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Parkinson’s disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements
and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely
understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related
research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell
types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration
and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low
subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis
in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)’s
interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was
signifcantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing
function in PD samples. Additionally, we identifed CLDN11 as a novel interaction pattern specifc to necroptosis neurons and
MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. Tese fndings suggest that MG
were signifcantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron
infammation in PD. Our analyses provide insights into the causes of neuron death and infammation in PD from single-cell
resolution, which could be seriously considered in clinical trials.

1. Introduction

Parkinson’s disease (PD) is the second most reported
neurodegenerative disorder, afecting millions of people
worldwide every year and is getting more and more prev-
alent these years [1–4]. It is a neurodegenerative disorder
characterized by the death of dopaminergic neurons in the
brain, leading to motor and cognitive impairments. Te
exact cause of the disease is not fully understood, where both
genetic and environmental factors are believed to play a role.

Based on former research, several cellular pathways have
been implicated in the pathogenesis of PD, including oxi-
dative stress, mitochondrial dysfunction, infammation, and
protein misfolding and aggregation. First, oxidative stress
has been shown to contribute to dopaminergic neuron death
and the accumulation of α-synuclein, a protein that is
a hallmark of the disease [5]. Second, mitochondrial dys-
function can lead to increased production of ROS as well as
impaired energy production and calcium signaling, all of
which contribute to cell death [6]. Moreover, many
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misfolded proteins such as α-synuclein are abundant in the
brain and comprise the pathological hallmark of PD such as
Lewy bodies. Te misfolding and aggregation of these
misfolded proteins are thought to contribute to the death of
dopaminergic neurons in PD [7].

Single-cell RNA sequencing (scRNA-seq) reveals the
presence and abundance of RNA at a given moment from
a single-cell resolution and has already become a powerful
method to understand the pathology of diverse diseases, such
as cancers, Alzheimer’s disease (AD), and infammatory bowel
disease (IBD) [8–10]. Its high resolution allows for the iden-
tifcation of cell subpopulations and their gene expression
signatures, enabling a deeper understanding of cellular het-
erogeneity and the complex regulatory networks that underlie
cellular functions and diseases. One of the main applications of
scRNA-seq is in the feld of developmental biology, where it has
been used to study the diferentiation of stem cells into various
cell lineages [11]. scRNA-seq has also been used in neurobi-
ology to study the heterogeneity of brain cells and their role in
diseases. For example, a study by Lake et al. used scRNA-seq to
identify the molecular diversity of diferent cell types in the
brain and to analyze the efects of aging on the gene expression
profles of these cells [12]. scRNA-seq has also been applied in
immunology, infectious diseases, and regenerative medicine.
As technology continues to improve and become more ac-
cessible, it is expected to have amajor impact on awide range of
research felds. Among these research studies, many works
used scRNA-seq to build an atlas of diseases, producing a lot of
data worth further analyzing.

We analyzed published snRNA-seq data from PD pa-
tients’ samples in this work. 3 groups of degenerative
neurons were identifed. Diferentially expressed genes were
analyzed on these cells followed by GO and KEGG en-
richment. We found a wide presence of necroptosis in these
cells and then carried out cell interaction analysis to study
the interactions of MG with these cells. In a word, our work
reveals the importance of necroptosis in PD progression
from the single-cell aspect and predicts a novel interaction
pattern between MG and necroptosis neuron cells.

2. Materials and Methods

2.1. Data Collection. We acquired midbrain single-nucleus
RNA sequencing (snRNA-Seq) data from NCBI (https://www.
ncbi.nlm.nih.gov/) using the accession code GSE140231 [13],
which include seven health human donors’ substantia nigra,
GSE157783 [14], which is composed of fve PD patients’ and six
health donors’ midbrain, and GSE148434 [15], consisting of six
health samples and six PD samples, all of these samples are
substantia nigra (Table S1). Because substantia nigra is a part of
midbrain, we called our integrated dataset as midbrain dataset.
We also defned the healthy or normal sample as term
“control,” which means no clinical symptoms related to PD
(absence of movement disorder).

2.2. Data Preprocessing and Integration. Raw sequencing
data were processed using CellRanger-6.1.2. Te expression
matrix was then imported into R (4.2.1) using Seurat (4.9.9)

[16]. We used Seurat package default parameters if no pa-
rameters are declared. We removed cells that had fewer than
200 genes or over 4000 genes, as well as those with over 3% of
mitochondria genes expressed in them, to ensure that only
cells in good condition and not doublets were included.
After separately normalizing the data, we merged the Patient
and Control expression matrixes together by using Seurat
build in function called “FindIntegrationAnchors” with
selecting the top 2000 highly variable genes (HVGs). We
then scaled the matrix and performed principal component
analysis (PCA) using the top 2000 HVGs. We chose the top
15 PCs for downstream cluster identifcation and visuali-
zation. We identifed 7 clusters under 0.04 resolution using
the “FindClusters” function. All the steps taken after
importing the data into R were processed using Seurat in-
ternal functions.

2.3.Cluster IdentifcationandGeneOntologyAnalysis between
Clusters. We identifed these seven clusters of cells as
microglia (MG), oligodendrocyte (OLG), GLU, GABAergic
neurons (GABA), dopaminergic neuron (DA), oligoden-
drocyte precursor cell (OPC) and astrocyte (AST) according
to the CellMarker database [17].

Using the Seurat function “FindAllMarkers,” we iden-
tifed the top 30 markers for each cell type. We then used the
clusterProfler (4.6.2) [18, 19] and genome-wide annotation
database to perform GO enrichment analysis between
clusters.

2.4. Diferential Expression Gene (DEG) Analysis in Sub-
Clusters between Control and Patient. To analyze a certain
cell type, we generated a volcano plot of diferentially
expressed genes (log2Foldchange >0.58, adjusted P Value
<0.01) using the Seurat function “FindMarkers.” (Table S2)
We then logarithmically transformed the normalized ex-
pression matrix by column to make the diferences between
the two groups clearer in the heatmap. KEGG enrichment
analysis was conducted using clusterProfler [18, 19]. KEGG
dotplot and cnetplot were generated using the R package
enrichplot. To separate cells in one cluster into two groups
with high or low expression of necroptosis-associated genes,
we calculated the mean expression level for each gene and
assigned cells with more than 60% of genes expressed above
the mean as “high” and those with less than 60% as “low.”
We then performed PCA of the two groups using the R
package “FactoMineR” (2.8) [20] and visualized the results
using the R package “factoextra” (1.0.7).

2.5. Protein and Protein Interaction Analysis. We found
transcription factors which exist in top 200 diferent
expressed genes by using human transcription factors da-
tabase, humanTFDB [21]. Ten, we used STRING [22]
database to obtain the protein and protein interaction in-
formation with minimum required interaction score >0.4.
To make the result clearer and more readable, we used
Cytoscape (3.9.1) [23] for further processing. Default mode
was used in the analysis.
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2.6. Cell-Cell Interaction Analysis. We used the R package
CellChat (1.6.1) [24] to quantitatively infer and analyze
intercellular communication networks from the data.
CellChat employs network analysis and pattern recognition
approaches to predict major signaling inputs and outputs for
cells and how those cells and signals coordinate for func-
tions. CellChat classifes signaling pathways and delineates
conserved and context-specifc pathways through manifold
learning and quantitative contrasts. First, we found identify
overexpressed ligands or receptors by using functions called
identifyOverExpressedGenes and identifyOver-
ExpressedInteractions. Ten, we computed the communi-
cation probability via computeCommunProb function. If
the interactions appeared in few cells (usually <10), we
removed them by flterCommunication function. In the next
step, we used computeCommunProbPathway to predict the
pathways according to the probable interations. Finally, we
calculated the aggregated cell-cell communication network
by using aggregateNet function.

3. Results

3.1. Single-Cell Landscape of Midbrain in PD Patients.
Te main lesions of Parkinson’s disease occur in the mid-
brain. Terefore, in this study, we utilized published single-
nucleus sequencing data of midbrain. A total of 14,011
midbrain cells were collected and clustered into seven
groups using unsupervised clustering methods. Based on cell
markers reported in previous studies, we identifed seven
distinct cell types, including GABAergic neuron (GABA),
glutamatergic neuron (GLU), oligodendrocyte (OLG), oli-
godendrocyte precursor cell (OPC), astrocyte (AST),
microglia (MG), and dopaminergic neuron (DA)
(Figure 1(a)). Te annotated cell markers are listed in
Figure 1(b). We performed GO functional enrichment
analysis to identify the main pathways in each of these cell
clusters (Figure 1(c)). Te enriched pathways corresponded
to the known pathways of each cell type, such as myelination
of OLG and homeostasis of MG. Tis demonstrates the
accuracy and reliability of our data processing and cluster
annotation.

Next, we investigated the changes in cell ratios between
PD patient and control samples. Our fndings revealed that
three major cell types, including GLU, GABA, and DA, were
signifcantly reduced in PD, while MG were the most
boosted cells in PD (Figure 1(d)). Tese intriguing obser-
vations piqued our curiosity to study the underlying reasons
for these cell proportion changes, and the potential cellular
interactions involved.

3.2. DEG Analysis and Pathway Enrichment Show Upregu-
lated Necroptosis in GLU Degeneration. GLU is the largest
cluster in the midbrain and is signifcantly reduced in PD
development. Terefore, we frst focused our analysis on the
GLU group to understand the mechanisms driving GLU
degeneration in PD progression. We analyzed the difer-
entially expressed genes (DEGs) between GLU cells from
patient samples and control normal samples (Figure 2(a)).

We found that some heat shock proteins, such as
HSP90AB1, were signifcantly upregulated in the PD sam-
ples, indicating a higher burden of misfolded abnormal
proteins. We also plotted the signifcant DEGs in single-cell
resolution and classifed them as upregulated or down-
regulated genes (Figure 2(b)). To further elucidate the
drivers of GLU degeneration, we performed KEGG en-
richment analysis for the upregulated genes in PD
(Figure 2(c)). Except the reactive oxygen species (ROS)
pathway, the necroptosis pathway was also enriched in PD,
indicating the necroptosis’s role in GLU degeneration. We
identifed individual genes enriched in the ROS, necroptosis,
and PD pathways (Figure 2(d)), and the PD pathway still
showed upregulated genes associated with abnormal protein
folding.

3.3. GLU of Diferent Necroptosis States Shows Distinct Dis-
tribution in PD and Control Samples. In greater detail, we
selected the top six enriched genes in the necroptosis
pathway and compared their expression levels between
patient and control samples (Figure 3(a)). Subsequently, we
classifed GLU into two subtypes based on their necroptosis
state, utilizing the genes we had selected. Cells that exhibited
lower expression levels for at least four out of the six genes,
relative to the average, were identifed as NRG-low subtype,
while the remaining cells were identifed as NRG-high
subtype. Te distribution of these subtypes was displayed
on a heatmap (Figures 3(b) and 3(c)). We employed PCA to
cluster the cells and analyzed the relative proportions of each
subtype. Our analysis revealed that NRG-high GLU cells
were predominant in the PD brain, whereas NRG-low cells
were the primary subtype observed in control samples
(Figures 3(d) and 3(e)). Tese fndings suggest that nec-
roptosis may contribute to GLU degeneration.

3.4. Necroptosis in DA and GABA Degeneration. In addition
to GLU, the other two primary clusters of neurons in the
midbrain—dopaminergic neurons (DA) and GABAergic
neurons (GABA)—also exhibited a signifcant reduction in
the PD model, which is consistent with the former notion
that degeneration of DA neurons is a leading cause of PD
[25]. To further investigate changes in these two cell types,
we conducted a DEG analysis of DA and GABA (Figur-
es 4(a), S1A). Surprisingly, we also identifed necroptosis-
related genes, such as HSP90AB1, FTH1, SLC25A4, and
PPIA. KEGG analysis also revealed enrichment of the
necroptosis pathway (Figures 4(b), S1B). Subsequent clas-
sifcation of DA or GABA neurons based onNRG expression
showed a higher proportion of NRG-high cells in the PD
group (Figures 4(c) and 4(d), S1C and S1D). Tese fndings
suggest that necroptosis is a common occurrence in
degenerated neurons during PD progression.

3.5. CellChat Analysis Shows Enhanced Cell Interactions be-
tween MG and Neuron Cells in PD. Microglia are resident
macrophage cells of the brain that serve as the primary
immune defense system in the central nervous system. Given

Parkinson’s Disease 3



-10

-5

0

5

10

U
M

A
P_

2

Midbrain_CTR Midbrain_PD

-10 -5 0 5 10 -10 -5 0 5 10
UMAP_1

(a)
GLU GABA OLG AST MG OPC DA

CA
CN

A
2D

1

SL
C1

7A
6

G
A

D
1

G
A

D
2

SL
C3

2A
1

ST
18

TM
EF

F2

AT
P1

A
2

G
JA

1

N
TS

R2

A
D

A
P2

LY
86

SI
G

LE
CH

N
EU

4

PD
G

FR
A

VC
A

N

LM
X1

B

SL
C1

8A
2

TH

Percent
Expressed

0
25
50
75

Average
Expression

2

1

0

(b)
potassium ion transmembrane transport

potassium ion transport
regulation of heart rate

action potential
regulation of heart contraction

vesicle-mediated transport in synapse
positive regulation of cardiac muscle cell proliferation

regulation of neurotransmitter levels
muscle tissue development

cell fate commitment
synaptic vesicle cycle

neurotransmitter transport
regulation of neurotransmitter transport

ensheathment of neurons
axon ensheathment

myelination
central nervous system myelination

axon ensheathment in central nervous system
gliogenesis

sodium ion export across plasma membrane
export across plasma membrane

sodium ion transmembrane transport
sodium ion transport

import into cell
homeostasis of number of cells

regulation of myeloid cell diferentiation 
cell junction disassembly

regulation of granulocyte diferentiation
myeloid cell homeostasis

negative regulation of neuron projection development
negative regulation of cell projection organization

mesenchymal stem cell diferentiation
negative regulation of response to wounding

neurotransmitter loading into synaptic vesicle

GLU
(29)

GABA
(27)

OLG
(28)

AST
(30)

MG
(30)

OPC
(28)

DA
(27)

GeneRatio
0.10
0.15
0.20
0.25

p.adjust
0.006

0.004

0.002

(c)

CTR
PDR

OPC

OLG

MG

GLU

GABA

DA

AST

0.00 0.25 0.50 0.75 1.00
Ratio

(d)
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the signifcant number of neuron degeneration observed in
PD progression, we postulated that microglia were activated
in PD and began attacking neurons, potentially leading to
neuron infammation. To investigate this, we conducted
CellChat analysis to study the interactions between neurons
andmicroglia.We discovered that the total interactions were
markedly stronger in patient than in control (Figure 5(a)).
Additionally, both incoming and outgoing interactions of
microglia were higher, indicating an active MG state in PD
(Figure 5(b)). We then analyzed the potential molecular
interactions between microglia and the three groups of
degenerated cells (Figures 5(c) and 5(d)). We detected
signifcantly more possible molecular interactions, in-
dicating enhanced microglia-neuron interactions in PD
samples. Among these molecular pathways in PD, CX3CL1
was specifcally upregulated in DA, which may play a role in
recruiting immune cells. Furthermore, the phagocytosis
pathway, such as Gas6-Mertk, was specifc to PD-DA with
microglia. Tese results suggest that, in PD progression, DA
becomes dysfunctional and releases chemokines, such as
CX3CL1, to recruit microglia and is more susceptible to
attack by microglia through phagocytosis.

3.6. NRG-High Cells Show Stronger Interaction with MG.
To further address the necroptosis’s efect on neuron in-
fammation, we examined the interactions between NRG-
high neurons and MG. NRG-high cells exhibited a signif-
cantly greater number of total cell interactions with MG
(Figure 6(a)). MG’s outgoing interactions with NRG-high
cells were particularly higher compared to NRG-low cells
(Figure 6(b)). Detailed interaction pathways were analyzed
and the larger number of molecular interactions was
identifed between MG and NRG-high cells (Figure 6(c)). In
addition, we discovered a potential pathway, CLDN11,
which was specifcally associated with NRG-high cells and
microglia (Figure 6(d)). Tis gene is not well-studied and
may play an important role in the enhancedMG-necroptosis
cells interactions in the PD pathological process. Further-
more, the CX3C pathway was also stronger between NRG-
high cells and MG (Figure 6(e)), indicating that cells un-
dergoing necroptosis have a greater ability to attract
microglia. Notably, DA did not show the same pattern here,
which may result from the small cell number in the NRG-
low DA. Collectively, these fndings showed robust nec-
roptosis cell-MG interactions in PD tissues.
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Parkinson’s Disease 5



3.7. Analysis of Transcription Factors Driving the Necroptosis
in Degenerated Neurons. We then conducted an analysis of
the transcriptional regulation in the PD samples to elucidate
the mechanisms of neuron necroptosis. Diferentially
expressed genes (DEGs) and transcription factors (TFs) were
compared to identify the distinctly expressed transcription
factors (Figure 7(a)). Additionally, we performed a protein-
protein interaction analysis to examine the downstream
genes regulated by these TFs (Figure 7(b)). Our fndings
indicated the involvement of 23 central TFs in the de-
generation process in PD, controlling approximately 100
downstream genes. Furthermore, most of the enriched

NRGs were regulated by these TFs, with LEF1, TCF4, and
GATA3 playing signifcant roles in the regulatory network
(Figure 7(c)).

3.8. Microglia Functions Were Enhanced in PD Patients.
Upon activation, microglia upregulate CD86, TMEM119,
CD11B, and CD45, and they exert their cytotoxic efects on
target cells through the release of various substances, in-
cluding TNF-α, glutamate, cathepsin B, superoxide, or nitric
oxide (Figure 8) [26, 27]. To further validate the microglia’s
excessive activation in the progression of Parkinson’s disease
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(PD), we investigated key activation markers and functional
indicators relevant to cell killing at the single-cell level. All
markers exhibited signifcant upregulation in PD patients
compared to control samples, suggesting a heightened state
of microglial activation and increased cell-killing activity
within the PD brain.

4. Discussion

Necroptosis is a type of programmed cell death that has
gained signifcant attention in recent years due to its distinct
molecular mechanisms and implications in various physi-
ological and pathological processes. Unlike apoptosis, which
is a well-known and regulated form of cell death charac-
terized by controlled dismantling of the cell, necroptosis is
an infammatory and lytic form of cell death. It represents an
alternative cell death pathway that can be activated when
cells are unable to undergo apoptosis, often triggered by
various stress signals, such as infection, infammation, or
cellular damage [28–30].

Necroptosis has been implicated in various pathological
conditions, including ischemic injuries, viral infections, and
infammatory disorders. Its dysregulation has been linked to
the pathogenesis of conditions such as Alzheimer’s disease,
and infammatory bowel diseases. Consequently, un-
derstanding the molecular mechanisms underlying nec-
roptosis may hold therapeutic potential for developing novel
treatments to modulate cell death and infammation in these
disorders [31]. However, it is not widely investigated how
necroptosis will infuence Parkinson’s disease.

Some clinical studies have observed signifcant increases
in necroptosis-related genes (NRGs) in postmortem ex-
aminations of Parkinson’s disease (PD) patients, such as
MLKL [25]. However, our understanding of the expression
profles of these genes across diferent cell types within the
brain and how their expressions can infuence neighboring
cells remains limited. Although a recent study reported the
enrichment of NRGs in PD samples using bulk RNA-seq
data, it lacked deeper insights into cell interaction changes
and robust verifcation at the single-cell level [32].

In our study, we comprehensively examined the ex-
pression patterns of NRGs among midbrain neurons in PD
samples from a single-cell perspective and identifed some
NRGs upregulated in PD patients. Among these genes,
GLUL encodes glutamate-ammonia ligase which is impor-
tant in RIPK3-mediated metabolic enzyme regulation [33].
It helps the production of reactive oxygen species (ROS) and
enhanced necroptosis [34]. HSP90 increases MLKL oligo-
merization and plasma membrane translocation to trigger
necroptosis and is required for TNF-induced necroptosis
[35, 36]. FTH1 and FTL1 encode the heavy and light chain of
ferritin, respectively. Te acccumulation of ferritin can elicit
oxidative infammation and NF-κB-TNFα pathway, which
may further trigger necroptosis [37]. PPIA (cyclophilin A)
acts as an immune infammatory mediator that secretes
proinfammatory cytokines induced by oxidative stress
[38–41]. SLC25A4 encodes the adenine nucleotide
translocator-1 (ANT1), which is involved in metabolism via
the regulation of ATP/ADP release from mitochondria and
in regulated cell death as part of the mitochondrial
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permeability transition pore [42]. We further used these
genes to study the cell subtypes distribution within the brain
and found NRG-low subtype’s replacement by NRG-high
subtypes. Our cell-cell interaction analyses showed more
activated microglia and more interaction of microglia with
the degenerative neurons. Tese fndings shed light on the
signifcant role that necroptosis may play in neuron

degeneration and microglia (MG)-mediated immune
clearance. Additionally, we identifed novel cell interaction
pathways and central transcription factors in PD that
warrant further investigation.

However, our analysis has potential limitations due to
the limited sample number and heterogeneity between
samples. Also, the interaction predicted by CellChat may not
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be the same as the physiological condition. More experi-
mental verifcation could be carried out regarding the en-
hanced cell interactions. Future research should focus on
understanding the mechanisms underlying the widespread
occurrence of necroptosis in PD and explore the potential
application of necroptosis inhibitor drugs as a therapeutic
approach. Moreover, investigating the mechanistic role of
the CLDN pathway and upregulated transcription factors in
PD development could provide valuable insights for disease
pathogenesis and treatment strategies.

5. Conclusion

We analyzed published data on PD patients and found
widespread necroptosis genes upregulated in three main

degenerative neuron types in the midbrain. Our cell-cell
interaction analysis showed that MG, the immune cells of
the brain, have much stronger interactions with the neurons
undergoing necroptosis. All these results implied that the
main neurons in the midbrain turn to a dysfunctional state
through a necroptosis-related mechanism, which activates
MG to clear the dysfunctional neurons in PD, leading to
neuron degeneration and infammation. We also identifed
CLDN11 as a potential interaction pathway specifc between
MG and NRG-high cells. It may play a role in mediating the
enhanced cell interactions in PD. In a word, our results
suggest that the necroptosis cell-microglia axis may play
a crucial role in PD progression. Our results showed broad
application prospects in drug development targeting
necroptosis [33].
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Figure 7: Analysis of hub transcription factors driving the necroptosis in degenerated neurons. (a) Regulated transcription factors were
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Figure 8: PD patients have stronger microglia function. (a–f). Activation markers such as CD86 and efector markers such as CTSB of
microglia were upregulated in PD patients.
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Heatmap showing DEGs expression of DA and GABA in
single cells. B: KEGG enrichment of DEGs. C: PCA of two
DA subclusters between PD and control samples. D: PCA of
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