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Prostate cancer is a common cancer with signifcant implications for global health. Prompt and precise identifcation is crucial for
efcient treatment strategizing and enhanced patient results. Tis research study investigates the utilization of machine learning
techniques to diagnose prostate cancer. It emphasizes utilizing deep learning models, namely VGG16, VGG19, ResNet50, and
ResNet50V2, to extract relevant features. Te random forest approach then uses these features for classifcation. Te study begins
by doing a thorough comparison examination of the deep learning architectures outlined above to evaluate their efectiveness in
extracting signifcant characteristics from prostate cancer imaging data. Key metrics such as sensitivity, specifcity, and accuracy
are used to assess the models’ efcacy. With an accuracy of 99.64%, ResNet50 outperformed other tested models when it came to
identifying important features in images of prostate cancer. Furthermore, the analysis of understanding factors aims to ofer
valuable insights into the decision-making process, thereby addressing a critical problem for clinical practice acceptance. Te
random forest classifer, a powerful ensemble learning method renowned for its adaptability and ability to handle intricate
datasets, then uses the collected characteristics as input. Te random forest model seeks to identify patterns in the feature space
and produce precise predictions on the presence or absence of prostate cancer. In addition, the study tackles the restricted
availability of datasets by utilizing transfer learning methods to refne the deep learning models using a small amount of annotated
prostate cancer data. Te objective of this method is to improve the ability of the models to generalize across diferent patient
populations and clinical situations. Tis study’s results are useful because they show how well VGG16, VGG19, ResNet50, and
ResNet50V2 work for extracting features in the feld of diagnosing prostate cancer, when used with random forest’s classifcation
abilities. Te results of this work provide a basis for creating reliable and easily understandable machine learning-based diagnostic
tools for detecting prostate cancer. Tis will enhance the possibility of an early and precise diagnosis in clinical settings such as
index terms deep learning, machine learning, prostate cancer, cancer identifcation, and cancer classifcation.

1. Introduction

Innovative and precise diagnostic procedures are needed to
improve patient outcomes for prostate cancer, the second
most frequent malignancy in men worldwide. Prostate
cancer identifcation must be nuanced because of its wide
range of clinical manifestations and disease progression.
While useful, traditional diagnostic procedures struggle to
achieve the precision needed for prompt action. Using su-
pervised machine learning algorithms to detect prostate
cancer could improve diagnostic accuracy and clinical
decision-making. Machine learning has revolutionized

medical diagnoses. Supervised machine learning algorithms
use advanced computational methods to fnd patterns and
relationships in complicated datasets to diagnose prostate
cancer. Tis study examines machine learning and prostate
cancer diagnosis to create a reliable model that can dis-
tinguish between malignant and benign diseases [1]. Due to
prostate cancer’s heterogeneity, diagnosing and treating
patients requires better diagnostic precision. Clinical re-
cords, imaging data, and pathology data can be used to train
machine learning algorithms to fnd complex patterns in this
heterogeneity. Tese algorithms systematically analyze and
learn from many characteristics to improve prostate cancer
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diagnosis and help clinicians make informed decisions. Te
dataset and machine learning model are improved by adding
modern imaging technologies such as magnetic resonance
imaging (MRI). Tis comprehensive strategy, which in-
cludes several clinical and imaging characteristics, aims to
improve prostate cancer identifcation by addressing di-
agnostic constraints. As science progresses, ethical issues
surrounding medical machine learning must be examined.
To seamlessly integrate these algorithms into established
healthcare frameworks, interpretability, transparency, and
appropriate deployment of advanced technology in clinical
settings must be considered [2]. An explainable artifcial
intelligence (XAI) model was developed for diagnosing
clinically signifcant prostate cancer (PCa) using bipara-
metric MRI and Prostate Imaging Reporting and Data
System (PI-RADS) features. XAI-assisted readings improved
the confdence of nonexperts in assessing PI-RADS 3 lesions
and reduced reading time by 58 seconds. [3]. By in-
corporating diagnostically relevant patient data such as PSA,
previous biopsy status, and demographic information, the
text-image fusion model achieves better risk assessment and
localization of prostate cancer on MRI. Te model out-
performs traditional imaging-only baseline models in
detecting prostate cancer and distinguishing aggressive from
nonaggressive cancers. It achieves an AUC of 0.828 for
identifying cancer in the prostate and 0.820 for detecting
aggressive cancer, compared to baseline models [4]. Te
conventional method of transrectal ultrasound (TRUS-)
guided biopsy for prostate cancer diagnosis has limitations
in detecting cancerous lesions. Targeted prostate biopsy
using multiparametric MRI/ultrasound (mpMRI/US)
fusion-guided technology has become a novel standard for
tissue diagnosis [5].

Globally, prostate cancer is a common and possibly fatal
illness that afects many people. Efcient and precise
identifcation is essential for successful therapy and en-
hanced patient results. Prostate cancer diagnosis can be
improved by using deep learning models such as VGG16,
VGG19, ResNet50, and ResNet50V2, which have demon-
strated promise in the analysis of medical pictures. Tere are
obstacles in implementing these algorithms in clinical
practice for prostate cancer screening. Torough compari-
son analyses of these architectures are required to ascertain
their relative merits and drawbacks regarding prostate
cancer detection accuracy. More standardization in evalu-
ating algorithm efcacy is needed to ensure the creation of
trustworthy diagnostic instruments. Furthermore, it is still
imperative that deep learning models be interpretable for
medical practitioners to have confdence in and compre-
hension of diagnostic results. Efective training and vali-
dation of machine learning models is further complicated by
the dearth of comprehensive, well-documented datasets
about prostate cancer. To overcome these difculties,
a comprehensive comparison of the ResNet50, VGG16,
VGG19, and ResNet50V2 algorithms for prostate cancer
diagnosis is being carried out in this work. By assessing the
model’s performance, interpretability, and generalization
capacities, the research hopes to shed light on how best to

use machine learning to create more dependable diagnostic
instruments for prostate cancer diagnosis.

Te main contributions of this research are as follows:

(i) Te investigation seeks to conduct a thorough
comparative analysis of prominent deep learning
architectures, including VGG16, VGG19, ResNet50,
and ResNet50V2, in the context of prostate cancer
diagnosis. Te study examines the performance and
efectiveness of several models in discriminating
between healthy and malignant prostate tissues.
Tis evaluation is done using a dataset consisting of
738 healthy prostate and 3,514 infected prostate
MRI images.

(ii) Te study evaluates the ability of machine learning
algorithms to generalize and remain efective across
various patient groups and clinical circumstances,
while also assessing their robustness. Trough the
utilization of a vast and varied dataset, the study
improves our comprehension of the algorithms’
efcacy in practical scenarios, therefore providing
valuable insights for clinical decision-making and
diagnostic methods.

(iii) Te research provides the progress of diagnostic
tools and procedures in the feld of oncology by
applying machine learning algorithms to prostate
cancer diagnosis. Te study intends to enhance the
precision, efectiveness, and availability of prostate
cancer diagnosis by utilizing advanced deep-
learning models and a large collection of MRI
images. Tis will ultimately result in improved
patient outcomes and treatment approaches.

2. Literature Review

A signifcant aggregate of work has been done both in the
domain of prostate cancer and technology (computer vision,
artifcial intelligence, and machine learning). Research on
cancer detection, commonly, has gained a lot of adhesion in
the recent past. Research was conducted using diferent types
of artifacts such as mpMRI scans, CT scans, and histo-
pathological slides to understand and detect cancer better.
Te contemporary inspection is focused on evaluating
various techniques and models to establish efcient iden-
tifcation and classifcation systems for prostate cancer de-
tection. Previous investigations applying ML techniques to
classify and detect prostate cancer have been conducted.
Khan [6] detected prostate cancer using several machine
learning algorithm models (conventional machine learning,
Bernoulli Naive Bayesian, passive aggressive-K-nearest
neighbors, random forest, support vector, logistic re-
gression, linear and quadratic discriminant analysis, con-
volutional neural networks, vanilla model and variations,
and XmasNet). Overall accuracy obtained was 36–40%. Te
paper only considers a small number of datasets comprised
of mpMRI scans of 99 patients. Te project was carried out
in collaboration with the Helsinki University Hospital. Yoo
et al. [7] proposed deep convolutional neural networks used
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for the detection of prostate cancer. In this work, they built
a two-step automated deep-learning pipeline for slice-level
and patient-level PCa diagnosis using DWI images. A stack
of fve CNNs was used to produce improved classifcation
results at the slice-level. Teir best CNN (CNN1) achieved
the DWI slice-level AUC of 0.87. Te patient-level AUC by
our random forest classifer with the features extracted
through CNNs was 0.84. Te paper does not consider any
other model that can use only CNNs. Mehralivand et al. [8]
focused on magnetic resonance imaging deep learning-
based artifcial intelligence for prostate cancer detection.
Tis paper was performed to present a fully automated DL-
based prostate cancer detection system for prostate MRI.
Tey present the outcomes of a DL-based cascaded fully
automated detection model for prostate cancer on para-
metric MRI using two diferent architectures. Tis paper
adopted a 3D UNet model and an AH-Net model. Overall
patient-level cancer detection sensitivity was similar between
the two models, with 92.2% and 95.3% sensitivity for UNet
and AH-Net models, respectively. Tis retrospective study
includes 525 patients from two diferent institutions who
underwent multiparametric prostate MRI and subsequent
MRI-targeted prostate biopsy for clinical suspicion of
prostate cancer.Te goal of Tejaswi [9] was to investigate the
possibility that the information contained in the cell images
alone could predict the cancer risk while completely dis-
regarding the information about how the cells are positioned
in the tissue. In this project, a deep learning-based image
segmentation method was used to segment cell images from
the WSIs. Te segmented cell images were then used for
training a MIL model. Basically, this work and model only
was used for the low-risk vs. high-risk prediction and in
determining the cancer risk, but they alone are not the best at
determining the risk. Gummeson [10] proposes a method to
implement a classifer for microscopic images of potentially
cancerous tissues from prostates using a convolutional
neural network. Tere was an error rate of 7.3%. Tis paper
does not add more classes, a more segmentation-oriented
method might be interesting to use. Patel et al. [11] evaluate
a number of datasets to detect prostate cancer using a deep
learning framework. In research, it is observed that robust
ML methodologies for classifcation such as SVM kernel,
decision tree, and the Bayesian approach are used for sep-
arating cancer cells from the subject such as brachytherapy.
It contains a total of 158 patients, among which 96 are train
case patients and 62 are test cases.Temodel of the 3D CNN
was used in these datasets and fnally, they obtained the
confusion matrix with an accuracy of 0.82, precision of 0.86,
as well as recall of 0.78 on the validation set. In research, only
the model of the 3D CNN was used in these datasets.
Hosseinzadeh et al. [12] developed DL–DL-assisted prostate
cancer detection on biparametric MRI: minimum training
data size requirements and efect of prior knowledge. Tey
demonstrate that the performance of a DL-CAD system for
the detection and localization of csPCa in biopsy-naive men
is improved by using prior knowledge of DL-based zonal
segmentation. Te DL sensitivity for detecting PI-RADS 4
lesions was 87% at an average of 1 false positive (FP) per
patient, and an AUC of 0.88. Te DL sensitivity for the

detection of Gleason 6 lesions was 85% for a consensus panel
of expert radiologists, if their AI needs substantially more
than 2,000 training cases to achieve expert performance.
Nematollahi et al. [13] proposed a review paper. Basically,
they review some supervised machine-learning methods and
their comparison to each other. In research, they inquire
some supervised machine-learning methods’ (SVM, k-
nearest neighbors, decision tree, random forest, and Naive
Bayes) accuracy and AUC obtained stand in (74%–92%,
0.66–0.93). Alkadi et al. [14] proposed a DL-based approach
for the detection and localization of prostate cancer in T2
magnetic resonance images. Tey address the problem of
prostate lesion detection, localization, and segmentation in
T2Wmagnetic resonance (MR) images.Te system achieves
an accuracy of 0.894. Tis paper only considers a limited
number of datasets and a simple yet efcient, deep learning-
based approach for joint prostate segmentation. Almost all
of these investigations have been done with a certain number
of datasets and certain area-based datasets. To improve
mental health evaluation throughmachine learning [15], this
study used a “stacking-classifer-ensemble-learning” tech-
nique. As the meta-model, SVM combines several base
models, such as neural networks and decision trees. Te
model obtains an impressive accuracy rate of around 98% by
addressing class imbalances with SMOTE. It has utilized the
concept of ensemble which we have used in our research. In
our research, we collect datasets from various sources and
datasets containing both afected and unafected prostate
cancer. Some papers have worked with specifc models and
algorithms with lower accuracy. On the other side, in our
research, we developed multimodel and got better accuracy.
In addition, some of the papers worked multi multimodel
but they could not get better accuracy than ours. Intelligent
computer programs, particularly artifcial neural networks
(ANNs), are increasingly used in medical informatics to aid
in the early detection of prostate cancer from benign hy-
perplasia of the prostate. Tese AI algorithms have been
integrated into medical devices and are widely accepted in
medical applications, with over 500 academic publications
per year featuring ANNs in the last decade [16]. A hybrid
classifer utilizing particle swarm optimization (PSO) and
the neural network method is proposed for supporting the
diagnosis of prostate cancer, achieving a high diagnosis
accuracy of 98% [17]. In our research, we utilized balanced
data, but at the same time other papers utilized imbalanced
data. Nearly, all of this research employs conventional
machine learning algorithms, such as SVM, NB, KNN, and
DT. Tis study is based on feature extraction, and feature
reduction strategy using deep learning approaches for fea-
ture extraction such as VGG16, vGG19, ResNet50, and
ResNet50v2, where we have also performed a feature re-
duction procedure to obtain optimal features using an
autoencoder. We used recent classifcation techniques that
include SVM and random forest (RF). Te learning capa-
bility of the RF structure is quite high. To address some of the
limitations and difculties identifed in previous studies,
further research is still required. Te proposed model
overcomes these limitations by combining RF classifcation
with glove embedding.
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3. The Design Methods and Procedures

Prostate cancer is a highly common kind of cancer that
afects males globally, leading to major consequences in
terms of illness and death. Prompt identifcation and precise
diagnosis are crucial for optimal treatment strategizing and
enhanced patient results. Machine learning algorithms have
been increasingly infuential in medical image analysis,
providing the opportunity to improve prostate cancer de-
tection by automatically and objectively evaluating
imaging data.

Tis section presents a new method for detecting
prostate cancer using machine learning methods. Te
method focuses on extracting features from VGG16,
VGG19, ResNet50, and ResNet50V2 architectures, and then
classifying the data using the random forest algorithm
combining deep learning models for feature extraction with
a reliable ensemble learning method such as random forest
shows potential for enhancing diagnostic accuracy and
efciency [18].

Tis research aims to examine the efectiveness of these
machine learning algorithms in identifying distinguishing
characteristics from prostate imaging data and precisely
categorizing instances as either malignant or noncancerous.
Tis study aims to develop a reliable and interpretable di-
agnostic tool for detecting prostate cancer by utilizing the
advanced capabilities of deep learning architectures to
capture complex patterns and structures in medical images,
along with the versatility and robustness of random forest
classifcation [19].

Tis research aims to tackle crucial issues in prostate
cancer diagnosis, such as interpretability, generalization, and
scalability, by thoroughly examining design methodologies
and procedures, which encompass dataset preparation,
model training, validation, and evaluation. Te suggested
methodology seeks to establish a connection between so-
phisticated machine learning techniques and clinical prac-
tice and to facilitate more efective and precise identifcation
of prostate cancer. Tis, in turn, will result in enhanced
patient care and improved results.

3.1. System Design. Te focus of this study is to create
machine learning-based prostate cancer detection. Te
proposed method has four parts: (i) corpus creation, (ii)
feature extraction, (iii) feature reduction, and (iv) classif-
cation by the stack model and the methodology is shown in
Figure 1.

3.1.1. Corpus Creation. Te process of creating a corpus for
detecting prostate cancer using machine learning tech-
niques, including VGG16, VGG19, ResNet50, and
ResNet50V2, entails several important procedures to
guarantee the production of a diverse and high-quality
dataset suitable for training and evaluating the models.

(i) Data collection includes the following procedure:

(i) MRIs of the prostate were taken with a 3T
endorectal and phased array surface coil

(Philips Achieva). Each patient got a robotic-
assisted radical prostatectomy after biopsy
confrmation of malignancy. From each MRI,
a mold was made, and the prostatectomy
specimen was inserted in it and sliced in the
same plane. Te 2008–2010 statistics came from
the National Cancer Institute in Bethesda,
Maryland [20].

(ii) Engage in partnerships with medical institutes
or databases to obtain annotated MRI datasets
that include accurate labels showing the pres-
ence or absence of prostate cancer.

(iii) Be careful in incorporating photos from various
patients, imaging devices, and imaging pro-
tocols to encompass the diversity in imaging
situations.

(iv) Te size of our dataset is 22,036 MRI pictures.
We have chosen a subset of 4,252 MRI scans for
our investigation. Out of the total number of
photos, 738 images are associated with healthy
prostate samples, whereas 3,514 images repre-
sent cases of infected prostate. Te selection of
this particular group was made to guarantee the
inclusion of both healthy and infected prostate
states, hence enabling a thorough investigation

Data Collection

Preprocessing

VGG16
Feature Extraction VGG19

Feature Reduction

Supervised Machine
Learning

Unsupervised
Machine Learning

Model Training

Model Selection

Model Testing

Normal Prostate Cancer

ResNet50

ResNet50V2

Classification

Figure 1: Prostate cancer detection methodology.
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within the parameters of our research. In Fig-
ure 2, sample healthy and infected prostate MRI
images are shown.

(ii) Data preprocessing includes the following procedure:

(i) Normalize the format and resolution of MRI images
to guarantee uniformity throughout the collection

(ii) Apply picture normalization and intensity nor-
malizing techniques to improve the comparability
of images

(iii) Utilize preprocessing methods, such as cropping,
resizing, and noise reduction, to improve the quality
of MRI images and concentrate on the pertinent
regions of interest, specifcally the prostate
gland [21]

A summary of the collected data after preprocessing is
shown in Table 1.

3.1.2. Feature Extraction. Feature extraction is crucial in the
identifcation of prostate cancer using machine learning
algorithms such as VGG16, VGG19, ResNet50, and
ResNet50V2.Tis procedure entails converting unprocessed
MRI images into signifcant depictions of prominent
characteristics that capture pertinent patterns and structures
indicative of prostate cancer. Te subsequent section de-
lineates the approach for extracting features [22].

(i) Input preparation includes the following procedure:

(i) Import the MRI image collection that includes
both malignant and benign prostate images.

(ii) Standardize the pixel values to a uniform range
(e.g., [0, 1]) to enhance the convergence and
stability of the model during training.

(iii) Original MRI images were various in sizes as
mentioned in Table 1. Adjust the size of the
photos to correspond with the specifed di-
mensions required by the pretrained deep
learning models, such as 224× 224 pixels. As
we are utilizing the pretrain VGG and ResNet
model, resizing to the 224× 224 is necessary.

(ii) Feature extraction using pretrained models includes
the following:

(i) Employ the convolutional layers of pretrained
VGG16, VGG19, ResNet50, and ResNet50V2
models as feature extractors

(ii) Eliminate the fully connected layers, namely
the top layers, from the pretrained models,
while keeping only the convolutional basis

(iii) Pass each MRI picture through the convolu-
tional base of the models to extract hierarchical
characteristics at various levels of abstraction

(iii) Feature pooling includes the following:

(i) Utilize spatial pooling methods, such as global
average pooling, to combine the derived in-
formation across spatial dimensions

(ii) Pooling decreases the number of dimensions in
the feature maps while retaining the most dis-
tinguishing information

(iv) Feature normalization includes the following
procedure:

(i) Standardize the pooled vectors of features to
ensure uniform scaling and reduce the infuence
of variances in feature magnitude across mul-
tiple layers and images

(ii) To improve model convergence and general-
ization, it is necessary to standardize the feature
vectors by adjusting them to have amean of zero
and a variance of one

(v) Feature concatenation includes the following
procedure:

(i) Combine the aggregated feature vectors ob-
tained from several layers of the convolutional
base to form a unifed feature representation

(ii) Trough employing this fusion technique, the
model can efectively capture both low-level and
high-level characteristics, hence improving the
discriminative ability of the retrieved features.

(vi) Output representation includes the following
procedure:

(i) Te computer feature vectors for every MRI
image in the collection, encapsulating the ac-
quired attributes that are pertinent to the
identifcation of prostate cancer

(ii) Organize the feature vectors and their related
labels (identifying malignant or noncancerous)
together to create input-output pairs for future
classifcation tasks

Following this feature extraction process, the MRI image
dataset transforms a collection of useful feature vectors
encapsulating crucial properties for identifying prostate
cancer. Te collected features are used as input for the
classifcation algorithms, enabling a precise and efcient
diagnosis of prostate cancer [9].

3.1.3. Logistic Regression. Te confusion matrix is an es-
sential tool for assessing the efcacy of machine learning
algorithms in detecting prostate cancer. Tis study report
used the confusion matrix to assess the classifcation out-
comes of logistic regression models trained on features
derived by VGG16, VGG19, ResNet50, and ResNet50V2
architectures. Tis matrix presents a detailed analysis of true
positive, true negative, false positive, and false negative
predictions. It allows us to evaluate the accuracy, sensitivity,
specifcity, and overall performance of the models in dif-
ferentiating between cancerous and noncancerous prostate
MRI images [7]. Te confusion matrix is showng in Figure 3
and result summary in Table 2.

Logistic regression consistently exhibits robust perfor-
mance across all models, with accuracy levels ranging from
98.48% to 99.64%. VGG19 achieves the maximum accuracy
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of 99.64%, followed closely by ResNet50 and ResNet50V2
with accuracies of 99.52% and 99.41%, respectively. Te F1
scores, which measure the balanced average of precision and
recall, routinely surpass 98.47%, showing a strong perfor-
mance in the classifcation of prostate cancer. Furthermore,
the recall values span from 97.28% to 99.11%, indicating the
models’ profciency in accurately detecting genuine positive
cases. Te precision scores range from 98.47% to 99.64%,
indicating that the models have a strong ability to decrease
incorrect positive predictions and consistently achieve high
accuracy in identifying prostate cancer.

3.1.4. Decision Tree Classifer. Te confusion matrix is an
essential evaluation tool for measuring the efectiveness of
decision tree classifer models in detecting prostate cancer.
Tis research utilizes the confusion matrix to assess clas-
sifcation outcomes produced by a decision tree classifer
that is trained on features retrieved by the VGG16, VGG19,
ResNet50, and ResNet50V2 architectures. Te confusion
matrix allows us to assess the accuracy, sensitivity, speci-
fcity, and overall efectiveness of the models in diferenti-
ating between cancerous and noncancerous prostate MRI
images by presenting a comprehensive breakdown of true
positive, true negative, false positive, and false negative
predictions. Te confusion matrix is shown in Figure 4 and
result summary in Table 3.

Te decision tree classifer demonstrates diverse per-
formance across multiple models, with accuracy levels
ranging from 94.24% to 97.89%. It is worth mentioning that
ResNet50V2 demonstrates the highest level of accuracy,
reaching 97.89%, which indicates its efciency in detecting
prostate cancer. Te F1 scores, which measure the balance
between precision and recall, range from 94.24% to 97.88%,
showing a well-balanced performance in the classifcation of
prostate cancer. Furthermore, the recall values span from
90.89% to 96.26%, indicating the models’ profciency in
accurately detecting true positive cases. Te precision scores
vary from 94.87% to 97.88%, indicating that the models are
highly efective in reducing false positive predictions and
achieving accurate classifcation of prostate cancer.

3.1.5. Gaussian NB. Te confusion matrix is an essential
evaluation technique used to examine the performance of
Gaussian NB models in our study on prostate cancer di-
agnosis. Te confusion matrix is employed to examine the
classifcation outcomes achieved by Gaussian NB, which is
trained on features derived from VGG16, VGG19,
ResNet50, and ResNet50V2 architectures. Te confusion
matrix ofers a comprehensive analysis of the accuracy,
sensitivity, specifcity, and overall efectiveness of models in
diferentiating between cancerous and noncancerous pros-
tate MRI images. It achieves this by providing a thorough
breakdown of true positive, true negative, false positive, and
false negative predictions. Te confusion matrix is shown in
Figure 5 and result summary in Table 4.

Te performance of Gaussian NB varies among diferent
models, with accuracy ranging from 84.13% to 93.07%. Te
ResNet50 model attains a remarkable accuracy of 93.07%,
demonstrating its efcacy in detecting prostate cancer. Te
F1 scores, which measure the balance between precision and
recall, vary from 85.28% to 93.20%, demonstrating a well-
balanced performance in the classifcation of prostate can-
cer. Furthermore, the recall values span from 85.68% to
91.25%, indicating the models’ profciency in accurately
detecting genuine positive cases. Te precision scores vary

(a) (b)

Figure 2: Sample MRI images of: (a) healthy prostate and (b) infected prostate.

Table 1: MRI dataset statistics.

Corpus attribute Attribute value
Total no. of healthy prostate 738
Total no. of infected prostate 3,514
Total no. of MRI prostate 4,252
Total no. of original images 22,036
Total no. of human subject 26

Original image size (176, 176), (256, 256),
and (512, 512)

Resize image (224, 224)
Gray level depth of the images 24
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from 88.60% to 93.47%, indicating that the models can
minimize incorrect positive predictions and retain a high
level of accuracy in identifying prostate cancer.

3.1.6. K-Neighbors Classifer. Te confusion matrix is an
essential evaluation instrument in our study on prostate
cancer diagnosis. It allows us to examine the performance of
K-neighbors classifer models. To investigate the classifca-
tion outcomes produced by K-neighbors classifer, we utilize
the confusion matrix. Te classifer is trained using features
taken from the VGG16, VGG19, ResNet50, and ResNet50V2
architectures. Te confusion matrix provides a thorough
assessment of the accuracy, sensitivity, specifcity, and
overall efectiveness of the models in distinguishing between
cancerous and noncancerous prostate MRI images. It ach-
ieves this by presenting a detailed breakdown of true pos-
itive, true negative, false positive, and false negative
predictions. Te confusion matrix is shown in Figure 6 and
result summary in Table 5.

Te K-neighbors classifer consistently exhibits good
performance across all models, with accuracy levels ranging

from 98.70% to 98.94%. ResNet50 has exceptional accuracy,
reaching a remarkable 98.94%, which highlights its efcacy
in detecting prostate cancer. Te F1 scores, which represent
the balanced average of precision and recall, routinely
surpass 98.70%, demonstrating the strong performance of
the model in accurately classifying prostate cancer. Fur-
thermore, the recall values vary between 97.20% and 97.80%,
indicating the models’ profciency in accurately detecting
true positive cases. Te precision scores continuously range
from 98.70% to 98.94%, indicating that themodels are highly
efective in minimizing false positive predictions and
maintaining a high level of precision when categorizing
prostate cancer.

3.1.7. Linear Discriminant Analysis. Te confusion matrix is
of utmost importance in our study on prostate cancer de-
tection since it serves as a critical tool for evaluating the
performance of linear discriminant analysis (LDA) models.
Te confusion matrix is employed to examine the classif-
cation results obtained by LDA, which is trained on features
derived from VGG16, VGG19, ResNet50, and ResNet50V2
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Figure 3: Confusion matrix of logistic regression using all features.

Table 2: Statistical summary of logistic regression (all features).

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 98.48 98.47 97.28 98.47
VGG19 99.64 99.64 99.11 99.64
ResNet50 99.52 99.52 98.82 99.53
ResNet50V2 99.41 99.41 98.76 99.41
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architectures. Te confusion matrix ofers a thorough
evaluation of the accuracy, sensitivity, specifcity, and overall
efcacy of models in distinguishing between cancerous and
noncancerous prostate MRI images. It achieves this by
providing a detailed breakdown of true positive, true neg-
ative, false positive, and false negative predictions. Te
confusionmatrix is shown in Figure 7 and result summary in
Table 6.

Te linear discriminant analysis (LDA) consistently
achieves high accuracy across all models, with accuracy rates
ranging from 95.89% to 99.41%. ResNet50 demonstrates
exceptional efcacy in prostate cancer detection, attaining
a remarkable accuracy rate of 99.41%. Te F1 scores, which
represent the balanced average of precision and recall,
routinely surpass 95.96%, showing a strong and reliable
performance of the model in accurately classifying prostate
cancer. Furthermore, the recall values vary between 95.07%
and 98.98%, indicating the models’ profciency in accurately
detecting true positive cases. Te precision scores contin-
uously range from 96.13% to 99.41%, indicating that the
models are highly efective in minimizing false positive

predictions and achieving accurate classifcation of prostate
cancer with high precision.

3.1.8. SVC. Te confusion matrix is an essential evaluation
tool in our study on prostate cancer diagnosis, specifcally
for measuring the performance of support vector classifer
(SVC)models.Te confusionmatrix is employed to examine
the classifcation results achieved by the support vector
classifer (SVC) trained on features taken from the VGG16,
VGG19, ResNet50, and ResNet50V2 architectures. Te
confusion matrix ofers a thorough evaluation of the ac-
curacy, sensitivity, specifcity, and overall efectiveness of
models in distinguishing between cancerous and non-
cancerous prostate MRI images. It achieves this by providing
a detailed breakdown of true positive, true negative, false
positive, and false negative predictions. Te confusion
matrix is shown in Figure 8 and result summary in Table 7.

Te support vector classifer (SVC) exhibits strong
performance across all models, with accuracy levels ranging
from 97.30% to 98.70%. It is worth mentioning that
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Figure 4: Confusion matrix of decision tree classifer (all features).

Table 3: Statistical summary of decision tree classifer.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 96.23 96.16 92.13 96.21
VGG19 94.24 94.24 91.10 94.26
ResNet50 94.94 94.89 90.89 94.87
ResNet50V2 97.89 97.88 96.26 97.88
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ResNet50 achieves the highest level of accuracy, specifcally
98.70%, while ResNet50V2 comes in a close second with an
accuracy of 98.23%. Te F1 scores, which indicate the
balanced average of precision and recall, routinely surpass
97.23%, demonstrating the strong performance of the model
in accurately classifying prostate cancer. Furthermore, the
recall values span from 93.68% to 96.77%, indicating the
models’ profciency in accurately detecting genuine positive
cases. Te precision scores continuously range from 97.33%
to 98.72%, indicating that the models are highly efective at
reducing false positive predictions and achieving accurate
classifcation of prostate cancer.

3.1.9. Stacking Classifer. Te confusion matrix is an es-
sential evaluation tool in our study on prostate cancer di-
agnosis. It is used to examine the performance of the
stacking classifer ensemble learning technique. Te con-
fusion matrix is employed to examine the classifcation
results obtained by the stacking classifer. Tis classifer
mixes predictions frommany base classifers that are trained

on features collected from VGG16, VGG19, ResNet50, and
ResNet50V2 architectures. Te confusion matrix provides
a thorough assessment of the accuracy, sensitivity, speci-
fcity, and overall efectiveness of the stacking classifer in
diferentiating between cancerous and noncancerous pros-
tate MRI images. It achieves this by presenting a detailed
breakdown of true positive, true negative, false positive, and
false negative predictions. Te confusion matrix is shown in
Figure 9 and result summary in Table 8.

Te stacking classifer has exceptional performance
across all models, with accuracy levels ranging from
98.48% to 99.77%. It is worth mentioning that ResNet50
obtains the highest level of accuracy, reaching 99.77%.
Following closely behind is ResNet50V2 with an accuracy
of 99.52%. Te F1 scores, which represent the balanced
average of precision and recall, frequently surpass 98.47%,
suggesting a strong and reliable performance of the model
in accurately classifying prostate cancer. Furthermore, the
recall values vary between 97.28% and 99.41%, indicating
the models’ profciency in accurately detecting true
positive cases. Te precision scores consistently range
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Figure 5: Confusion matrix of Gaussian NB (all features).

Table 4: Statistical summary of Gaussian NB.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 85.31 86.30 86.62 89.20
VGG19 84.13 85.28 85.68 88.60
ResNet50 93.07 93.20 91.25 93.47
ResNet50V2 84.96 86.10 87.96 89.88
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from 98.47% to 99.77%, indicating that the models are
highly efective in minimizing false positive predictions
and accurately classifying prostate cancer with a high level
of precision.

3.2. Feature Reduction. Feature reduction is an essential
element in the process of prostate cancer diagnosis uti-
lizing machine learning algorithms, specifcally random
forest [23]. Tis approach prioritizes the identifcation
and selection of the most informative characteristics from
the dataset of MRI images, resulting in enhanced ef-
ciency and interpretability of the model. Te subsequent
steps delineate the process of feature reduction:

(i) Feature extraction includes the following procedure:

(i) Utilize approaches such as manual feature ex-
traction or pretrained convolutional neural
networks (CNNs) such as VGG16, VGG19,
ResNet50, or ResNet50V2 to obtain a complete
range of features from the MRI images

(ii) Tese parameters include diferent character-
istics of the prostate gland’s shape, structure,
and brightness, which might detect possible
signs of malignant tissue

(ii) Feature representation includes the following
procedure:

(i) Generate each MRI image in the dataset into
a feature vector, where each member represents
a single extracted feature

(ii) Standardize and normalize the feature vectors to
ensure consistency and aid in model
convergence

(iii) Feature selection includes the following procedure:

(i) Utilize approaches such as flter approaches
involve evaluating the relevance of features
using statistical metrics such as correlation,
mutual information, or chi-squared tests.

(ii) Wrapper approaches involve the iterative
evaluation of feature subsets using a predictive
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Figure 6: Confusion matrix of K-neighbors classifer (all features).

Table 5: Statistical summary of K-neighbors classifer.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 98.70 98.70 97.20 98.70
VGG19 98.70 98.70 97.42 98.70
ResNet50 98.94 98.93 97.80 98.94
ResNet50V2 98.82 98.81 97.50 98.82
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model. Te goal is to select the subset that
maximizes performance, for example, through
recursive feature elimination.

(iii) Embedded approaches utilize the random
forest classifer’s inherent ability to assess the
relevance of features, allowing for the ranking
of features based on their contribution to
classifcation.

(iv) Random forest classifer training includes the fol-
lowing procedure:

(i) Develop a random forest classifer using the
reduced set of features to diferentiate between
prostate photos that include cancer and those
that do not

(ii) Te collective learning aspect of random forest
enables it to easily handle high-dimensional data
and deliver strong classifcation performance

(v) Evaluation and validation include the following
procedure:

(i) Analyze the efectiveness of the random forest
classifer by using measures such as accuracy,
sensitivity, specifcity, and the region under the
receiver operating characteristic (ROC) curve

(ii) Evaluate the efcacy of feature reduction by
comparing the classifer’s performance when
utilizing the smaller feature set versus the whole
feature set

(iii) Conduct cross-validation or holdout validation
to evaluate the model’s capacity to generalize
and provide consistent and trustworthy fnd-
ings across various subsets of the dataset.

Tis methodology requires improving the efciency,
interpretability, and predictive accuracy of the prostate
cancer detection model by using feature reduction
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Figure 7: Confusion matrix of linear discriminant analysis (all features).

Table 6: Statistical summary of linear discriminant analysis.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 95.89 95.96 95.44 96.13
VGG19 96.00 96.05 95.07 96.16
ResNet50 99.41 99.41 98.98 99.41
ResNet50V2 97.53 97.56 96.91 97.59
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techniques in combination with random forest classifcation.
Te goal is to provide more precise and dependable di-
agnoses based on MRI image data.

3.2.1. Logistic Regression. Te confusion matrix is an es-
sential tool in our research on the prostate cancer diagnosis.
It is used to evaluate the performance of logistic regression
models after reducing the number of features. We employ
the confusion matrix to examine the classifcation results
obtained from logistic regression models trained on feature
sets taken from VGG16, VGG19, ResNet50, and
ResNet50V2 architectures, after reducing the number of
features. Te confusion matrix allows for a thorough eval-
uation of the efectiveness of feature reduction techniques in
enhancing the accuracy, sensitivity, specifcity, and overall
performance of logistic regression models. It achieves this by
providing a detailed breakdown of true positive, true neg-
ative, false positive, and false negative predictions. Te
confusion matrix after feature reduction is shown in Fig-
ure 10 and result summary in Table 9.

Logistic regression consistently achieves outstanding
performance across all models, exhibiting accuracy levels
ranging from 99.05% to 99.52%. ResNet50 and ResNet50V2
attain the utmost precision with accuracy rates of 99.41%
and 99.52% correspondingly. Te F1 scores, which measure
the balanced average of precision and recall, routinely
surpass 99.05%, demonstrating strong performance in the
classifcation of prostate cancer. Te recall values vary be-
tween 98.09% and 98.82%, indicating the models’ capacity to
accurately detect true positive cases. Te precision scores
regularly range from 99.05% to 99.53%, indicating that the
models have a strong ability to decrease false positive pre-
dictions and retain high precision when identifying prostate
cancer.

3.2.2. Decision Tree Classifer. During our research on the
prostate cancer diagnosis, the confusion matrix plays
a crucial role in assessing the efectiveness of feature re-
duction approaches when used alongside the decision tree
classifer algorithm. We employ the confusion matrix to
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Figure 8: Confusion matrix of SVC (all features).

Table 7: Statistical summary of SVC.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 97.30 97.23 93.68 97.33
VGG19 97.77 97.71 94.41 97.82
ResNet50 98.70 98.70 96.77 98.72
ResNet50V2 98.23 98.20 95.59 98.28
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examine the classifcation results of decision tree classifer
models that were trained on feature sets taken from VGG16,
VGG19, ResNet50, and ResNet50V2 architectures, after
reducing the number of features. Te confusion matrix
allows for a thorough evaluation of the efects of feature
reduction on the accuracy, sensitivity, specifcity, and overall
performance of decision tree classifer models by presenting
a detailed breakdown of true positive, true negative, false
positive, and false negative predictions. Te confusion
matrix after feature reduction is shown in Figure 11.

Te decision tree classifer demonstrates variable
performance across multiple models, with accuracy levels
ranging from 94.82% to 98.11%. Te ResNet50V2 model
achieves the highest accuracy rate of 98.11%, while the
VGG16 model follows closely with an accuracy rate of
96.23%. Te F1 scores, which measure the balanced
performance of identifying prostate cancer by considering
both precision and recall, vary from 94.76% to 98.11%.Te
recall scores vary between 90.59% and 96.61%, indicating
the models’ profciency in accurately detecting true
positive cases. Te precision scores continuously range

from 94.74% to 98.10%, indicating that the models are
highly efective at reducing false positive predictions and
accurately classifying prostate cancer with a high level of
precision.

3.2.3. Gaussian NB. During our research on prostate cancer
detection, we utilize the confusion matrix as a crucial tool to
assess the efcacy of feature reduction strategies when
combined with the Gaussian NB algorithm. We utilize the
confusion matrix to analyze the classifcation results of
Gaussian NB models that were trained on feature sets taken
from VGG16, VGG19, ResNet50, and ResNet50V2 archi-
tectures, after reducing the number of features. Te con-
fusion matrix provides a comprehensive evaluation of the
impact of feature reduction on the accuracy, sensitivity,
specifcity, and overall performance of Gaussian NB models
in detecting prostate cancer. It achieves this by providing
a detailed breakdown of true positive, true negative, false
positive, and false negative predictions. Te confusion
matrix after feature reduction is shown in Figure 12.

Tr
ue

 L
ab

el
Confusion Matrix [Extracted Features From: (resnet50v2)]

0 166 4

600

500

400

300

200

100

0

600

500

400

300

200

100

600

500

400

300

200

100

0

600

500

400

300

200

100

0

0 681

168 2

0 681

162 8

5 676

162 8

0 681

1

Tr
ue

 L
ab

el

0

1

Tr
ue

 L
ab

el

0

1

Tr
ue

 L
ab

el

0

1

0 1

StackingClassifier

Predicted Label
0 1

Predicted Label

0 1
Predicted Label

0 1
Predicted Label

Confusion Matrix [Extracted Features From: (vgg19)]

Confusion Matrix [Extracted Features From: (vgg16)]

Confusion Matrix [Extracted Features From: (resnet50)]

Figure 9: Confusion matrix of stacking classifer (all features).

Table 8: Statistical summary of stacking classifer.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 98.48 98.47 97.28 98.47
VGG19 99.05 99.05 97.64 99.07
ResNet50 99.77 99.77 99.41 99.77
ResNet50V2 99.52 99.52 98.82 99.53
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Te Gaussian NB model consistently achieves strong
performance across all models, with accuracy levels ranging
from 93.53% to 97.18%. Te accuracy achieved by ResNet50
is 97.18%, which is the greatest among all models. VGG19
follows with an accuracy of 94.82%. Te F1 scores, which
measure the balance between precision and recall, vary from
93.40% to 97.11%. Tis indicates that the classifcation of
prostate cancer shows a balanced performance. Te recall
scores vary between 88.46% and 93.39%, indicating the
models’ profciency in accurately detecting true positive
cases. Te precision scores continuously range from 93.40%
to 97.22%, indicating that the models are highly efective in
reducing false positive predictions and achieving accurate
classifcation of prostate cancer.

3.2.4. K-Neighbors Classifer. Te confusion matrix is an
essential tool in our study on prostate cancer diagnosis. It
allows us to evaluate the efectiveness of feature reduction
approaches when used in combination with the K-neighbors
classifer algorithm. We employ the confusion matrix to

examine the classifcation results of K-neighbors classifer
models that were trained on feature sets taken from VGG16,
VGG19, ResNet50, and ResNet50V2 architectures, after
reducing the number of features.Te confusionmatrix ofers
a thorough evaluation of the impact of feature reduction on
the accuracy, sensitivity, specifcity, and overall performance
of K-neighbors classifer models in prostate cancer de-
tection. It achieves this by providing a detailed breakdown of
true positive, true negative, false positive, and false negative
predictions. Te confusion matrix after feature reduction is
shown in Figure 13.

Te K-neighbors classifer has excellent results across all
models, with accuracy levels ranging from 98.82% to 99.30%.
Both ResNet50 and ResNet50V2 demonstrate exceptional
accuracy, reaching a peak of 99.30%. VGG19 closely trails
behind with an accuracy of 98.94%. Te F1 scores, which
measure the balanced performance of precision and recall
using the harmonic mean, routinely surpass 98.81%, dem-
onstrating the robustness of themodel in achieving a balance
between accuracy and recall. In addition, the recall values
vary between 97.05% and 98.68%, indicating the models’
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Figure 10: Confusion matrix of logistic regression (reduced features).

Table 9: Statistical summary of logistic regression.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
VGG16 99.05 99.05 98.09 99.05
VGG19 99.41 99.41 98.76 99.41
ResNet50 99.41 99.41 98.76 99.41
ResNet50V2 99.52 99.52 98.82 99.53
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Figure 11: Confusion matrix of decision tree classifer (reduced features).
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Figure 12: Confusion matrix of Gaussian NB (reduced features).
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profciency in accurately detecting true positive cases. Te
precision scores consistently range from 98.84% to 99.30%,
indicating that the models are highly efective in minimizing
false positive predictions and maintaining a high level of
precision in classifying prostate cancer.

3.2.5. Linear Discriminant Analysis. Te confusion matrix is
of crucial signifcance in evaluating the efcacy of feature
reduction approaches when used in conjunction with the
linear discriminant analysis (LDA) algorithm in our study
on prostate cancer diagnosis. We utilize the confusion
matrix to evaluate the classifcation results of LDA models
that were trained on feature sets taken from VGG16,
VGG19, ResNet50, and ResNet50V2 architectures after
reducing their dimensions. Te confusion matrix provides
a comprehensive analysis of the impact of feature reduction
on the accuracy, sensitivity, specifcity, and overall perfor-
mance of LDA models in detecting prostate cancer. It
achieves this by providing a detailed breakdown of true
positive, true negative, false positive, and false negative
predictions. Te confusion matrix after feature reduction is
shown in Figure 14.

Te linear discriminant analysis (LDA) demonstrates
excellent performance across all models, achieving accuracy
rates ranging from 98.59% to 99.41%. It is worth mentioning
that ResNet50V2 obtains the highest level of accuracy,
reaching 99.41%, while ResNet50 comes in a close second
with an accuracy of 99.30%. Te F1 scores, which represent

the harmonic mean of precision and recall, routinely surpass
98.60%, demonstrating the strong performance of the model
in achieving a balance between precision and recall. Fur-
thermore, the recall scores vary between 98.09% and 98.98%,
indicating the models’ profciency in accurately detecting true
positive cases. Te precision scores continuously range from
98.60% to 99.41%, indicating that the models are highly ef-
fective at minimizing false positive predictions and main-
taining a high level of precision in identifying prostate cancer.

3.2.6. SVC. Te confusion matrix is a crucial tool in our
study on the prostate cancer diagnosis. It allows us to
evaluate the efectiveness of feature reduction approaches
when used with the support vector classifer (SVC) algo-
rithm. Te confusion matrix is employed to examine the
classifcation results of support vector classifer (SVC)
models trained on feature sets taken from VGG16, VGG19,
ResNet50, and ResNet50V2 architectures, after reducing the
number of features. Te confusion matrix allows for
a thorough evaluation of the impact of feature reduction on
the accuracy, sensitivity, specifcity, and overall performance
of support vector classifcation (SVC) models in detecting
prostate cancer. It achieves this by providing a detailed
breakdown of true positive, true negative, false positive, and
false negative predictions.Te confusion matrix after feature
reduction is shown in Figure 15.

Te support vector classifer (SVC) demonstrates ex-
ceptional performance across all models, achieving accuracy
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Figure 13: Confusion matrix of K-neighbors classifer (reduced features).

16 Prostate Cancer



Tr
ue

 L
ab

el

Confusion Matrix [Extracted Features From: (resnet50v2)]

0.0 167 3

600

500

400

300

200

100

600

500

400

300

200

100

600

500

400

300

200

100

600

500

400

300

200

100

2 679

166 4

2 679

165 5

6 675

165 5

7 674

1.0

Tr
ue

 L
ab

el

0.0

1.0

Tr
ue

 L
ab

el

0.0

1.0

Tr
ue

 L
ab

el

0.0

1.0

0.0 1.0

LinearDiscriminantAnalysis

Predicted Label
0.0 1.0

Predicted Label

0.0 1.0
Predicted Label

0.0 1.0
Predicted Label

Confusion Matrix [Extracted Features From: (vgg19)]

Confusion Matrix [Extracted Features From: (vgg16)]

Confusion Matrix [Extracted Features From: (resnet50)]

Figure 14: Confusion matrix of linear discriminant analysis (reduced features).
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Figure 15: Confusion matrix of SVC (reduced features).
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levels ranging from 98.59% to 99.52%. VGG19 notably
achieves the greatest accuracy rate of 99.52%, closely fol-
lowed by ResNet50V2 with a rate of 99.30%. Te F1 scores,
which measure the balance between precision and recall
using the harmonic mean, routinely surpass 98.58%, dem-
onstrating the strong performance of the model in achieving
a balance between precision and recall. Furthermore, the
recall values span from 96.70% to 98.82%, demonstrating the
models’ capacity to accurately detect true positive cases. Te
precision scores constantly exhibit a high level of accuracy,
ranging from 98.60% to 99.53%. Tis highlights the models’
capacity to efectively reduce false positive predictions and
uphold a high level of precision in the classifcation of
prostate cancer.

3.2.7. Stacking Classifer. Te confusion matrix is an es-
sential tool in our research on the prostate cancer diagnosis.
It allows us to evaluate the performance of feature reduction
approaches when used in conjunction with the stacking
classifer ensemble learning algorithm. To examine the
classifcation outcomes of stacking classifer models trained
on reduced feature sets taken from VGG16, VGG19,
ResNet50, and ResNet50V2 architectures, we utilize the
confusion matrix. Te confusion matrix allows for a thor-
ough evaluation of the impact of feature reduction on the
accuracy, sensitivity, specifcity, and overall performance of
stackingclassifer models in prostate cancer detection. It
achieves this by providing a detailed breakdown of true
positive, true negative, false positive, and false negative
predictions. Te confusion matrix after feature reduction is
shown in Figure 16.

Te stacking classifer demonstrates outstanding per-
formance across all models, with a high level of accuracy
ranging from 98.94% to 99.64%. It is worth mentioning that
ResNet50 demonstrates the highest level of accuracy,
reaching 99.64%, while ResNet50V2 closely follows with an
accuracy of 99.52%. Te F1 scores, which represent the
harmonic mean of precision and recall, routinely exceed
98.93%, demonstrating the model’s strong performance in
maintaining a balance between precision and recall. Fur-
thermore, the recall values surpass 97.58%, demonstrating
the models’ efective capability in identifying real positive
cases. Te precision scores continuously range from 98.94%
to 99.64%, indicating that the models are highly efective at
reducing false positive predictions and achieving accurate
classifcation of prostate cancer.

Te feature importance study of prostate cancer de-
tection using the VGG16 model identifes the top 50 features
that uncover crucial patterns retrieved from MRI images, as
shown in Figure 17. Tese traits are believed to correspond
to complex textures, forms, and structures that indicate the
presence of prostate cancer. Te signifcance of these at-
tributes resides in their capacity to capture nuanced fuc-
tuations in image properties, facilitating precise
classifcation. Te selected top 50 features likely emphasize
the importance of tumor form, tissue density, and spatial
organization in diferentiating between healthy and malig-
nant prostate tissue.

Te feature importance analysis of prostate cancer de-
tection using the ResNet50 model reveals that the top 50
features encompass vital information collected from MRI
image, as shown in Figure 18. Tese traits are believed to
depict complex patterns, textures, and structural details that
indicate the presence of prostate cancer. Notable features
among those chosen include characteristics about the shape
of the tumor, diferences in tissue density, and spatial or-
ganization. Teir importance rests in their capacity to detect
nuanced distinctions between normal and malignant
prostate tissue, facilitating precise categorization. Te
ResNet50 model’s capabilities for a precise and consistent
diagnosis of prostate cancer are greatly enhanced by these
key elements.

3.3. Feature Analysis. Table 10 demonstrates the results of
employing the random forest approach for feature reduction
in the detection of prostate cancer utilizingmachine learning
techniques, namely VGG16, VGG19, ResNet50, and
ResNet50V2. At frst, all algorithms processed a dataset
containing 4,253 extracted features. Following the reduction
of features, notable decreases were observed in all algo-
rithms, resulting in improved computational efciency and
potentially better model performance.

Logistic regression, which originally employed 4,253
features, was optimized to function well using a reduced set
of 714 features. Similarly, the decision tree classifer,
Gaussian Naive Bayes, K-neighbors classifer, linear dis-
criminant analysis, support vector classifer, and stacking
classifer algorithms similarly underwent signifcant de-
creases in features, with the number of features ranging from
668 to 708.

Te decrease in features indicates that the random forest
algorithm successfully recognized and preserved the most
signifcant characteristics related to prostate cancer de-
tection, while removing unnecessary or less infuential ones.
Te concise collection of features is anticipated to enhance
model performance, expedite training, and improve pre-
diction efciency. Tis underscores the efectiveness of the
random forest approach in optimizing the feature space for
greater prostate cancer detection utilizing diferent machine
learning algorithms.

3.3.1. Predicted Output. Tis research report introduces
a classifcation framework that uses a single-stack machine
learning model to diferentiate between normal and prostate
cancer MRI images. Our objective is to create a precise and
efcient diagnostic tool for detecting prostate cancer from
MRI data by utilizing convolutional neural networks and
optimizing model architecture and training techniques. Te
fndings of this study have the capacity to make a substantial
contribution to the domain of prostate cancer diagnostics by
aiding in the early identifcation of the disease and en-
hancing patient outcomes [12].

Te proposed single-stack machine learning model gen-
erates a binary classifcation outcome that distinguishes be-
tween normal and prostate cancer MRI images. Tis outcome
represents the anticipated class label for each input picture.
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Temodel categorizes each MRI picture as either “normal” or
“prostate cancer” by utilizing the acquired features and pat-
terns during the training process. Here is an illustration of the
format in which the output is presented [13].

4. Evaluation of the Developed System

Tis thoroughly evaluates a prostate cancer detection system
that utilizes sophisticated machine learning techniques such
as VGG16, VGG19, ResNet50, and ResNet50V2. Early
identifcation is crucial for better treatment outcomes in
prostate cancer, a widespread illness that afects men
globally. Our objective is to improve the precision and ef-
fectiveness of prostate cancer detection by utilizing advanced
machine learning methods on medical imaging data. Tis
section assesses the efcacy of diferent convolutional neural
network (CNN) architectures in accurately classifying MRI
images as either cancerous or benign. We evaluate the di-
agnostic capacity of each algorithm by analyzing parameters
such as accuracy, F1 score, recall, and precision, allowing us
to determine their respective strengths and limitations. Te
results of our study assist in choosing the most appropriate
approach, considering criteria such as accuracy in catego-
rization, computing speed, and resilience to fuctuations in
MRI data. In addition, we analyze the obstacles and potential
areas of future investigation to improve the system for
improved clinical usability, thereby contributing to progress
in the feld of oncology diagnostics.

4.1. Data Collection. Our research on prostate cancer de-
tection involved the utilization of the prostate MRI dataset
accessible on the cancer imaging archive (TCIA) website.
Te dataset comprises an extensive assortment of multi-
parametric MRI (mpMRI) images obtained from patients
diagnosed with prostate cancer. Te dataset consists of
pictures acquired using diferent MRI sequences, such as T2-
weighted imaging, difusion-weighted imaging, and dy-
namic contrast-enhanced imaging [24].

Te data-collecting process entailed retrieving the
prostate MRI dataset from the [20] and extracting pertinent
MRI pictures for analysis. We prioritized the selection of
MRI scans that possessed excellent resolution and imaging
parameters to guarantee the precision and dependability of
our machine-learning models.

Te dataset comprises MRI scans obtained from a het-
erogeneous group of patients who have been diagnosed with
prostate cancer. Tese images capture the broad spectrum of
tumor characteristics, disease severity, and structural fea-
tures. Every MRI scan is accompanied by comprehensive
clinical metadata, which includes patient demographics,
histopathological fndings, and imaging methods. Tis
metadata is crucial for training and evaluating models since
it provides useful information. Our work employed a subset
of the prostate MRI dataset that specifcally included T2-
weighted MRI pictures. Tese images are widely utilized in
the feld to detect and characterize prostate cancer. Te
provided photos were used as input data to train and
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Figure 16: Confusion matrix of stacking classifer (reduced features).
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evaluate our machine learning algorithms, specifcally
VGG16, VGG19, ResNet50, and ResNet50V2, to classify
prostate cancer.

Our objective was to utilize the extensive and varied
dataset from TCIA to create and assess powerful machine-
learning models that can efectively identify prostate cancer
from MRI images. By utilizing sophisticated imaging
technologies and artifcial intelligence, we may efectively
leverage data to enhance the early detection and treatment of
prostate cancer. Tis, in turn, leads to improved patient
outcomes and more informed clinical decision-making.

4.2. Data Analysis. Our research focused on prostate cancer
diagnosis using machine learning algorithms.We performed
a thorough analysis of MRI datasets, which included 738
prostate scans from healthy individuals and 3,514 images
from patients diagnosed with prostate cancer. Te datasets
were partitioned into two categories: “healthy” and “in-
fected,” which corresponded to noncancerous and malig-
nant prostate pictures, respectively. Below is the conducted
data analysis:

(i) Data distribution: we examined the distribution of
prostate images that were classifed as healthy and
diseased in the datasets to gain insights into the
imbalance between the two classes. To provide

a balanced representation for model training and
evaluation, it was necessary to calculate the ratio of
healthy and infected photos in each dataset.

(ii) Image characteristics: We analyzed the attributes of
MRI images in both datasets, encompassing reso-
lution, pixel intensity distribution, and anatomical
features. Analyzed disparities in image attributes
between normal and diseased prostate images fa-
cilitated the identifcation of potential cancer de-
tection biomarkers.

(iii) Feature extraction was conducted on MRI images
from both datasets using pretrained models in-
cluding VGG16, VGG19, ResNet50, and
ResNet50V2. Tis entailed collecting prominent
characteristics from several convolutional layers of
the networks, capturing signifcant patterns that are
diagnostic of prostate cancer.

(iv) Model training and evaluation: We conducted
training of machine learning models, specifcally
VGG16, VGG19, ResNet50, and ResNet50V2,
utilizing the collected features from both healthy
and infected prostate datasets. Afterwards, we
assessed the performance of each model using
established assessment criteria including accuracy,
precision, recall, and F1 score.
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(v) Performance evaluation: We conducted a compar-
ative analysis of various machine learning algo-
rithms to assess their efcacy in diferentiating
between healthy and infected prostate pictures. Te
comparative research yielded valuable insights re-
garding the efcacy of each model in diagnosing
prostate cancer based on MRI data.

(vi) Validation and generalization: To guarantee the
dependability and applicability of our results, we
performed cross-validation and assessed the trained
models using separate test sets. Te validation
approach facilitated the evaluation of the models’
resilience and their capacity to extrapolate
unfamiliar data.

(vii) Limitations and future directions: We have
addressed the constraints of our study, which en-
compass the size of the dataset, the imbalance in
class distribution, and the probable presence of
biases. In addition, we identifed potential areas for
future research, such as integrating more clinical
data and investigating ensemble learning methods,
to signifcantly improve the accuracy of prostate
cancer detection models.

4.3. Optimization. To enhance the identifcation of prostate
cancer through the utilization of machine learning algo-
rithms, several methodologies can be employed to optimize
datasets consisting of 738 MRI images of healthy prostates
and 3,514 MRI images of infected prostates. It is essential to
tackle the issue of class imbalance, which can be addressed
by employing either oversampling or undersampling tech-
niques. Techniques such as rotation and fipping are used to
increase the variety of training samples, which is known as
data augmentation. Optimizing hyperparameters such as
learning rate and batch size for VGG16, VGG19, ResNet50,
and ResNet50V2 models signifcantly improves their per-
formance. Utilizing pretrained weights in transfer learning
expedites the convergence process and enhances the accu-
racy of the model. Utilizing ensemble learning to aggregate
predictions from diferent models improves the de-
pendability of the results. We want to create exceptionally
efective and dependable machine learning models for
prompt prostate cancer detection using MRI data, utilizing
these optimization strategies. Te evaluation measures en-
compass precision, recall, accuracy, and F1 score, which
serve as indicators of the model’s performance.

Precision �
Tp

Tp + Fp

, (1)

Recall �
Tp

Tp + Fn

, (2)

Accuracy �
Tp + Tn

Tp + Fp + Tn + Fn

, (3)

F1-score �
2 × Pecision × Recall
Pecision + Recall

, (4)

where Tp, Tn, Fp, andFn, respectively, represent the true
positive, true negative, false positive, and false negative.

4.4. Analysis for Feature Extraction. Te VGG16 model is
utilized as a feature extractor in the detection of prostate
cancer for several machine-learning techniques. Logistic
regression attains a 98.47% accuracy, along with balanced F1
score, recall, and precision values.Te decision tree classifer
(DT classifer) has a slightly lower accuracy rate of 96.23%,
but the Gaussian NB model performs less efectively with an
accuracy of 85.31. In Table 11, the result analysis is showing
the summary on VGG16 features all features.

Te K-neighbors classifer algorithm obtains an im-
pressive accuracy rate of 98.70%, demonstrating consistent
and well-balanced performance across several criteria. Te
linear discriminant analysis (LDA) model yields a high
accuracy of 95.89%, indicating excellent performance in
terms of F1 score, recall, and precision. Te support vector
classifer (SVC) gets a high accuracy rate of 97.30%, dem-
onstrating consistent performance across all criteria.

Te stacking classifer demonstrates superior perfor-
mance compared to previous algorithms, achieving an ac-
curacy of 98.48% and balanced F1 score, recall, and precision
values. In summary, the VGG16 model efciently captures
distinctive characteristics for the identifcation of prostate
cancer, as machine learning methods attain exceptional
precision and well-balanced classifcation outcomes.

Te VGG19 model is utilized as a feature extractor in the
detection of prostate cancer for several machine-learning
techniques. Logistic regression attains a remarkable accuracy
of 99.64%, accompanied by well-balanced F1 score, recall,
and precision values. Te decision tree classifer (DT clas-
sifer) achieves an accuracy of 94.24%, which is lower

Table 10: Statistical feature analysis.

Algorithm Before feature extraction Reduced features
Logistic regression 4,253 714
DT classifer 4,253 698
Gaussian NB 4,253 708
K-neighbors classifer 4,253 668
LDA 4,253 692
SVC 4,253 695
Stacking classifer 4,253 684
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compared to the accuracy of 84.13% achieved by the
Gaussian NB model, indicating the lowest performance. In
Table 12, the result analysis shows the summary on VGG19
features all features.

Te K-neighbors classifer algorithm obtains a com-
mendable accuracy rate of 98.70%, demonstrating consistent
and well-balanced performance across several criteria. Te
linear discriminant analysis (LDA) model yields a high
accuracy of 96.00%, indicating excellent performance in
terms of F1 score, recall, and precision. Te support vector
classifer (SVC) obtains a high accuracy of 97.77%, dem-
onstrating consistent performance across all criteria.

Te stacking classifer attains a 99.05% accuracy, along
with balanced F1 score, recall, and precision values. In
summary, the VGG19 model successfully captures relevant
characteristics for the identifcation of prostate cancer, as
machine learning techniques achieve exceptional precision
and well-balanced performance in categorization.

Te ResNet50 model functions as a feature extractor for
diverse machine-learning methods employed in the de-
tection of prostate cancer. Logistic regression attains a pre-
cision of 99.52%, along with balanced F1 score, recall, and
precision metrics. Te decision tree classifer (DT classifer)
has an accuracy of 94.94%, which is lower than the accuracy
of Gaussian NB, which is 93.07%. In Table 13, the result
analysis shows the summary of ResNet50 features all
features.

Te K-neighbors classifer demonstrates exceptional
accuracy, achieving a remarkable 98.94%. Furthermore, it
maintains a well-balanced performance across several
measures. Te linear discriminant analysis (LDA) model
obtains an accuracy of 99.41%, indicating excellent perfor-
mance in terms of F1 score, recall, and precision. Te
support vector classifer (SVC) has a high accuracy rate of
98.70% and demonstrates balanced performance across all
measures.

Te stacking classifer attains a remarkable accuracy of
99.77% while maintaining balanced F1 score, recall, and
precision values. In summary, the ResNet50 model ef-
ciently captures distinctive characteristics for the identif-
cation of prostate cancer, as machine learning methods
achieve a notable level of accuracy and well-balanced per-
formance in classifcation.

Te ResNet50V2 model functions as a feature extractor
for diverse machine-learning methods employed in the
detection of prostate cancer. Logistic regression attains
a 99.41% accuracy, accompanied by balanced F1 score, recall,
and precision values. Te decision tree classifer (DT

classifer) has a slightly lower accuracy rate of 97.88%, but
the Gaussian NB model shows the lowest performance with
an accuracy of 84.95%. In Table 14, the result analysis is
showing the summary on ResNet50v2 features all features.

Te K-neighbors classifer algorithm yields a com-
mendable accuracy rate of 98.82%, demonstrating consistent
and well-balanced performance across all evaluation met-
rics. Te linear discriminant analysis (LDA) algorithm
achieves a high accuracy of 97.53%, indicating excellent
performance in terms of F1 score, recall, and precision. Te
support vector classifer (SVC) gets a high accuracy rate of
98.23%, demonstrating consistent performance across all
criteria.

Te stacking classifer attains a remarkable accuracy of
99.52% while maintaining balanced F1 score, recall, and
precision values. In summary, the ResNet50V2 model ef-
ciently captures distinctive characteristics for the identif-
cation of prostate cancer, demonstrating remarkable
accuracy and well-balanced performance in classifcation
through the utilization of machine learning methods.

4.4.1. Analysis Result. Te tables display the performance
metrics of multiple machine-learning algorithms in
detecting prostate cancer. Te algorithms were evaluated
using various feature extraction methods, namely VGG16,
VGG19, ResNet50, and ResNet50V2. Below is a compre-
hensive examination of the outcomes:

(i) Logistic regression consistently demonstrates
strong performance across all feature extraction
approaches, with high levels of accuracy, F1 score,
recall, and precision. It exhibits resilience in cate-
gorizing instances of prostate cancer.

(ii) Te performance of the decision tree classifer (DT
classifer) varies, with accuracy levels ranging from
94.24% to 97.88%. Although generally efective, it
demonstrates slightly inferior performance in
comparison to logistic regression.

(iii) Gaussian Naive Bayes (Gaussian NB) regularly
achieves the lowest performance compared to the
other algorithms under consideration. Te data
analysis exhibits reduced accuracy and precision,
suggesting constraints in efectively managing the
intricacy of the dataset.

(iv) Te K-nearest neighbors algorithm, specifcally the
K-neighbors classifer, consistently demonstrates
strong performance across various feature

Table 11: Statistical summary of the VGG16 model (all features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 98.47 98.47 97.28 98.47
DT classifer 96.23 96.15 92.13 96.21
Gaussian NB 85.31 86.30 86.62 89.20
K-neighbors classifer 98.70 98.70 97.20 98.70
LDA 95.89 95.96 95.44 96.13
SVC 97.30 97.23 93.68 97.33
Stacking classifer 98.48 98.47 97.27 98.47
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extraction techniques, resulting in high accuracy
and well-balanced metrics. It is profcient at dis-
cerning patterns within the dataset.

(v) Linear discriminant analysis (LDA) reliably attains
high accuracy and maintains balanced performance
across several criteria. It exhibits efcacy in seg-
regating categories within the dataset.

(vi) Te support vector classifer (SVC) demonstrates
excellent performance, attaining high accuracy and
maintaining balanced metrics. Nevertheless, it
demonstrates marginally inferior performance in
comparison to logistic regression and LDA.

(vii) Te stacking classifer consistently attains high accu-
racy and balanced metrics across all feature extraction
methods. By integrating the capabilities of various
algorithms, it achieves enhanced performance.

Logistic regression, LDA, and stacking classifers have
been identifed as themost successful algorithms for detecting
prostate cancer using various feature extraction approaches.
Tese algorithms demonstrate their ability to handle the
dataset’s complexity and efectively categorize cases.

4.5. Analysis for Feature Reduction. Te VGG16 model ex-
hibits robust performance across diverse machine-learning
techniques in the realm of prostate cancer detection. Te

performance of logistic regression, decision tree classifer (DT
classifer), Gaussian NB, K-neighbors classifer, linear dis-
criminant analysis (LDA), support vector classifer (SVC), and
stacking classifer was assessed using measures such as ac-
curacy, F1 score, recall, and precision. In Table 15, the result
analysis shows the summary on VGG16 reduced features.
Logistic regression achieves a 98.59% accuracy, exhibiting
balanced F1 score, recall, and precision values. Te DT clas-
sifer demonstrates somewhat inferior performance, achieving
an accuracy rate of 95.88%, whereas Gaussian NB earns an
accuracy rate of 94.94%. Te K-neighbors classifer and SVC
models both obtain a high accuracy of 98.70%. However, the
K-neighbors classifer model exhibits superior recall and
precision compared to SVC. Te latent Dirichlet allocation
(LDA) model obtains a high accuracy rate of 98.00% while
maintaining a balanced performance across all measures.

Te stacking classifer demonstrates superior perfor-
mance compared to other algorithms, achieving the greatest
accuracy rate of 99.05% and balanced F1 score, recall, and
precision values. In general, the VGG16 model functions as
a robust tool for extracting important features that may be
used by other machine learning methods. Tis greatly en-
hances the precision and dependability of prostate cancer
detection from MRI scans.

Te VGG19 model has exceptional efcacy across di-
verse machine learning techniques in the realm of prostate
cancer detection. Logistic regression attains a remarkable

Table 13: Statistical summary of the ResNet50 model (all features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.52 99.52 98.82 99.53
DT classifer 94.94 94.89 90.89 94.87
Gaussian NB 93.07 93.20 91.25 93.47
K-neighbors classifer 98.94 98.93 97.80 98.94
LDA 99.41 99.41 98.98 99.41
SVC 98.70 98.70 96.77 98.72
Stacking classifer 99.77 99.77 99.41 99.77

Table 14: Statistical summary of the ResNet50V2 model (all features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.41 99.41 98.75 99.41
DT classifer 97.88 97.88 96.25 97.88
Gaussian NB 84.95 86.09 87.95 89.87
K-neighbors classifer 98.82 98.81 97.50 98.82
LDA 97.53 97.56 96.91 97.59
SVC 98.23 98.20 95.59 98.28
Stacking classifer 99.52 99.52 98.82 99.53

Table 12: Statistical summary of the VGG19 model (all features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.64 99.64 99.11 99.64
DT classifer 94.24 94.24 91.10 94.25
Gaussian NB 84.13 85.28 85.68 88.60
K-neighbors classifer 98.70 98.70 97.42 98.70
LDA 96.00 96.05 95.08 96.15
SVC 97.77 97.71 94.41 97.82
Stacking classifer 99.05 99.05 97.64 99.06
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accuracy of 99.41%, accompanied with well-balanced F1
score, recall, and precision values.Te decision tree classifer
(DT classifer) and Gaussian NB methods demonstrate
relatively lower performance, achieving an accuracy rate of
94.82% compared to other techniques. In Table 16, the result
analysis is showing the summary on VGG19 reduced
features.

Te K-neighbors classifer and linear discriminant
analysis (LDA) models obtain an impressive accuracy of
98.94% and 98.59%, respectively. Both models demonstrate
balanced performance across many criteria. Te support
vector classifer (SVC) and stacking classifer algorithms
provide superior performance compared to other methods,
obtaining an accuracy of 99.52% while maintaining balanced
F1 score, recall, and precision values.

In general, the VGG19 model functions as a profcient
tool for extracting features in diferent machine-learning
methods, thereby enhancing the precision and dependability
of prostate cancer detection from MRI scans. Te VGG19
model demonstrates durability and efcacy in this task, as
evidenced by its excellent accuracy and balanced perfor-
mance across metrics.

Te ResNet50 model exhibits robust performance across
diverse machine-learning algorithms for the identifcation of
prostate cancer. Logistic regression attains a remarkable
accuracy of 99.41%, accompanied by balanced F1 score,
recall, and precision values. Te decision tree classifer (DT
classifer) demonstrates a somewhat inferior performance,
achieving an accuracy of 94.82%, compared to the Gaussian
NB model which obtains an accuracy of 97.17%. In Table 17,
the result analysis is showing the summary on ResNet50
reduced features.

Te K-neighbors classifer, linear discriminant analysis
(LDA), and support vector classifer (SVC) models reach
a remarkable accuracy of 99.30%, demonstrating consistent
performance across all criteria. Te stacking classifer
method exhibits superior performance compared to other
algorithms, achieving the greatest accuracy rate of 99.64%
and demonstrating balanced F1 score, recall, and precision
values.

In general, the ResNet50 model is a highly efcient tool
for extracting features that may be used by diferent machine
learning algorithms. Tis greatly enhances the precision and
dependability of prostate cancer detection using MRI scans.
Te ResNet50 model demonstrates durability and efec-
tiveness in this task, as seen by its excellent accuracy and
balanced performance across measures.

Te ResNet50V2 model demonstrates exceptional ef-
cacy across diverse machine-learning techniques for the
identifcation of prostate cancer. Logistic regression attains
a remarkable accuracy of 99.52%, accompanied with well-
balanced F1 score, recall, and precision values. Te decision
tree classifer (DT classifer) obtains an accuracy of 98.11%,
exhibitingmarginally inferior performance in comparison to
alternative techniques. In Table 18, the result analysis is
showing the summary on VGG16 reduced features.

Gaussian NB demonstrates worse accuracy in compar-
ison to other algorithms, reaching a rate of 93.53%. Nev-
ertheless, K-neighbors classifer, linear discriminant analysis

(LDA), support vector classifer (SVC), and stacking clas-
sifer exhibit exceptional accuracy of 99.30% or more, while
maintaining a well-balanced performance across several
measures.

In general, the ResNet50V2 model acts as a profcient
tool for extracting features that are useful for diferent
machine learning algorithms. Tis greatly enhances the
precision and dependability of prostate cancer detection
from MRI scans. Te ResNet50V2 model demonstrates
durability and efcacy in this task, as seen by its excellent
accuracy and balanced performance across measures.

Te results obtained from the four tables illustrate the
efcacy of diverse machine-learning methods in detecting
prostate cancer. Tis evaluation was conducted utilizing dis-
tinct feature extraction models, namely VGG16, VGG19,
ResNet50, and ResNet50V2.Te algorithms demonstrate good
accuracy across all tables, showing their usefulness in difer-
entiating between healthy and diseased prostate pictures.

Table 15 shows that stacking classifer achieve the
maximum accuracy, all over 99.05%. Tese algorithms also
attain excellent F1 scores, recall, and precision values, in-
dicating a well-balanced performance in classifcation.

Table 16 shows the maximum accuracy, exceeding 99.4%,
achieved by SVC and stacking classifer, as shown in Table 16.
Tese algorithms consistently perform well in all parameters,
indicating their resilience in detecting prostate cancer.

Table 17 shows that the stacking classifer achieves the best
accuracy of 99.64%, with logistic regression, K-neighbors
classifer, LDA, and SVC closely follow, all obtaining accu-
racies above 99.3%. Tese algorithms demonstrate equitable
performance in terms of F1 score, recall, and precision.

Table 18 shows the best accuracy of 99.52% is achieved by
SVC, LDA, and stacking classifer, as shown in Table 18. Te
decision tree classifer and K-neighbors classifer models
exhibit exceptional performance, achieving accuracies be-
yond 98%. Nevertheless, Gaussian NB demonstrates inferior
performance in comparison to other methods.

In general, the fndings suggest that the stacking classifer
consistently demonstrates strong performance across all
feature extraction models, with SVC, logistic regression, and
K-neighbors classifer following suit. Tese algorithms
showcase the capacity for precise and dependable identif-
cation of prostate cancer through the utilization of machine
learning methodologies.

4.6. Discussion. Te study report analyses the performance
variance of machine learning algorithms by comparing the
frst four tables with the last four tables, which employ
diferent feature extraction approaches. Below is the analysis
and comparison of the results:

(i) Algorithm performance when utilizing feature ex-
traction includes the following:

(i) Te performance metrics (accuracy, F1 score,
recall, and precision) of diferent machine
learning algorithms using feature extraction
approaches (VGG16, VGG19, ResNet50, and
ResNet50V2) are displayed
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(ii) When employing more sophisticated feature
extraction models such as ResNet50 and
ResNet50V2, there is a clear enhancement in
performance metrics across all methods, as
opposed to using VGG16 and VGG19.

(iii) Te stacking classifer regularly attains the
highest accuracy and F1 score among all feature
extraction models, demonstrating its efcacy in
amalgamating the capabilities of numerous
base learners

(iv) Logistic regression, linear discriminant analysis
(LDA), and support vector classifer (SVC)
provide strong and consistent performance
with various feature extraction models

(ii) Analysis of the diferences between the whole fea-
ture and selected feature include the following:

(i) Signifcant performance disparities are evident
when comparing the outcomes of the initial
four tables, which consist of VGG16 and
VGG19, with the last four tables, which consist
of ResNet50V2

(ii) Algorithms that employ ResNet50 and
ResNet50V2 for feature extraction consistently
achieve better results than those employing
VGG16 and VGG19 across all performance
criteria

(iii) Te ResNet-based models excel due to their
increased depth and exceptional capability to
extract subtle information from medical pic-
tures, particularly in challenging tasks such as
prostate cancer diagnosis

(iv) Gaussian Naive Bayes (Gaussian NB) typically
demonstrates inferior performance relative to

Table 18: Statistical summary of the ResNet50V2 model (reduced features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.52 99.52 98.82 99.53
DT classifer 98.11 98.11 96.61 98.10
Gaussian NB 93.53 93.43 88.46 93.40
K-neighbors classifer 99.30 99.30 98.68 99.30
LDA 99.41 99.41 98.98 99.41
SVC 99.52 99.52 98.82 99.53
Stacking classifer 99.52 99.52 99.26 99.52

Table 15: Statistical summary of the VGG16 model (reduced features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 98.59 98.59 97.13 98.59
DT classifer 95.88 95.83 92.35 95.83
Gaussian NB 94.94 94.90 91.10 94.88
K-neighbors classifer 98.70 98.70 96.99 98.71
LDA 98.00 98.00 96.54 98.00
SVC 98.70 98.70 96.77 98.72
Stacking classifer 99.05 99.05 98.08 99.05

Table 16: Statistical summary of the VGG19 model (reduced features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.41 99.41 98.76 99.41
DT classifer 94.82 94.79 91.03 94.77
Gaussian NB 94.82 94.80 91.26 94.78
K-neighbors classifer 98.94 98.93 97.80 98.94
LDA 98.59 98.59 98.01 98.60
SVC 99.52 99.52 98.82 99.53
Stacking classifer 99.41 99.41 98.76 99.41

Table 17: Statistical summary of the ResNet50 model (reduced features).

Algorithm Accuracy (%) F1 score (%) Recall (%) Precision (%)
Logistic regression 99.41 99.41 98.76 99.41
DT classifer 94.82 94.76 90.59 94.74
Gaussian NB 97.17 97.11 93.38 97.22
K-neighbors classifer 99.30 99.30 98.46 99.30
LDA 99.30 99.30 98.68 99.30
SVC 99.30 99.30 98.23 99.30
Stacking classifer 99.64 99.64 99.11 99.64
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other algorithms across all feature extraction
models, indicating its limits in capturing the
underlying patterns in the dataset

(iii) Implications and future directions include the
following:

(i) Te fndings emphasize the signifcance of
selecting suitable feature extraction models for
medical image analysis tasks, whereas more
sophisticated architectures such as ResNet50
and ResNet50V2 provide greater performance

(ii) Subsequent investigations may delve into en-
semble approaches and further optimization
tactics to augment the efcacy of machine
learning algorithms in detecting prostate can-
cer, capitalizing on the advantages of diverse
feature extraction models

(iii) In addition, exploring transfer learning and
fne-tuning techniques using pretrainedmodels
may ofer valuable insights for enhancing the
generalization and adaptability of models to
various datasets

(iv) Highlights the superior performance reseasoning of
ResNet-based models compared to VGG-based
models include the following:

(i) Tere exist notable architectural distinctions
between ResNet (residual network) and VGG
(visual geometry group). Te ResNet archi-
tecture incorporates the notion of residual
connections, enabling the model to acquire
intrinsic functions rather than immediately
acquiring the intended mappings. Te utiliza-
tion of ResNet allows for the efcient man-
agement of deeper network topologies,
circumventing the issue of vanishing gradients
commonly observed in conventional deep
networks such as VGG.

(ii) ResNet is characterized by its deeper network
designs, which have a greater number of layers
in comparison to VGG. Te capacity of ResNet
to efectively train networks with signifcant
depth enables it to efectively capture intricate
features and patterns within the data, hence
resulting in enhanced performance.

(iii) Te residual connections of ResNet enhance
the process of feature extraction by allowing the
network to acquire residual representations.
Tis feature aids in the preservation of crucial
information across many levels of the network,
enabling ResNet to efectively capture more
intricate details and subtleties in the data as
compared to VGG.

5. Limitation of the Research

Despite this research signifcantly advancing the use of
supervised machine learning algorithms for prostate cancer
detection, there are several important caveats to consider:

(i) Dataset diversity: Te algorithm’s capacity to apply
to varied patient groups may be limited due to the
lack of diversity in publically available datasets.

(ii) Model interpretability is hindered by the intricate
nature of supervised machine learning models,
which presents difculties in comprehending the
acquired relationships. Consequently, this hampers
the seamless incorporation of these models into
clinical practice for physicians.

(iii) Overftting risk: Te utilization of complicated al-
gorithms amplifes the likelihood of overftting to
the training data, thus requiring comprehensive
validation on varied datasets to assure the ability to
generalize.

(iv) Addressing ethical and regulatory concerns, in-
cluding patient privacy and compliance with
healthcare standards, is essential for the proper
integration of machine learning in healthcare. Tis
presents hurdles for its practical implementation.

6. Practical Implications

Tis research paper examines the practical consequences of
using supervised machine learning algorithms to identify
prostate cancer. Te study seeks to enhance diagnostic
precision and efcacy in the early detection of prostate
cancer. Utilizing machine learning models, which have been
trained on extensive datasets, yields favorable outcomes
when compared to conventional diagnostic techniques [25].
Te practical ramifcations of integrating supervised ma-
chine learning algorithms for prostate cancer screening
encompass:

(i) Utilizing supervised machine learning allows for the
prompt detection of prostate cancer, leading to
enhanced treatment results by identifying subtle
patterns that may not be readily apparent using
traditional methods.

(ii) Machine learning methods enhance diagnostic
precision and reliability by identifying subtle link-
ages among diagnostic parameters, resulting in
a reduction of false positives and negatives.

(iii) Personalized treatment strategies: Machine learning
enables the development of customized treatment
plans that consider the distinctive attributes of each
patient, hence enhancing treatment efcacy and
minimizing negative outcomes.

(iv) Optimizing healthcare resources: By improving
diagnostic precision, wemay prioritize patients with
a greater likelihood of having prostate cancer. Tis
can result in cost savings and more efective dis-
tribution of healthcare services.

7. Future Works

Te future of detecting prostate cancer relies on harnessing
the advancing capabilities of machine learning algorithms.
Te following are essential domains for future investigation:
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(i) Multimodal fusion:Te integration of many types of
data, such as biopsies, MRI imaging, and genomes,
can provide a comprehensive understanding, po-
tentially enhancing the accuracy of diagnosis.

(ii) Customized risk evaluation: Adapting models to
individual risk profles, considering genetics, life-
style, and medical history, could facilitate the
implementation of focused screening and pre-
ventative strategies.

(iii) Revealing concealed biomarkers: Machine learning
could analyze extensive datasets and uncover new
patterns of biomarkers that can be used for non-
invasive and exceptionally accurate early detection.

(iv) Utilizing artifcial intelligence algorithms in clinical
workfows might aid healthcare practitioners in
analyzing data, suggesting treatment alternatives,
and enhancing patient care routes.

(v) Mitigating algorithmic bias: It is essential to ac-
knowledge and rectify any potential biases present
in the training data and algorithms to provide fair
and unbiased access to precise diagnosis for all
patients.
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