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Parkinson’s disease (PD) is a common neurodegenerative disease, and the mechanism underlying PD pathogenesis is not
completely understood. Increasing evidence indicates that microRNAs (miRNAs) play a critical regulatory role in the patho-
genesis of PD. �is study aimed to explore the miRNA-mRNA regulatory network for PD. �e di�erentially expressed miRNAs
(DEmis) and genes (DEGs) between PD patients and healthy donors were screened from the miRNA dataset GSE16658 and
mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were
selected when they were predicted by three or four online databases and overlapped with DEGs from GSE100054. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then conducted by Database for
Annotation, Visualization and Integrated Discovery (DAVID) andMetascape analytic tools.�e correlation between the screened
genes and PD was evaluated with the online tool Comparative Toxicogenomics Database (CTD), and protein-protein interaction
(PPI) networks were built by the STRING platform. We further investigated the expression of genes in the miRNA-mRNA
regulatory network in blood samples collected from PD patients and healthy donors via qRT-PCR.We identi�ed 1505 upregulated
and 1302 downregulated DEGs, and 77 upregulated and 112 downregulated DEmis were preliminarily screened from the GEO
database. Further functional enrichment analysis identi�ed 10 PD-related hub genes, including RAC1, IRS2, LEPR, PPARGC1A,
CAMKK2, RAB10, RAB13, RAB27B, RAB11A, and JAK2, which were mainly involved in Rab protein signaling transduction,
AMPK signaling pathway, and signaling by Leptin. AmiRNA-mRNA regulatory network was then constructed with 10 hub genes,
and their interacting miRNAs overlapped with DEmis, includingmiR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p,
miR-642a-5p, miR-19a-3p, and miR-21-5p. Analysis of clinical samples veri�ed signi�cant upregulation of LEPR and down-
regulation of miR-101-3p and miR-30e-5p in PD patients as compared with healthy donors. �us, the miRNA-mRNA regulatory
network was initially constructed and has the potential to provide novel insights into the pathogenesis and treatment of PD.

1. Introduction

Parkinson’s disease (PD), the second most common neu-
rodegenerative disease worldwide, is characterized by pro-
gressive degeneration of dopaminergic (DA) neurons in
substantia nigra pars compacta (SNpc) [1, 2]. It is estimated
that about two out of 1000 people of all ages will eventually
su�er from this disease [3, 4]. �e pathogenesis of PD

involves a complicated malfunction of multiple systems,
manifested by motor dysfunctions, as well as other non-
motor symptoms [3]. �e characteristic motor symptoms of
PD include tremors (in the hands, arms, legs, jaw, or head),
rigidity (of the limbs and trunk), bradykinesia (of move-
ment), and postural instability [3, 5, 6]. PD is a chronic and
progressive disease, suggesting that it persists and worsens
over time [4, 7]. Heredity seems to play a role in the

Hindawi
Parkinson’s Disease
Volume 2022, Article ID 2877728, 12 pages
https://doi.org/10.1155/2022/2877728

mailto:gaozb301@163.com
mailto:zhenfuw@sina.com
https://orcid.org/0000-0003-2169-7823
https://orcid.org/0000-0001-6376-9659
https://orcid.org/0000-0002-1394-4962
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2877728


pathogenesis of PD, because genetic factors, including
heterozygous GBA mutations, a-synuclein variants, and tau
variants [3, 8, 9], occur in as many as 5% to 10% of PD
patients [10]. Environmental factors, such as smoking and
alcohol, are also involved in the pathogenesis of PD [3].
Nevertheless, the precise mechanism underlying PD is not
fully understood. Recently, epigenetic regulation, such as
microRNAs (miRNAs), has emerged as a promising path-
ological factor of PD [11, 12].

miRNA—short, single-stranded RNA consisting of 20–25
nucleotides—belongs to the noncoding RNA family, which
does not translate any proteins [13]. miRNA interacts with the
3′ untranslated regions (3′-UTR) of the target mRNAs, dis-
rupting the translation or accelerating mRNA degradation
[14]. Over the past decades, it has been indicated that miRNAs
participate in the pathogenesis of various diseases through
regulating multiple biological processes, such as cell prolif-
eration, differentiation, and apoptosis [15]. Recent studies have
indicated the involvement of miRNAs in PD pathogenesis
[12]. For example, miR-124, which regulates NF-κB, STAT3,
AMPK, and ERK signaling and subsequent cell apoptosis,
autophagy, oxidative damage, and neuroinflammation, was
reported to be a potential diagnostic and therapeutic bio-
marker of PD [16]. Goh et al. implicated several miRNAs,
including miR-30, let-7, and miR-485, to be associated with
PD pathogenesis [12]. 1is study highlighted the promising
therapeutic role of miRNA in the treatment of PD.

Within the past decade, the development of bio-
informatics analyses has not only allowed for the assessment
of genetic and epigenetic regulatory pathways associated
with diseases but has also offered evidence for strategies
aimed at the efficacious diagnosis and treatment of diseases
[17, 18]. In the current study, we adopted integrated bio-
informatics methods to analyze miRNA and mRNA datasets
collected from the Gene Expression Omnibus (GEO) da-
tabase. From this analysis, we constructed a potential
miRNA-mRNA regulatory network associated with PD
pathogenesis. We verified the role of this miRNA-mRNA
regulatory network in PD by assessing the expression of this
pathway in blood samples collected from PD patients and
healthy donors via quantitative real-time PCR (qRT-PCR).
Our work offers new insights into the pathogenic mecha-
nisms and treatment of PD.

2. Materials and Methods

2.1. Clinical Samples. Peripheral blood samples were col-
lected from 23 PD patients and 26 healthy donors in hep-
arin-covered tubes, following strict protocol and
precautions. All PD patients were diagnosed according to
the Movement Disorder Society diagnostic criteria proposed
in 2015[19], with a Hoehn and Yahr stage of 2 to 4. All of the
healthy donors were age- and gender-matched and were free
of diseases, such as dementia, rheumatism, and tumors. All
experimental procedures were conducted following the
guidelines approved by the Ethics Boards of Chinese PLA
General Hospital, Beijing, China. All PD patients and
healthy donors provided written informed consent. 1e
information of donors is listed in Supplementary Table 1.

2.2. PBMCs Isolation. PBMCs (peripheral blood mononu-
clear cells) were isolated by Ficoll-Paque PLUS (Haoyang
tech, Tianjin, China) centrifugation of heparinized blood.
Red blood cells were completely segregated in this isolation
process. 1e time required for isolation of PBMCs was 1-2
hours for the subjects, and samples were frozen at −80°C for
qRT-PCR analysis.

2.3. qRT-PCR. Total RNA was extracted from isolated
PBMCs by the TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s protocol. qRT-PCR was
conducted via Fast SYBR® Green Master Mix Bulk Pack
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. Small endogenous nuclear U6
snRNA and GAPDH were used as an internal control for the
normalization of miRNAs and mRNAs, respectively. Gene
expression levels were calculated by the (2−ΔΔCt) method.
1e sense and antisense primers used in this study are as
follows:

GAPDH:sense,5′-GGAGCGAGATCCCTCCAAA
AT-3′,antisense,5′-GGCTGTTGTCATACTTCTCA
TGG-3′
U6: sense, 5′-CTCGCTTCGGCAGCACA-3′, anti-
sense, 5′- AACGCTTCACGAATTTGCGT-3′
LEPR: sense, 5′-TGGGATTAGGTGGGATTT-3′, an-
tisense, 5′-CCGCTCCTACCAATCTAA-3′
IRS2:sense,5′-TTGACTTCTTGTCCCACCACTTG-
3′,antisense,5′-GCTGAG CGTCTTCTTTTAATGA-
TACT-3′
JAK2: sense, 5′-TCTGGGGAGTATGTTGCAGAA-3′,
antisense, 5′-AGACATGGTTGGGTGGATACC-3′
miR-30e-5p: sense, 5′-GGGTGTAAACATCCTTGAC-
3′, antisense, 5′-TGCGTGTCGTGGAGTC-3′
miR-101-3p:sense,5′-GCCGCCACCATGGTGAGCA
AGG-3′,antisense,5′-AATTGAAAAAAGTGATTT
AATTT-3′

2.4. Microarray Data. 1e miRNA-expressing dataset
GSE16658 and mRNA-expressing dataset GSE100054 were
downloaded from the online GEO database (https://www.
ncbi.nlm.nih.gov/geo/). All samples were PBMCs collected
from PD patients and healthy donors.1e GSE16658 dataset
consisted of 32 samples, among which 19 were from PD
patients and 13 were from healthy donors. 1e GSE100054
dataset contained 19 samples, including 10 from PD patients
and 9 from healthy donors. 1e GSE16658 and GSE100054
datasets were detected by the Illumina Human v2 Micro-
RNA Expression BeadChip platform and Illumina
HumanHT-12 V3.0 Expression BeadChip platform (Illu-
mina, San Diego, CA, USA), respectively.

2.5. Identification of Differentially Expressed Genes (DEGs)
and miRNAs (DEmis). In order to obtain differentially
expressed genes (DEGs) and miRNAs (DEmis) from PD
patients and healthy control, the raw data from the
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GSE16658 and GSE100054 datasets were analyzed by
GEO2R, a GEO-provided analytic tool. 1e |log2FC| ≥ 1 and
p< 0.05 were introduced as cut-off criteria. 1e DEGs and
DEmis were visualized by volcano plots.

2.6. Prediction of miRNA Targets. Targets of the selected
upregulated and downregulated DEmis from GSE16658
were predicted by four online databases, including miRDB
(https://mirdb.org/miRDB/index.html), TargetScan (https://
targetscan.org/vert_72/), miRWalk (https://mirwalk.umm.
uni-heidelberg.de/), and miRTarBase databases (https://
mirtarbase.mbc.nctu.edu.tw). 1e targets, which were si-
multaneously predicted by at least three databases and
overlapped with the DEGs from GSE100054, were selected
for further study.

2.7. Construction of the miRNA-mRNA Regulatory Network.
1emiRNA-mRNA regulatory network was established and
visualized by Cytoscape version 3.7.2 software (https://www.
cytoscape.org/) [20] using the selected miRNAs and over-
lapping target genes.

2.8. Functional Enrichment Analysis. We conducted Gene
Ontology (GO) analysis (biological process, molecular
function, and cellular component) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis to identify bio-
logical functions and pathways enriched from the predicted
target genes of the DEmis. 1e functional enrichment
analysis was conducted by using the online bioinformatics
tool, the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, https://david.ncifcrf.gov/). 1e
terms with adjusted p values <0.05 were selected.

1e enriched functional terms were also determined by
the Metascape online analytic tool (https://metascape.org/
gp/index.html#/main/step1) based on several databases,
such as GO, KEGG, Reactome, and CORUM. 1e top 20
enriched terms were visualized as an enrichment bar graph.

2.9. Comparative Toxicogenomics Database (CTD). 1e
correlation between the screened genes and PD was eval-
uated by the online tool CTD (https://ctdbase.org/), scored,
and shown as bar graphs.

2.10.Protein-Protein Interaction (PPI)Network. 1eprotein-
protein interaction (PPI) network was built by the online
platform Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) (version 11.0) [21] to an-
alyze the connection of target genes of the DEmis. 1e
interacted pairs with a confidence score ≥0.4 were preserved
and visualized by Cytoscape software [20].

2.11. Statistical Analysis. 1e data were presented as the
mean± standard deviation (SD). Student’s t-test and one-
way ANOVA were used to assess the difference between two
groups and multiple groups, respectively. p< 0.05 was
considered as the statistical threshold.

3. Results

3.1. Identification of DEGs and DEmis in PD. In order to
determine critical genes and miRNAs involved in the pro-
gression of PD, we analyzed the PBMC samples of the
mRNA dataset GSE100054 and miRNA dataset GSE16658.
We obtained 1505 significantly upregulated DEGs and 1302
downregulated DEGs in PD patients as compared with
healthy donors (Figure 1(a)). In addition, 77 upregulated
DEmis and 112 downregulated DEmis were identified in PD
patients (Figure 1(b)), among which the top ten were se-
lected for further analysis (Table 1).

3.2. Target Prediction of DEmis. After identifying the top 10
DEmis, we tried to determine their target genes. Four online
tools, namely, the miRDB, TargetScan, miRWalk, and
miRTarBase databases, were utilized to predict the potential
targets. 1e target genes of the upregulated DEmis predicted
by at least three databases were overlapped with the
downregulated DEGs from the GSE100054 dataset, and the
shared genes between these overlaps were further selected to
build a potential regulatory network (Figure 2(a)). A similar
screening was performed on the downregulated DEmis and
upregulated DEGs (Figure 2(b)). 1is analysis provided a
preliminary screening for the prognostic miRNA-mRNA
regulatory network of PD.

3.3. Functional Enrichment Analysis of the DEGs in PD.
In order to optimize the critical genes and miRNAs as-
sociated with the development of PD, we conducted
functional enrichment analysis to screen the significant
biological processes and signaling pathways and selected
the genes involved in these processes. We first introduced
two bioinformatics tools, the DAVID and Metascape da-
tabases, to conduct the functional enrichment analysis on
the predicted targets of DEmis (mentioned above in Fig-
ure 2). As shown in Figure 3, the results from the DAVID
database revealed the representative GO terms, which
included biological processes (Figure 3(a)), cellular com-
ponent (Figure 3(b)), and KEGG signaling pathways
(Figure 3(c)). Another enrichment analysis performed
through the Metascape website revealed the significant
functional processes based on the GO, KEGG, Reactome,
and CORUM databases, and the top 20 terms are shown in
the bar graph (Figure 3(d)).

Subsequently, we optimized the PD-related terms from
the enrichment outcome of DAVID and Metascape analysis
by searching each term together with the term “Parkinson”
on the PubMed website. As listed in Table 2, four terms were
identified for further analysis, including the Rab GTPase
binding, AMPK signaling pathway, Rab protein signaling
transduction, and signaling by Leptin.

3.4. Selection of Hub Genes Related to PD Pathogenesis.
Among the genes involved in the selected four functional
terms, 10 were previously reported in PD studies, including
RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13,
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RAB27B, RAB11A, and JAK2. To con�rm their functional
roles in PD, we employed the CTD database to con�rm their
correlation with nervous system diseases via evaluating the
disease score.�e genes with a PD score >20 are identi�ed as
signi�cantly correlated genes and are marked as orange bars
in Figure 4. Among these 10 genes, JAK2 (Figure 4(a)),
CAMKK2 (Figure 4(b)), RAB27B (Figure 4(c)), LEPR
(Figure 4(d)), RAC1 (Figure 4(e)), IRS2 (Figure 4(f )), and

PPARGC1A (Figure 4(g)) scored 22.71, 24.17, 27.91, 32.18,
34.51, 42.85, and 81.08, respectively, and were considered to
be crucial PD-related genes. RAB10, RAB13, and RAB11A
were excluded, due to their low scores (Supplementary
Figure 1).

To con�rm the hub genes related to PD, we also
established a PPI network based on the target genes of the
DEmis. Intriguingly, the PPI network showed that four of
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Figure 1: Identi�cation of DEGs and DEmis between PD patients and healthy controls. (a) Volcano plots of 1505 upregulated DEGs and
1302 downregulated DEGs in PD patients (a) and 77 upregulated DEmis and 112 downregulated DEmis were identi�ed in PD patients (b)
compared with the control groups. p< 0.05 is taken as a threshold. Blue dots represent upregulated genes or miRNAs, red dots indicate
upregulated ones, and grey dots represent no signi�cance. �e abscissa axis represents log2 |fold change|, and the vertical axis represents
−log10 |(p) value|.

(a) (b)

Figure 2: miRNA target prediction and selection.�e target prediction of eachmiRNAwas conducted usingmiRDB, TargetScan, miRWalk,
and miRTarBase databases. (a) �e target genes of upregulated DEmis commonly predicted by 3 and 4 databases and simultaneously
overlapped with the downregulated DEGs from the GSE100054 dataset were selected to construct the regulatory network. (b)�e regulatory
network of downregulated DEmis and their target genes selected from overlaps between upregulated DEGs from GSE100054 dataset and
predicted targets by 3 and 4 databases.
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the seven CTD-selected genes, IRS2, LEPR, JAK2, and
PPARGC1A, were closely correlated, suggesting their po-
tential regulatory functions in PD development (Figure 5).

3.5. Determination and Validation of the Critical miRNA-
mRNARegulatoryNetwork inClinical PDSamples. Based on
the abovementioned screening and selection, we finally
constructed a simplified miRNA-mRNA regulatory network
consisting of 10 PD-related genes and their interacting
miRNAs selected from the DEmis (Figure 6), includingmiR-
30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p,
miR-642a-5p, miR-19a-3p, and miR-21-5p. We next col-
lected blood samples from PD patients and healthy donors to
examine the expression of the hub genes and their inter-
acting miRNAs. Among the hub genes and their interacting
miRNAs, the mRNA level of IRS2, LEPR, and JAK2 was
upregulated, while the expression of miR-101-3p and miR-
30e-5p was downregulated in PD patients. 1e changes in
LEPR, miR-30e-5p, and miR-101-3p were statistically dif-
ferent (Figure 7).

4. Discussion

PD is a common age-related neurodegenerative disorder
characterized by the progressive degeneration of the do-
paminergic neurons in substantia nigra pars compacta
(SNpc) [3, 22]. While the mechanism underlying PD
pathogenesis is still poorly understood [1, 4], it is believed
that PD results from a complicated interplay of genetic and
environmental factors affecting numerous fundamental
cellular processes [10]. Moreover, epigenetic factors, such as
miRNAs, have been shown to be important biological

molecules involved in the pathogenesis of PD [11, 12]. In this
study, we used miRNA and mRNA datasets from the GEO
database, conducted multiple bioinformatics analyses to
construct a potential miRNA-mRNA regulatory network,
identified several signaling pathways and hub genes that are
associated with PD development, and further verified these
hub genes via qRT-PCR in the blood samples of PD patients
and healthy donors. We found an upregulation of LEPR and
downregulation of miR-30e-5p/miR-101-3p in PD patients
as compared to healthy donors.

miRNAs have emerged as pivotal molecules involved in
PD pathogenesis. A previous study suggested that miR-425
deficiency triggers necroptosis of dopaminergic neurons, and
targeting miR-425 in a murine model of PD restored dys-
functional dopaminergic neurodegeneration and ameliorated
behavioral deficits [23]. In addition, miR-27a and miR-27b
were thought to regulate autophagic clearance of damaged
mitochondria and PINK1 gene expression, which is the most
common cause of autosomal recessive PD [24]. Moreover, the
miRNAs analyzed in our study, including miR-30e, miR-21,
miR-101, miR-19a, and miR-142, which were downregulated,
were previously presented as regulators of PD [25, 26]. 1e
miR-30 family has been investigated in multiple studies and
seems to play a critical role during PD [12, 27, 28]. Bio-
informatics analysis on various patient samples of PD
identified the miR-30 family as potential upstream regulators
of progression rate-related biomarkers of PD [29]. Moreover,
miR-30e was reported to attenuate the levels of inflammatory
cytokines, such as TNF-α, COX-2, and iNOS, and ameliorate
neuroinflammation in a MPTP model of PD through directly
targeting the NLRP3 inflammasome [30]. miR-101-3p was
previously reported to mediate lncRNA Mirt2-suppressed
inflammation [31]. Our study showed a reduced level of miR-
30e-5p and miR-101-3p in the PBMCs of PD patients, sup-
porting its negative regulatory role during PD, which was
consistent with previous studies. Based on these studies and
including our own, the existence of a miRNA-mRNA reg-
ulatory network in PD pathogenesis is believed.

Traditionally, miRNAs function by regulating target
genes in a posttranscriptional manner and play critical roles
in various biological processes. We further listed the
members of these enriched functional terms, predicted their
potential interacting mRNAs, obtained the overlaps with the
DEGs, and then constructed a miRNA-mRNA regulatory
network. It is worth noting that four of the genes among the
regulatory network, IRS2, LEPR, JAK2, and PPARGC1A,
were identified as the hub genes, suggesting their critical
roles during PD progression. 1e three upregulated genes,
IRS2, LEPR, and JAK2, participate in leptin-mediated
metabolism and inflammatory regulation in PD, which is
consistent with their roles in fatty acid transport and glu-
coneogenesis, further highlighting the important role of
leptin signaling in PD progression [32, 33]. Moreover, we
identified LEPR as a significantly elevated gene in PD pa-
tients as compared with the healthy controls. Protein leptin
encoded by the gene LEPR serves as a regulator of energy
homeostasis and feeding behavior [34] and exhibits neu-
rotrophic actions during the perinatal development of the
central nervous system during and into adulthood [35]. Ho

Table 1: 10 upregulated miRNAs and 10 downregulated miRNAs
were screened in GSE16658 dataset.

ID p value logFC miRNA ID
10 upregulated miRNAs

42812 0.03403022 1.948885 hsa-miR-508-5p
42762 0.00241734 0.55537 hsa-miR-665
17836 0.04180705 0.481978 hsa-miR-30b-3p
42785 0.00280149 0.473074 hsa-miR-921
42701 0.02314422 0.463982 hsa-miR-30c-2-3p
28150 0.01187665 0.412631 hsa-miR-765
29575 0.0063856 0.412492 hsa-miR-32-3p
42727 0.01131039 0.386259 hsa-miR-668
42679 0.00076206 0.382502 hsa-miR-642a-5p
13131 0.00741607 0.362588 hsa-miR-518c-5p

10 downregulated miRNAs
17660 0.00219334 −2.754213 hsa-miR-550a-3p
33596 0.00002234 −1.592887 hsa-miR-126-5p
28191 0.00029506 −1.497504 hsa-miR-30e-5p
31026 0.00023161 −1.398265 hsa-miR-101-3p
10997 0.00015777 −1.383207 hsa-miR-19a-3p
10947 0.00052467 −1.353895 hsa-miR-142-3p
11053 0.00090354 −1.313697 hsa-miR-32-5p
5740 0.00147611 −1.306943 hsa-miR-21-5p
13143 0.00011819 −1.306042 hsa-miR-301a-3p
10998 0.000103 −1.30473 hsa-miR-19b-3p
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Figure 3: Continued.
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Figure 3: Functional enrichment analysis via DAVID and Metascape database. GO analysis was performed on the target genes of the
DEmis, and the most signi�cantly enriched biological process terms (a) and the molecular function terms (b) were presented as bar graphs.
KEGG signaling pathways enriched from the target genes of the DEmis (c). �e enriched functional terms enriched from target genes of the
DEmis were determined byMetascape online analytics tool based on several databases such as GO, KEGG, Reactome, and CORUM.�e top
20 enriched terms were visualized as an enrichment bar graph (d).

Table 2: Four terms related to PD.

Term Literature number Count p value Genes
GO:0017137∼Rab GTPase binding 109 6 0.026593331 DMXL2, EVI5, ACAP2, RAC1, RABGAP1L, and SYTL3
hsa04152: AMPK signaling pathway 53 6 0.009607244 IRS2, LEPR, ACACB, RAB10, PPARGC1A, and CAMKK2
Rab protein signal transduction 27 5 0.000709612 RAB13, RAB27B, RAB11A, RAB10, and RAB34
Signaling by Leptin 11 3 0.000127852 JAK2, LEPR, and IRS2
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Figure 4: Parkinson’s disease score determined by CTD.�e correlation between the genesis of PD and JAK2 (a),CAMKK2 (b), RAB27B (c),
LEPR (d), RAC1 (e), IRS2 (f ), and PPARGC1A (g) was evaluated by the online tool Comparative Toxicogenomics Database (CTD), scored,
and shown as bar graphs.
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et al. showed that leptin preserved cell survival in neuronal
SH-SY5Y cells against MPP+ toxicity (Parkinson’s disease
model) by maintaining ATP levels and mitochondrial
membrane potential. �e upregulation of the LEPR gene
might indicate activated feedback protection by the neurons,
which will be investigated in future studies with a larger PD
cohort. �e PPARGC1A gene, which encodes the tran-
scriptional coactivator, PGC-1α, which has been implicated
in the pathogenesis of neurodegenerative disorders and
found repressed in PD [36], was downregulated in our study.
Targeting PGC-1α was proposed as a potential therapeutic
method for PD [37]. Interestingly, PGC-1αwas also reported
to regulate the IRS2 level in hepatic metabolism [38]. In our
study, the PPARGC1A gene interacted with three di�erent
miRNAs, and as such, its role in PD pathogenesis might be
more complicated than originally thought. Further study
will be conducted to investigate the exact role of the
PPARGC1A gene in the pathogenesis of PD.

By functional enrichment analysis, we screened out
biological signaling pathways closely associated with PD,
including the Rab protein signaling transduction, AMPK
signaling pathway, and signaling by Leptin. �e hub genes,
IRS2, LEPR, JAK2, and PPARGC1A,were mainly involved in
AMPK and Leptin signaling pathways. Signi�cant evidence

from PD models has supported the participation of AMPK
in PD, via regulating cellular metabolism, enhancing
autophagy, promoting mitochondrial quality control, sup-
pressing oxidation, and alleviating in¬ammation [39–41].
�e AMPK activation was therefore regarded as a thera-
peutic target for PD treatment [39]. Moreover, it has been
demonstrated that AMPK activation may facilitate clearance
of α-synuclein, thereby promoting neuronal survival to
ameliorate PD [42]. Abnormal leptin signaling was also
frequently observed in neurodegeneration diseases [43].
Increasing evidence has presented the role of leptin in
regulating metabolic homeostasis during PD [43, 44].
Candia et al. also suggested that leptin played a key role in
linking metabolic imbalance and damage to the nervous
system [44]. In addition, leptin was also involved in blood
pressure changes during orthostatic stress in PD patients
[45]. Our research and previous evidence have indicated that
the interaction of miRNAs and mRNAs, which build a
regulatory network and function in various signaling
pathways, participate in the pathogenesis of PD.

As a whole, our study provides a comprehensive study
on the role of miRNAs and mRNAs in PD. We identi�ed a
potential miRNA-mRNA regulatory network correlated
with PD pathogenesis by using bioinformatics tools and

number of nodes:

Network Stats

number of edges:
average node degree:

avg. local clusteing coefficient:

229
243
2.12
0.373

expected number of edges:
PPI enrichment p-value:

187
4.92e-05

Figure 5: Construction of PPI network. �e protein-protein interaction (PPI) network was constructed via Search Tool for the Retrieval of
Interacting Genes (STRING) and visualized by Cytoscape software. A con�dence score ≥0.4 was regarded as the criterion.
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Figure 7: Evaluation of the miRNA-mRNA regulatory network in clinical PD samples. Real-time PCR was performed to examine the RNA
levels of miR-30e-5p, miR-101-3p, JAK2, LEPR, and IRS2 in the peripheral blood samples of 23 PD patients and 26 healthy donors. ∗p< 0.05,
∗∗p< 0.01, and ∗∗∗p< 0.001 vs. control (CON).
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Figure 6: OptimizedmiRNA-mRNA regulatory network.�e regulatory network consists of 10 optimized genes, JAK2, CAMKK2, RAB27B,
LEPR, RAC1, IRS2, and PPARGC1A, and their corresponding miRNAs, miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p,
miR-642a-5p, miR-19a-3p, and miR-21-5p.
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verified this network in blood samples collected from PD
patients. 1e results of this study have the potential to
provide novel insights into the pathogenesis and potential
therapeutic targets of PD.

5. Conclusions

In conclusion, based on the bioinformatics tools and blood
sample verification, a potential miRNA-mRNA regulatory
network correlated with PD was identified in the study.
1ese findings could pave the way to identify new ap-
proaches for the treatment of PD.
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