biopsy.

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer in
men worldwide, and its incidence and mortality correlate
with increasing age [1]. �e accurate PCa diagnosis is a
problematic issue because it is essential to identify which
PCa are destined to progress and which would bene�t from
early radical treatment [2]. PCa has traditionally been di-
agnosed by digital rectal examination (DRE) and prostate-
speci�c antigen (PSA) blood test, followed by transrectal
ultrasound (TRUS) guided biopsy [3]. �eir limited speci-
�city and an elevated rate of overdiagnosis are the main
problems associated with PCa testing. Benign prostatic
hyperplasia (BPH) has similar symptoms to PCa, and most
PCa patients are diagnosed as asymptomatic patients with
normal DRE and elevated PSA [4].

So, new PCa biomarkers have been proposed to im-
prove the accuracy of PSA in the management of early PCa
[5–8]. �e diagnostic panels include PSA isoforms, PSA
density and velocity, age-adjusted PSA, free PSA to total
PSA ratio (fPSA/tPSA), PSA density (PSAd), PSA doubling
time (PSADT), Prostate health index (Phi), 4K score (in-
clude kallikrein-related peptidase 2/hK2, intact PSA, fPSA,
and tPSA), advanced MRI (mpMRI and bpMRI), PCA3
mRNA, PSA glycoforms, TMPRSS2:ERG fusion gene,
microRNAs, circulating tumor cells (CTCs), and androgen
receptor variants [5, 9–12]. AUC is an e§ective way to
summarize the overall diagnostic accuracy of each testing
panel.

No comprehensive study represents the most accurate
ones, and the heterogeneity of all clinical trials is too high in
both the panel components and AUC. �is systematic
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review summarizes all PCa diagnostic panels and compares
their AUC to find the most accurate ones.

2. Methods

)is systematic review and meta-analysis were designed
according to the latest version of the PRISMA checklist, and
it was registered on Prospero with registration number: CRD
149417. )e summary major was AUC with a 95% confi-
dence interval (CI).

2.1. Search Strategy. We searched Scopus, Web of Science,
and PubMed databases on 23 September 2019. )e search
query was as follows: “Prostate Neoplasms” OR “Prostatic
Neoplasm” OR “Prostate Cancer” OR “Prostatic Cancer”
AND “ risk score” OR “prognostic score” OR “prognostic
model” OR “prognostic panel” OR “prognostic score
model”. Duplicate studies were removed prior to download.
After that, we included articles with these inclusion criteria:
articles that provided a model/panel for prostate cancer
prediction. Exclusion criteria included the following: (1)
articles that investigate genetic factors, (2) articles that did
not report AUC (with 95% confidence interval) for their
model, and (3) articles studying the treatment, recurrence, or
metastasis of prostate cancer.

2.2.DataCollection. )ree reviewers, RM, AM, and LZ were
independently involved in the title and abstract and read and
determined the eligibility of the studies. All three authors,
RM, AM, and LZ, independently extracted all relevant data,
including the year of publication, first author, country,
sample size, mean/median or range of age, AUC (95% CI),
and model contents. )e disagreement was resolved by
discussion, and when necessary, two reviewers (SMKA and
FKh) assisted in adjudicating a final decision.

2.3. Methodological Quality Assessment. )e New-
castle–Ottawa Scale (NOS) assessment tool was used to
evaluate the quality of the articles by three authors [1]. )e
scoring was based on the assignment of stars from 1 to 9.
According to the NOS score, the selected studies were di-
vided into high quality (≥6) and low quality (<6).

2.4. Statistical Analysis. )e chi-square test at a significant
level of 5% was used for the qualitative assessment of het-
erogeneity across studies. Based on the Higgins categori-
zation, an I-square of more than 75% was considered
heterogeneity. )e index of interest in this study was AUC
which was calculated as the proportion using the ROC curve
method with 95% confidence intervals. )e weights for the
weighted average AUC calculation were calculated in ac-
cordance with the methods described by Zhou et al. [13].
Data analysis was performed using the Stata version 11
(StataCorp, College Station, TX, USA) statistical software.
Also, the random effect model at a confidence level of 95%
was used in the data analysis.

3. Results

In this systematic review, 4188 articles were identified, of
which 4185 articles were extracted from the search of
electronic databases, and three articles were extracted from
the search of the list of selected articles and other sources.
After deleting duplicate articles, the title and abstract of 3228
articles were screened, and according to the exclusion cri-
teria, 3186 articles were removed. Finally, 13 articles were
used in the final analysis (Figure 1).

)e thirteen final articles included 25,691 people. )e
characteristics of the studies include the names of the
authors, the country, the WHO region, sample size, mean
or median age, AUC and 95% confidence interval, model
parameters, quality assessment score, and model name.
Based on the findings of our study, the highest AUC was
observed in the study of Boesen et al. [14] (0.89
(0.87–0.92)) and Dwivedi et al. [15] (0.89 (0.83–0.95)). In
both studies, MRI played an important role in increasing
AUC. In the study of Roobol et al. [16], the lowest AUC
was observed in the GOTEBORG-R2–6 cohort and PSA
DRE-model, which included only PSA, DRE, and Prior
biopsy (Table 1).

In the final analysis, most articles are from European and
American regions. As shown in Figure 2, the weighted
average AUC in the countries of the American region was
0.73 (95% CI: 0.70–0.75), and in European countries, it was
0.80 (95% CI: 0.72–0.88). A study from Southeast Asia and a
study from the Asia-Pacific region were also in the final
analysis.)e overall AUC and 95%CI in thirteen studies was
0.78 (95% CI: 0.73–0.82). Data from the previously pub-
lished meta-analysis indicated that PI-RADS are superior in
diagnosing PCa with high sensitivity, specificity, and AUC
than PHI and PCA3 [22].

Figure 3 shows the AUC of studies based on the presence
or absence of MRI in the final model. In four studies with
MRI, the average weighted of AUCs was 0.88 (95% CI:
0.86–0.90), while in other articles where MRI was not a
parameter in the diagnostic model, the mean AUCs were
0.73 (95% CI: 0.70–0.76).

Figure 4 shows the funnel plot to investigate publication
bias. )e Begg (P value� 0.428) and Egger (P value� 0.780)
tests showed no significant publication bias in our study.

4. Discussion

)e present study assessed the predictive models for PCa
detection to find the models that had the highest discrim-
ination in distinguishing candidates for biopsy. In the
current study, the highest AUCs were observed for two
models; one of them is based on age, PSA density, DRE, and
bpMRI (AUC: 0.89, 95% CI: 0.87–0.92) [23], and the second
one developed with PSA, MRSI, and DW-MRI (mpMRI)
(AUC: 0.89, 95% CI: 0.83–0.95) [14]. )e present study’s
findings showed that the best predictive models for PC
detection were based on the combination of clinical pa-
rameters and bpMRI or mpMRI. By adding the MRI to
clinical parameters, the predictive accuracy improved sig-
nificantly. Also, the AUCs of most models based on only
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clinical variables were lower than the AUCs of models with
the incorporation of imaging [16–21, 24, 25].

Previous documents assessing the e¨cacy of prostate
cancer detection have highlighted the need to decrease in-
signi�cant prostate cancer’s overdiagnosis [26–28]. Hence, a
novel diagnostic panel is required to decrease the number of
unneeded biopsies and recognition of insigni�cant prostate
cancer. So, recently numerous nomograms and predictive
models with various parameters, varying degrees of accu-
racy, generalizability, and validation were developed to
improve the accuracy of PC diagnosis. Recently, the evidence
showed that when mpMRI or bpMRI is added to the
standard clinical factors, the predictive accuracy enhances
[14, 23, 29, 30]. A meta-analysis showed that bpMRI o§ers
similar test accuracy to mpMRI in identifying prostate
cancer, but heterogeneity does not allow de�nitive recom-
mendations to be made [31]. Boesen et al. [14] showed that
by adding bpMRI to clinical parameters (age, PSAd, ctDRE),
the AUC of the model improved signi�cantly from 0.85 to
0.89 for predicting PC and achieved the highest discrimi-
nation power. Also, they showed that the AUC of the model
based on the only bpMRI was 0.84 and demonstrated that
the MRI-derived score as a PC detection is the most pow-
erful single predictor. In line with this, Dwivedi et al. [23]
found that the model’s accuracy is higher with mpMRI than
without (0.89 vs. 0.66). van Leeuwen et al. showed that the
addition of mpMRI to commonly used clinical elements
enhanced the predictive accuracy by 9% [29]. As a result,

MRI, along with clinical parameters, can be utilized to
decrease the number of unnecessary biopsies. Otherwise,
MRI can ensure information about cancer location, staging,
and the volume for target biopsies. At present, both the
American and European associations of urology (AUA and
EAU) recommend using mpMRI as a useful diagnostic tool
before repeat biopsy and for men enrolled in active sur-
veillance [32, 33]. A recent systematic review reported
clinically signi�cant disease detection rates, the sensitivity,
and the negative predictive value (NPV) of mpMRI ranged
from 44 to 87%, 58–97%, and 63% to 98%, respectively. In
2022, Futterer et al. had shown that mpMRI could be applied
to rule out signi�cant disease because of its extraordinary
NPV [34]. �e use of radiomics and kallikreins failed to
outperform PI-RADSv2.1/IMPROD bpMRI Likert, and
their combination did not lead to further performance gains.
�e high expenses of mpMRI are debating using the mpMRI
to detect prostate cancer. Despite the high cost of mpMRI at
�rst look, it is generally considered a cost-e§ective method in
PC diagnosis because it reduces unnecessary biopsies costs,
prevents unnecessary therapies, and increases the quality of
life in the long term [35, 36]. �e prostate-speci�c mem-
brane antigen (PSMA) PET/CT and mpMRI have compa-
rable diagnostic accuracy in the discovery and intraprostatic
localization of prostate cancer foci whereas mpMRI makes
better in the assessment of extracapsular extension (ECE)
and seminal vesicle invasion (SVI) [37]. However, the ad-
vantage of systematic biopsy (SBx) added to combined MRI/
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Figure 1: Flow of information through di§erent steps of the systematic review and meta-analysis.
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Table 1: Baseline characteristics for studies included in meta-analysis.

ID Author
Name Country WHO

region
Sample
size

Mean age/
range/
median

AUC Model content Score Model name

1 Ankerst et
al. [17] USA Americas 575 63.4

0.69
(0.65–0.74)

Total PSA
Family history

DRE
Free PSA

7
Prostate Cancer Prevention

Trial Risk Calculator
(PCPTRC) model0.64

(0.65–0.74)

Total PSA
Family history

DRE
Free PSA

[-2] Pro PSA

2 Boesen et
al. [14] Denmark Europe 876 65

0.89
(0.87–0.92)

Age
PSA density
cTDRE
bpMRI

8

Advanced imaging model

0.78
(0.75–0.82)

PSA
cTDRE Baseline model

0.84
(0.81–0.86) bpMRI Imaging model

0.85
(0.83–0.88)

Age
PSA density
cTDRE

Advanced model

3 Dwivedi et
al. [15] India Southeast

Asia 137 65

0.66 (NA)

Age
ADC
PSA

Metabolic ratio

9

Original

0.78 (NA)

Age
ADC
PSA

Metabolic ratio
DW-MRI

Original

0.83 (NA)

Age
ADC
PSA

Metabolic ratio
MRSI

Original

0.89
(0.83–0.95)

Age
ADC
PSA

Metabolic ratio
mpMRI (MRSI +

DW-MRI)

Developed
model

4 Foley et al.
[18] Ireland Europe 250 63.7

0.71
(0.64–0.77)

Age at biopsy
Abnormality on

DRE
Family history

Previous negative
biopsy

Total PSA
Free PSA
p2PSA 7

Predicting PHI

0.62
(0.55–0.69)

Age at biopsy
Abnormality on

DRE
Family history

Previous negative
biopsy
PSA

Predicting PSA
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Table 1: Continued.

ID Author
Name Country WHO

region
Sample
size

Mean age/
range/
median

AUC Model content Score Model name

5 Nam et al.
[19] Canada Americas 2130 Median age

63

0.67
(0.65–0.69)

Age
Family history

Ethnicity
Urinary voiding
Symptom score

DRE
PSA

free: total PSA
ratio

8

Sunnybrook nomogram-
based prostate cancer risk

calculator (SRC)

0.61
(0.59–0.64)

Age
Family history

Ethnicity
DRE
PSA

Prostate Cancer Prevention
Trial (PCPT)-based risk

calculator (PRC)

6 Roffman et
al. [20] USA Americas 1672 67 0.73

(0.71–0.75)

Age
BMI

Diabetes status
Smoking status
Emphysema
Asthma
Race

Ethnicity
Hypertension
Heart disease
Exercise habits
History of stroke

9
Multi parameterized

artificial neural network
(ANN)

7 Roobol et
al. [21] Netherland Europe 3580 68

Low-risk
PCa
0.70

(0.68–0.72)

Age
PSA (class via

DRE)
Abnormal DRE
Prostate volume 9

DRE-model

Low-risk
PCa
0.73

(0.70–0.75)

PSA
Age

Abnormal DRE
Prostate volume
Abnormal TRUS

TRUS model

Prostate Cancer 5



ultrasound fusion targeted biopsy (TBx) is mainly limited to
smaller PI-RADS score 3–4 lesions [38].

In the current study, the highest AUC of the model
developed based on only clinical variables was 0.83, and this

model was developed with age, PSAd, DRE, prostate volume,
and PSA [39]. )e determining PSAd requires an accurate
assessment of prostate volume, and in this model, prostate
volume was estimated using transrectal ultrasound (TRUS)

Table 1: Continued.

ID Author
Name Country WHO

region
Sample
size

Mean age/
range/
median

AUC Model content Score Model name

8 Roobol et
al. [16] Netherlands Europe

740 Median age
61

0.77
(0.73–0.81)

PSA
DRE

Prostate volume
Prior biopsy

8

GOTEBORG-R1
cohort

DRE vol-RC model

740 Median age
61

0.71
(0.67–0.76)

PSA
DRE

Prior biopsy

GOTEBORG-R1
cohort

PSA DRE-model

1241 Median age
63

0.60
(0.57–0.64)

PSA
DRE

Prostate volume
Prior Biopsy

GOTEBORG-R2–6
cohort

DRE vol-RC model

1241 Median age
63

0.56
(0.52–0.60)

PSA
DRE

Prior biopsy

GOTEBORG-R2–6 cohort
PSA DRE-model

2895 Median age
66

0.74
(0.72–0.79)

PSA
DRE

Prostate volume
Prior biopsy
Family history

ROTTERDAM-R1
cohort

DRE vol-RC model

1494 Median age
67

0.65
(0.62–0.69)

PSA
DRE

Prostate volume
Prior biopsy
Family history

ROTTERDAM-R2-3
cohort

DRE vol-RC model

1494 Median age
67

0.60
(0.57–0.63)

PSA
DRE

Prior biopsy
Family history

ROTTERDAM-R2-3
cohort

PSA DRE-model

2631 Median age
64

0.66
(0.64–0.68)

PSA
DRE

Prostate volume
Biopsy Gleason

grade
Family history
African origin
Prior biopsy

CCF cohort
DRE vol-RC model

2631 Median age
64

0.62
(0.60–0.64)

PSA
DRE

Biopsy Gleason
grade

Family history
African origin
Prior biopsy

CCF cohort
PSA DRE-model

4199 Median age
63

0.72
(0.70–0.73)

PSA
DRE

Prostate volume
Prior biopsy

Tyrol cohort
DRE vol-RC model

4199 Median age
63

0.67
(0.65–0.69)

PSA
DRE

Prior biopsy

Tyrol cohort
PSA DRE-model

Abbreviations. PSA: prostate-specific antigen, DRE: digital rectal examination, PCPTRC: prostate cancer prevention trial risk calculator, PRC: prostate cancer
prevention trial (PCPT)-based risk calculator, ANN: artificial neural network, TRUS: transrectal ultrasound, DW-MRI: diffusion-weighted magnetic
resonance imaging, BMI: body mass index, SRC: Sunnybrook nomogram–based prostate cancer risk calculator, MRSI: magnetic resonance spectroscopic
imaging, ADC: apparent diffusion coefficients, and PHI: prostate health index.
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Americas

Study ID

Ankerst 2012
Mehralivand 2018
Mam 2011
Roffman 2018
Roobol 2017
Vickers 2011
Vickers 2013

Europe
-

-

-

-

Boesen 2019
Foley 2016
Roobol 2012
Stojadinovi 2019

South-east asia
Dwivedi 2017

Western Pacific
van Leeuwen 2017

Subtotal (I 2 = 93.0%, p = 0.000)

Subtotal (I 2 = .%, p = .)

Subtotal (I 2 = .%, p = .)

Overall (I 2 = 96.0%, p = 0.000)

NOTE: Weights are from random effects analysis

Subtotal (I 2 = 89.2%, p = 0.000)

ES (95% CI) %Weight

-0.95 0.95

0.69 (0.65, 0.74)
0.84 (0.79, 0.89)

7.57
7.42

0.67 (0.65, 0.69) 8.09
0.73 (0.71, 0.75) 8.09
0.73 (0.70, 0.75) 8.02
0.75 (0.72, 0.77) 8.02
0.71 (0.68, 0.74) 7.92
0.73 (0.70, 0.76) 55.13

0.89 (0.87, 0.92) 8.02
0.71 (0.64, 0.77) 6.95
0.77 (0.73, 0.81) 7.70
0.83 (0.77, 0.88) 7.27

0.89 (0.83, 0.95) 7.12
0.89 (0.83, 0.95) 7.12

0.88 (0.84, 0.91) 7.82
0.88 (0.85, 0.92) 7.82

0.78 (0.73, 0.82) 100.00

0.80 (0.72, 0.88) 29.94

0

Figure 2: Forest plot of AUC (95% CI) of predictive models in the di§erent regions.

Study ID

Ankerst 2012
without MRI

Mehralivand 2018

Nam 2011
Roffman 2018

Roobol 2017

Vickers 2011
Vickers 2013

-

-

Foley 2016

Roobol 2012

Stojadinovi 2019

Dwivedi 2017
Boesen 2019
with MRI

van Leeuwen 2017

Subtotal (I 2 = 85.4%, p = 0.000)

Subtotal (I 2 = 5.4%, p = 0.366)

Overall (I 2 = 96.0%, p = 0.000)

NOTE: Weights are from random effects analysis

ES (95% CI) %Weight

0.69 (0.65, 0.74)
0.84 (0.64, 0.77)

7.57
6.95

0.67 (0.65, 0.69) 8.09
0.73 (0.71, 0.75) 8.09
0.77 (0.73, 0.81) 7.70
0.75 (0.70, 0.77) 8.02
0.83 (0.77, 0.88) 7.27
0.75 (0.72, 0.77) 8.02
0.71 (0.68, 0.74) 7.92
0.73 (0.70, 0.76) 69.63

0.78 (0.73, 0.82) 100.00

0.89 (0.87, 0.92) 8.02
0.89 (0.83, 0.95) 7.12
0.84 (0.79, 0.89) 7.42
0.88 (0.84, 0.91) 7.82
0.88 (0.86, 0.90) 30.37

-0.95 0.950

Figure 3: Forest plot of AUC (95% CI) of predictive models according to with/without MRI.
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in the three dimensions.)e accuracy assessment of prostate
volume using DRE has been found to be insufficient [40].
Furthermore, TRUS has been the first choice among imaging
modalities for a long time [41]. However, low intraoperator
reproducibility and the poor interoperator agreement could
affect the accuracy of TRUS [42].

Additionally, prostate volume might be underestimated
using RTUS, particularly in patients with prostatic hyper-
plasia [43–45]. Recently, MRI has played a critical role in
detecting PC and is considered the greatest accurate and
reliable imaging for prostate volume estimation [46, 47]. For
example, Boesen et al. achieved the AUC of 0.85 and ex-
cellent discrimination by the combination of only three
clinical parameters, including age, PSAd, and ctDRE [14],
and in this study, the prostate volume was evaluated using
bpMRI and indicated that MRI has excellent accuracy in
estimating prostate volume.

)ere were significant differences in the AUCs of pre-
dictive models between South East Asia and the Western
Pacific with the Americas region (0.89 vs. 0.73, 0.88 vs. 0.73,
respectively). Europe, the Western Pacific, and Southeast
Asia regions had similar AUCs. )e highest AUCs were
observed in studies where models were developed based on
MRI and clinical markers in all four regions. )e variance of
AUCs can probably be explained by inherent differences in
study design, calculation methods of AUCs, various pa-
rameters of models, and validation methods of AUCs.

)e overall AUC of models that were based on the
combination of MRI and clinical parameters was 0.88, and
the AUC of models that were developed with only clinical
variables was 0.73.)ere was a significant difference between
the accuracy of models with and without MRI. )e findings
indicated that the addition of MRI could improve the ac-
curacy of predictive models by 15%.

Limitation. )ere was wide heterogeneity across the studies
in terms of study design, calculation methods of AUCs,
various parameters of models, and validation methods of
AUCs. )erefore, these factors might assemble highly het-
erogeneous studies, and the finding of our study showed the
high heterogeneity and this subject is inevitable. Also,

another limitation of the study was the search date. We
searched databases until September 2019, and the studies
published after this date were not included in the review and
meta-analysis.

5. Conclusion

)e present study confirmed that mpMRI and bpMRI were
the strong predictive markers to improve the detection
accuracy of models and could decrease the rate of unnec-
essary biopsies and decrease the overdetection of insignif-
icant prostate cancer.
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