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Background. Accurately assessing the severity and frequency of fuctuating motor symptoms is important at all stages of
Parkinson’s disease management. Contrarily to time-consuming clinical testing or patient self-reporting with uncertain reliability,
recordings with wearable sensors show promise as a tool for continuously and objectively assessing PD symptoms. While
wearables-based clinical assessments during standardised and scripted tasks have been successfully implemented, assessments
during unconstrained activity remain a challenge. Methods. We developed and implemented a supervised machine learning
algorithm, trained and tested on tremor scores. We evaluated the algorithm on a 67-hour database comprising sensor data and
clinical tremor scores for 24 Parkinson patients at four extremities for periods of about 3 hours. A random 25% subset of the
labelled samples was used as test data, the remainder as training data. Based on features extracted from the sensor data, a Support
Vector Machine was trained to predict tremor severity. Due to the inherent imbalance in tremor scores, we applied dataset
rebalancing techniques. Results. Our classifer demonstrated robust performance in detecting tremor events with a sensitivity of
0.90 on the test-portion of the resampled dataset.Te overall classifcation accuracy was high at 0.88.Conclusion. We implemented
an accurate classifer for tremor monitoring in free-living environments that can be trained even with modestly sized and
imbalanced datasets. Tis advancement ofers signifcant clinical value in continuously monitoring Parkinson’s disease symptoms
beyond the hospital setting, paving the way for personalized management of PD, timely therapeutic adjustments, and improved
patient quality of life.

1. Introduction

Neurological disorders are the globally leading source of
disability, and among them, Parkinson’s disease (PD) is the
fastest-growing in prevalence, disability, and death [1].
Developing new therapies or improving existing ones may

help address this growing challenge for healthcare systems
and ultimately improve the lives of those afected by this
condition. PD is a progressive, neurodegenerative disorder
that presents with a broad spectrum of motor (mainly
tremor, bradykinesia, and rigidity) and nonmotor symp-
toms. Afecting around 1% of the population over the age of
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60, it is the second most common neurodegenerative pa-
thology (after Alzheimer’s Disease) [2] and causes signifcant
decreases in the quality of life for those afected [3].

Accurately assessing the severity and frequency of PD
symptoms is of distinct importance at almost all stages of
disease management: diagnosis, monitoring disease pro-
gression, informing therapeutic course of action, and eval-
uating the efectiveness of treatment [4]. Te gold-standard
tool for PD assessment is the clinically validated International
Parkinson’s and Movement Disorder Society Unifed Par-
kinson’s Disease Rating Scale (MDS-UPDRS) [5]. Although
reliable, UPDRS assessments are time-consuming to perform,
require patients to be in-clinic, and only capture the patient’s
symptomatology during a brief period of time. PD symptoms
heavily fuctuate, based on factors such as medication ON/
OFF-state or behavioural context [6], and occasional as-
sessments at any single point in time may fail to accurately
refect the overall disease state [7]. Alternatively, clinicians
rely on patient self-reports in the form of “patient diaries.”
Te validity of these diaries, however, can be compromised by
patients’ lack of compliance, by patients not properly rec-
ognising symptoms within the clinical taxonomy understood
by clinicians (e.g., dyskinesias), or by recall problems [8]. Te
quality of the diaries can also be afected by the decrease in
cognitive capabilities that is highly prevalent at later stages of
the disease [9]. Tis leads to a discrepancy between self-
reported disease state and clinical UPDRS assessments, es-
pecially related to motor symptoms, that can be difcult to
reconcile [10].

Wearable technology, through its potential to capture
and characterise movement during both scripted tasks and
in free-living environments, may be able to overcome some
of the shortcomings of current PD assessment techni-
ques—including the difculty of recognising relevant
symptoms if they present outside of the clinic, or the poor
temporal resolution of MDS-UPDRS tests. Tis approach
might provide clinicians with valuable information about
symptom state outside what is observable during sporadic
in-clinic encounters and patient self-reporting of symptoms
(Figure 1), which can be particularly insightful for the
common scenario of bouts of severe symptoms occurring at
times during which a clinician is not present.

A number of groups have shown the feasibility of using
wearable sensor data in combination with algorithms to
accurately predict clinical scores during standardised tasks
[11–20]. Tis has led to a body of literature devoted to
a detailed characterisation of tremor in controlled experi-
mental environments [18, 21, 22]. Nevertheless, symptom
monitoring in free-living patients remains a challenge, with
some methods having failed to deliver optimal results
[23, 24]. In [25], the authors had no clinician-provided
tremor labels to validate their system. In [13, 24], the
only feedback signal available for algorithm training came
from the aforementioned patient self-reporting. In [26], no
ground-truth labels were available for algorithm training
and validation outside of the clinical environment. To date,
and to the best knowledge of the authors, no fully validated
system to monitor clinical PD features in free-living envi-
ronments exists [27–29].

In order to efectively tackle the transition from controlled
environments to unconstrained, free-living patients, a sig-
nifcant challenge—from a signal processing perspective—
stems from the fact that tremor (and other pathology-related
movement patterns) cannot be easily isolated from sensor
signals, especially when volitional movement is present at the
same time. Machine learning techniques, due to their ability
to isolate patterns from broadband, high-entropy signals,
ofer a potential solution to this problem. In this context, the
use of unsupervised machine learning techniques that mine
clinically relevant patterns from large amounts of wearable
sensor data has been advocated [4]. Previous studies have
employed several machine and deep learning approaches for
wearable sensor-based approaches for monitoring Parkin-
sonian tremor, most often involving convolutional neuronal
networks with raw data input, fast Fourier transform, or
specifc features (time and frequency domain) [18]. Others
used approaches such as long short-term memory, dynamic
neuronal network, multilayer perceptron, and gradient tree
boost algorithm [18].

In this work, we bypass the need for self-supervised
schemes by making direct use of clinician-provided labels
gathered during continuous monitoring. We implement
a cross-patient tremor-monitoring system that can be trained
on a modestly sized and imbalanced dataset and use this
method to investigate the problem of monitoring tremor
fuctuations in free-living PD patients. To accomplish this, we
rely on a 67-hour database of inertial measurement unit data
manually labelled by clinicians using a custom-made mobile
application, who were present during hours-long recording
sessions during which patients went about their daily activ-
ities in a free-living environment. We derive features from the
wearable sensor data based on accelerometry and gyroscopy
and use these to train a machine learning algorithm that
predicts tremor severity at each sensor location.

2. Methods

2.1. Dataset. Data collection was conducted with 24 patients
at the Department of Neurology, University Hospital Zurich,
with ethical approval granted by the cantonal ethics com-
mission Zurich. Informed consent was obtained from all
participants, who were randomly selected from those
seeking inpatient refnement of their PD management,
irrespective of age or gender, thus safeguarding an unbiased
sample. Notably, patients generally represented more ad-
vanced stages of PD due to the nature of their hospital
treatment. All subjects continued their prescribed PD
medication regimen throughout the study to maintain their
typical response to treatment during data capture (see Ta-
ble 1). We did not have any dropouts.

Te recording device consisted of inertial measurement
units (IMUs) securely attached to the patients’ wrists and
ankles. Te IMUs (ZurichMOVE) incorporated triaxial
accelerometers and gyroscopes, recording movement at
a sampling rate of 50Hz. Sessions were designed to last
approximately three hours (mean ± std. deviation: 2 h
48min ± 1 h 5min), capturing a broad range of voluntary
movements and daily activities.

2 Parkinson’s Disease



Clinicians, present throughout the recording sessions,
performed tremor assessments at three-minute intervals
(duration mean ± std. deviation: 2.99min ± 0.96min),
providing a rich temporal resolution of tremor data. Tis
enabled the capture of tremor manifestations in a controlled
yet representative environment, where patients engaged in
various self-selected activities such as reading, writing, using
electronic devices, and performing light physical tasks
within the patient room, which mirrored a spectrum of daily
life scenarios (see Figure 2).

Tremor severity for each limb was documented using
a three-point scale: 0 indicating no tremor, 1 for mild
tremor, and 2 for strong tremor. Tis bespoke categorisation
was devised to streamline the complex clinical tremor
evaluation typifed by the UPDRS III, facilitating frequent,
repeatable measurements conducive to our data analysis
approach. A “no-data” entry was also available to mark
periods where observation was not possible, such as personal
privacy times.

Te clinicians used a specialized application on a tablet
that prompted them to record tremor scores every three
minutes. Te 30 seconds leading up to each score entry were
extracted and segmented for detailed analysis, yielding
a dataset comprising 4,850 tremor score-labelled samples
across the three defned categories.

2.2. Data Preprocessing. Parkinsonian tremor usually pres-
ents while the patient is at rest with frequencies in the 4–7Hz
band [30–32]. In order to isolate the tremor signal from the
voluntary movement signal, both the accelerometer and
gyroscope signals were high-pass-fltered (10th-order But-
terworth flter, cutof frequency of 3.5Hz). In the interest of
precision, the wearable sensors were confgured to capture
a voluntary-movement signal delineated by a specifc fre-
quency band. Tis was achieved by employing a 10th-order
Butterworth bandpass flter with cutof frequencies set be-
tween 0.5 and 3Hz. While this methodological choice is

diary entry
medical
appointment

severity of symptoms
time

continuous monitoring

clinical examination

diary entries

continuous monitoring

continuous monitoring

Figure 1: Sporadic clinical encounters do not provide an accurate portrayal of the disease course. Important bouts of severe symptoms, if
they do not happen during clinical visits, might be missed. Tis leads to a gap between clinical assessment and patient self-report, which is
the currently available system used to monitor the disease severity between appointments. Tis self-report, oftentimes in the form of diary
entries, can however lack in precision, objectivity, and compliance on the side of the patient. Continuous monitoring would allow for
automated and objective observation of disease state and progression with only moderate efort on the side of both clinicians and patients.
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primed for enhancing tremor signal fdelity, it may also
encompass movement signatures potentially related to
bradykinesia. Tis recognition, albeit indirect, suggests
a promising avenue for further methodological advance-
ments to explicitly characterise and classify bradykinesia
within our computational framework. On the tremor signal,
a low-pass flter (10th-order zero-phase Butterworth flter,
cutof frequency of 7.5Hz) was also applied to eliminate
higher frequency nontremor components, as well as high-
frequency artefacts (Figure 3). Since only the oscillatory
nature but not the directionality of movement is interesting
for analysing tremor, only the magnitude of the fltered
accelerometer vector was used.

To better capture the transient nature of tremor,
a wavelet-based time-frequency analysis was performed.
Employing the continuous wavelet transform, the frequency
components representing tremor (between 3.5 and 7.5Hz)
were extracted into a time-dependant signal: with frequency
f, time t, and wavelet coefcients X(f, t), and the resulting
time-series Xtre(t) was computed as
Xtre(t) � 

7.5Hz
3.5Hz X(f, t)df. In summary, the preprocessing

step consisted of extracting a total of 9 relevant time-series
(Supp Table 1) from the 6 IMU channels (3 gyroscope
channels + 3 accelerometry channels). All preprocessing
steps and feature computations were performed inMATLAB
(Te MathWorks Inc., Natick, Massachusetts).

Table 1: Demographic and clinical characteristics of the PD patients including age, sex, disease subtype, duration, stage (Hoehn–Yahr),
motor examination scores (MDS UPDRS III ON/OFF), ON tremor score items 3.15–3.18, and daily levodopa equivalent dose (LED).

ID Sex Age PD subtype Disease
duration (y) Hoehn–Yahr scale MDS UPDRS III on/of 3.15R, L; 3.16R, L; 3.17UR, UL,

LR, LL;3.18
LED
(mg/d)

PD1 M 67 Equivalent 8 2 22/42 0, 1; 0, 2; 0, 1, 0, 0; 1 1510
PD2 F 60 Akinetic-rigid 7 3 39/51 0, 0; 0, 1; 0, 0, 0, 0; 0 2050
PD3 F 80 Tremor 10 3 19/26 0, 0; 0, 0; 0, 0, 0, 0; 0 700
PD4 F 60 Tremor 5 3 17/32 1, 0; 1, 0; 1, 0, 1, 0; 3 625
PD5 M 61 Equivalent 15 3 18/53 0, 0; 0, 0; 0, 0, 1, 1; 1 630
PD6 M 67 Equivalent 11 4 67/72 3, 1; 3, 1; 3, 0, 0, 0; 4 1230
PD7 F 73 Equivalent 7 2 16/39 0, 0; 0, 0; 0, 0, 0, 0; 0 1465
PD8 M 51 Equivalent 4 2 31/45 1, 1; 1, 1; 1, 0, 0, 0; 1 1540
PD9 M 67 Equivalent 12 2 44/57 0, 1; 0, 1; 0, 0, 0, 0; 0 560
PD10 F 65 Akinetic-rigid 13 3 33/52 1, 0; 1, 0; 1, 0, 0, 0; 0 510
PD11 F 54 Akinetic-rigid 9 3 13/22 1, 0; 0, 0; 0, 0, 0, 0; 1 910
PD12 F 57 Equivalent 9 3 20/55 4, 1; 1, 0; 4, 1, 2, 0; 4 870
PD13 F 56 Tremor 6 2 9/33 0, 0; 0, 0; 0, 0, 0, 0; 0 1350
PD14 F 62 Tremor 14 4 55/n.a. 3, 2; 1, 2; 1, 2, 2, 1; 2 500
PD15 M 73 Akinetic-rigid 23 2 39/62 0, 0; 0, 0; 0, 0, 0, 0; 0 1290
PD16 F 87 Equivalent 9 4 50/n.a. 2, 1; 0, 0; 2, 1, 2, 1; 4 620
PD17 F 53 Akinetic-rigid 17 3 23/n.a. 0, 0; 0, 0; 0, 0, 0, 0; 0 510
PD18 M 57 Tremor 8 2 19/23 2, 0; 1, 1; 3, 0, 0, 0; 3 60
PD19 M 52 Akinetic-rigid 17 2.5 15/24 0, 0; 0, 0; 0, 0, 0, 0; 0 1430
PD20 M 64 Tremor 6 3 21/38 1, 0; 1, 1; 0, 0, 0, 0; 0 920
PD21 M 68 Tremor 7 3 33/50 1, 0; 1, 1; 2, 0, 0, 0; 3 750
PD22 M 71 Tremor 4 2.5 23/36 0, 1; 0, 1; 0, 3, 0, 0; 3 1100
PD23 M 72 Equivalent 11 2 18/n.a. 0, 0; 1, 1; 0, 0, 0, 0; 0 350
PD24 F 69 Equivalent 8 3 18/28 0, 0; 0, 0; 0, 1, 0, 1; 1 1740

Figure 2: Depiction of various activities performed by patients during tremor assessment sessions. Clinicians conducted evaluations at
three-minute intervals in an unconstrained environment simulating daily living scenarios, including reading, device usage, and light
physical tasks.
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2.2.1. Feature Extraction and Evaluation. From each of the
preprocessed time-series, a number of features were derived
(Supp Table 4 for non-wavelet-based time-series and Supp
Table 5 for wavelet-based time-series). Roughly, these fea-
tures can be categorised into the following three classes:

(1) Time-domain statistics: General descriptive statistics
that aimed at assessing the magnitude and variability
of movement within a given timeframe. Tese in-
clude means, standard deviations, interquartile
ranges, and variation coefcients.

(2) Frequency-domain features: Features that capture
the spectral characteristics of the signal (if tremor is
present, signal power will concentrate in the 4–6Hz
frequency band). Te power spectral density was
estimated using Welch’s method (8 segments, 50%
overlap) [33, 34].

(3) Nonlinear features: Tis set of features aims to
quantify the regularity of a signal, which can be
defned as the ability of past and future samples to
predict the current one. Regularity measures, which
go beyond describing signals in the time and fre-
quency domains, have been proposed as better tools
to capture the lack of ability to regulate movement
that is characteristic in Parkinsonian tremor [32].
Generally, nonlinear approaches have been pre-
viously applied successfully to tremor detection and
quantifcation [35, 36]. Tese features include ap-
proximate entropy and spectral entropy, as well as
various autocorrelation-derived statistics.

Once the features for all time-series are computed, the
efectiveness of each one as a predictor of tremor severity has
to be evaluated. Each extremity was treated independently

(i.e., right-hand tremor score only predicted with right-hand
IMU-data). Although the overall dimensions of the feature
space are 4850 samples x 90 features, not all of those 90
features are good predictors of clinical scores. To discard the
ones that are not, a mutual information (MI) score is
computed, which provides a good measure for the strength
of the relationship between two variables [37].

Once the features were rated, only the 30 best performers
were used in the subsequent steps of the analysis, and the
remaining 60 features were discarded.

2.2.2. Classifer and Sampling Strategies. We used a support
vector machine (SVM) with radial basis functions (RBFs) for
the classifer architecture given its ability to approximate
nonlinear boundaries and train on a modestly sized dataset
as well as its widespread use in the tremor-monitoring
literature.

Given the highly imbalanced tremor scores in our
dataset (Figure 4), we had to use a resampling strategy to
balance out the three classes. A balanced dataset was
achieved by frst applying random undersampling to the
majority classes Score 0 and Score 1 until 300 samples were
reached. To the minority class Score 2, we applied over-
sampling by creating new samples based on neighbouring
points using the synthetic minority oversampling technique
(SMOTE) [38] until 300 samples were reached (Figure 5).

Te resampled dataset was subdued to a random
75/25 train-test split. All computations in feature space
(evaluating features, building and training the classifer, and
implementing sampling strategies) were performed in Py-
thon (Python Software Foundation, https://www.python.
org/) making use of the specialized software packages
scikit-learn [39] and imbalanced-learn [40].
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Figure 3: Preprocessed IMU data capturing tremor dynamics. Te composite accelerometer signal, derived from the vector sum of three-
axis data, is shown at the top, indicating fuctuating tremor magnitudes. Initially, the tremor intensity sharply peaks, diminishes briefy, rises
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translational tremor, illustrating the distinct behaviours of these tremor components.

Parkinson’s Disease 5

https://www.python.org/
https://www.python.org/


3. Results

3.1. Selected Features. Using a best-in-class approach based
on theMI-scores for the initial set of 90 features (for best and
worst performances see Supp Tables 2 and 3), the 30 best
performers are selected (full list and MI-Scores in Supp
Table 6).Tese 30 features are subsequently used to train and
test the classifer.

A two-dimensional principal component analysis of the
initial dataset is computed (Figure 6(a)). Te same feature
transformation is applied to provide a visualisation of the
resampled dataset (Figure 6(b)). Analogous to the rest of the
analysis, these embeddings are constructed after the feature
selection step (only making use of the 30 best features).

3.2.ClassiferPerformance. After a random 75/25 train-test-
split of the resampled dataset, the train portion contains
675 samples. After training, the remaining 225 samples in
the test portion are used to evaluate the classifcation
performance.Te overall classifcation accuracy is 0.88 (198
out of 225 samples correctly classifed). Te associated
confusion matrix (both absolute and normalised) is

displayed in Figure 7. Sensitivity for samples containing
tremor is 0.90. Accuracy scores are lowest for the in-
termediate class Score 1. Tere is a misclassifcation rate of
0.25 between the adjacent classes Score 0 and Score 1 and
no misclassifcations between nonadjacent classes Score
0 and Score 2.

Since neither training nor testing occurs on a dataset
comprised of solely “real data” but both splits contain
“synthetic instances” incorporated during the resampling
process (about 28% of samples are synthetic), some further
testing is performed to ensure that the classifer performs
equally well when tested exclusively against “real data.”
Due to the undersampling step, a large number of samples
(4137 instances of Score 0 and 66 instances of Score 1)
remain neither used for training nor for testing the clas-
sifer (although they were used in the feature selection
step). Testing our classifer on these samples yields a clas-
sifcation accuracy of 0.94. Te associated confusion ma-
trices (absolute counts and normalised counts) are
displayed in Figure 8. Te performance on the discarded
portion of the dataset (notwithstanding the fact that no
instances of Score 2 are available for testing in this dataset)

Score 0
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Score 2

7.5%

1.0%

91.5%

40003000 5000200010000
Abolsute Class Counts

Figure 4: Te dataset is highly imbalanced, with Score 0 (no tremor) representing 91.5% of all observations. Score 1 (mild tremor)
represented only 7.5% of all observations and Score 2 (strong tremor) only 1%.
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Figure 5: Balanced dataset after the resampling strategy. Te diagonally striped, blue portion in Score 2 represents synthetic data.
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is comparable with the performance on the resampled
dataset, with the same misclassifcation patterns being
recognised in both—such as a mild tendency of Score 1 to
be misclassifed as Score 0.

4. Discussion

Accurately assessing the severity and frequency of fuctu-
ating PD symptoms is of signifcant importance during all
stages of PD management. In contrast to time-consuming
clinical testing or sporadic patient-reporting, continuous
wearables-based assessment might allow for continuous,
objective, and automated tracking of PD symptoms.

4.1. Towards Parkinsonian Symptom Assessment during Un-
constrained Activity. Miniaturised wearable sensors, in
combination with modern signal processing techniques,
show great promise as a tool for the continuous assessment
of PD symptoms. While wearables-based clinical assess-
ments during standardised and scripted tasks have been
successfully implemented, assessments during un-
constrained activity in free-living environments remain
a challenge. In order to efectively transition from controlled
environments to unconstrained, free-living patients, ma-
chine learning techniques that mine clinically relevant
patterns fromwearable sensor data need to be developed and
validated.
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Here, we developed and implemented a machine
learning algorithm to assess tremor severity in free-living PD
patients. We evaluated this system on a 67-hour database
comprising wearable sensor data and clinical tremor scores
from 24 PD patients, who wore an IMU on each extremity
for periods of approximately 3 hours. Based on features
extracted from the sensor data, a support vector machine
(SVM) was trained to predict the clinician-logged tremor
severity for each extremity. Te classifer’s ability to detect
tremor was high (sensitivity of 0.90). Overall classifcation
accuracy was 0.88 on the test-portion of the resampled
dataset. To further test the robustness of the classifer,
samples that had been previously discarded during the
resampling strategy were classifed. Here, overall accuracy
was 0.94 and the results were comparable in terms of
misclassifcation rates, suggesting that the classifer did not
overft the resampled dataset. In summary, we were able to
implement a feature-based classifer for tremor monitoring
that, with the utilisation of resampling techniques, can be
trained even when only modestly sized and imbalanced
datasets are available. Tis approach is especially valuable
when large amounts of clinical data are not readily available
or when gathering these data is costly.

4.2. Improving Parkinsonian Symptom Assessment in Free-
Living Environments. Our tremor-classifcation system’s
lowest performance (accuracy� 0.74) was encountered
when classifying Score 1, as it tends to be misclassifed as an
instance of class Score 0. A two-class approach (low tremor
vs. high tremor severity) might still provide a more com-
prehensive picture of the severity of the Parkinsonian disease
state between clinical visits as compared to currently
available techniques, as well as provide more information
about the timing and characteristics of tremor manifesta-
tions. Our successful use of resampling strategies supports

the use of this family of techniques for processing wearable
sensor data when the dataset is not large enough, or when
the accompanying clinical scores are not balanced. However,
validation of this tremor-classifcation system on previously
unseen wearable sensor data is still lacking. While the
current study provides valuable insights within its limita-
tions, the potential for a more in-depth understanding of
limb-specifc tremors awaits future investigations with larger
and more balanced datasets. In light of the chosen random
75/25 train-test split serving our specifc resampling tech-
nique, we acknowledge the potential impact of this decision
on result robustness. Future studies should consider ex-
ploring alternative validation methods, such as k-fold cross-
validation, particularly in more balanced (a priori) datasets,
to enhance the reliability and generalizability of predictive
models. Despite tremor being a cardinal motor symptom of
PD, other motor symptoms (especially bradykinesia) should
be investigated and tested as well to assess Parkinsonian
symptoms with wearable sensors in free-living patients.

Such a continuous monitoring with wearable sensors
might allow to observe the course of the disease closely with
only moderate efort. Wearables-based PD assessments may
also be useful in other respects, for example, as more ob-
jective and accurate tools for evaluating new therapies—this
could also streamline drug approval processes by improving
both the quality and quantity of data gathered during
a study, potentially reducing the required sample sizes [41].
While our tremor classifcation system focused on a fre-
quency range of 4 to 7Hz, this was chosen to mirror the
frequencies most commonly observed in Parkinsonian
resting tremor. However, we acknowledge the broader
spectrum of tremor frequencies reported across varying
studies and the individual variability among patients with
Parkinson’s disease. Future research could expand upon our
fndings by incorporating a wider frequency analysis, which
may reveal more about the nuanced nature of tremor
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Figure 8: (a) Confusion matrix and (b) normalised confusion matrix for the out-of-sample predictions on the instances discarded during
the undersampling technique. With an overall classifcation accuracy of 0.94, out-of-sample performance is comparable to in-sample
performance.
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expressions in diferent subtypes of the disease. Such a tai-
lored approach could lead to more personalized diagnostic
and monitoring tools.

As we continue to refne the assessment of Parkinsonian
symptoms within free-living environments, our fndings
suggest that personalized tremor frequency profles could
hold signifcant promise for advancing precisionmedicine in
Parkinson’s care. Tis aligns with the need for a more
comprehensive understanding of tremor subtypes—resting,
postural, and kinetic—and their specifc clinical manifes-
tations. Our current system sets a foundation for this ad-
vancement, with the potential to include subtype-specifc
tremor characteristics in subsequent iterations. Tis evo-
lution in our system’s capabilities could ofer critical insights
for developing individualized treatment strategies and en-
hancing the quality of life for those afected by PD.

Te recognition of tremor subtypes—resting, postural,
and kinetic tremors—is fundamental in the clinical assess-
ment of Parkinson’s disease (PD). Each subtype has dis-
tinctive characteristics and clinical implications that are
critical for accurate diagnosis and treatment planning. Our
tremor-classifcation system, while not designed to distin-
guish between these subtypes in its current iteration, lays the
groundwork for future systems that could integrate subtype-
specifc features. Tis could further refne the monitoring and
assessment of PD symptoms in free-living environments.

4.3. Expanding Applications beyond Parkinsonian Symptom
Assessment. Te utility of machine learning-based motor
symptom classifcation systems transcends beyond parkin-
sonian symptom assessment in free-living patients. Tese
computational models could be custom-tailored for patients
with a diverse range of movement disorders, including es-
sential tremor and gait disturbances, ofering a versatile tool
for symptom monitoring and personalized treatment
strategies.

Moreover, postclassifcation tremor-related signals hold
promise for enhancing therapeutic interventions. Tese
signals could serve as integral components in the design of
closed-loop deep brain stimulation systems, potentially re-
fning the optimization of stimulation parameters. By dy-
namically responding to patients’ fuctuating symptom
severity, such systems could ofer a more targeted and ef-
fcient therapeutic response.

Furthermore, the integration of these classifed signals
with neurofeedback methods ofers a promising avenue for
mitigating motor symptoms. Such techniques harness the
power of real-time brain-computer interfaces, enabling
patients to consciously control and reduce the manifestation
of their symptoms, as demonstrated in [33]. Tese in-
novative applications underscore the transformative po-
tential of machine learning in revolutionising symptom
management for patients with movement disorders.

5. Conclusion

We implemented a tremor-classifcation system that can be
trained on a modestly sized and highly unbalanced dataset.

Tis machine learning implementation displayed a high
accuracy (tremor detection sensitivity of 0.9 and overall
classifcation accuracy of 0.88) for addressing the crucial
problem of monitoring tremor fuctuations in free-living PD
patients.
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