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Background. Children and adolescents with type 1 diabetes mellitus (T1IDM) are frequently hospitalised for severe hypoglycaemia,
hyperglycaemia, and diabetic ketoacidosis (DKA). While several risk factors have been recognised, clinically identifying these
children at high risk of acute decompensation remains challenging. Objective. To develop a risk prediction model to accurately
estimate the risk of acute healthcare utilisation due to severe hypoglycaemia, hyperglycaemia, and DKA in children and adolescents
with TIDM. Materials and Methods. Using a retrospective dataset, baseline demographic and clinical data were collected from
patients (<18 years) seen at a regional paediatric diabetes clinic from 1 January 2018 to 1 January 2020. The outcome was the
number of emergency department presentations or hospital admissions for severe hypoglycaemia, hyperglycaemia, and DKA
across the study period. Variables that were significant in univariate analysis were entered into a multivariable model. Receiver
operator characteristic (ROC) curves assessed the model’s discrimination and generated cut-offs for risk group stratification
(low, medium, and high). Kaplan—Meier survival analysis measured time to acute healthcare utilisation across the risk groups.
Results. Our multivariable risk prediction model consisted of five predictors (continuous glucose monitoring device, previous acute
healthcare utilisation, missed appointments, and child welfare services involvement and socioeconomic status). The model
exhibited good discrimination (area under the ROC =0.81), accurately stratified children into low-, medium-, and high-risk
groups, and demonstrated significant differences between median time to healthcare utilisation. Conclusion. Our model identified
patients at an increased risk of acute healthcare utilisation due to severe hypoglycaemia, hyperglycaemia, and DKA.

1. Introduction

Over 1.1 million children and adolescents live with type
1 diabetes mellitus (T1DM) worldwide [1, 2]. Severe hypogly-
caemia and diabetic ketoacidosis (DKA) are preventable, life-
threatening complications of this disease. DKA is the leading
cause of death in children and adolescents with T1DM glob-
ally, with an annual mortality rate of 0.15%—0.51% [3-7]. In
Australia, 22.4% of children with TIDM will be hospitalised

due to DKA, and 10% of these children will be hospitalised
more than once for this complication in their lifetime [8].
Severe hypoglycaemia can precipitate seizures and comas
[9-11]. On average, patients with TIDM experience this com-
plication once to twice per year [12], with the highest risk
among young children [13, 14].

Hospitalisation due to these acute issues causes a range of
biopsychosocial effects. Firstly, being hospitalised for disease
complications is emotionally distressing to children and
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adolescents [3, 12, 15]. Repeated hospital admissions disrupt
school attendance and impair the child’s and their family’s
quality of life [12, 16, 17]. Hospital attendance and admission
are also costly to the community due to interruptions to carer
employment [8], long average lengths of stay [12], and fre-
quent use of high dependency or intensive care units
[3, 8, 12]. Preventing these complications with timely inter-
vention is crucial to reducing the burden of this disease on
children, their parents, and the community at large.

Unfortunately, identifying children at high risk of these
complications remains challenging. While several biological
[18-22], anthropomorphic [21-30], and sociodemographic
[8, 25, 27, 31-33] risk factors are associated with these com-
plications, there is currently no reliable way of using these
data to estimate a child’s personalised risk. Previous attempts
to do this have had important limitations. For instance,
Schwartz et al. [34] developed a psychosocial risk index for
poor glycaemic control, diabetes-related ED presentations,
and DKA episodes. However, this model was limited to socio-
demographic and psychosocial variables. Other factors influ-
encing T1DM outcomes were not examined, such as the type of
insulin therapy or patterns of glycaemic monitoring. Another
study by Glick et al. [35] developed a risk screening tool to
determine a child’s baseline risk of experiencing DKA or hypo-
glycaemia at the time of their TIDM diagnosis. Again, this
study only assessed sociodemographic or psychosocial risk fac-
tors; moreover, its efficacy in predicting risk at any point after
diagnosis remains unclear. Finally, Mejia-Otero et al. [33]
developed a model for predicting episodes of DKA among
children with TIDM; however, it was limited to only predicting
DKA episodes and similarly did not investigate the predictive
value of specific indicators of glycaemic control.

As the prevalence of childhood T1DM and its attendant
complication rises [1, 36], an accurate tool derived from
sociodemographic and clinical variables is needed to predict
and prevent acute healthcare utilisation in children with
T1DM. Therefore, the aim of this study was to develop a
clinical risk prediction tool to accurately estimate the risk
of acute healthcare utilisation due to severe hypoglycaemia
or DKA in children and adolescents with established TIDM.

2. Methods

We report our findings according to the Transparent Report-
ing of a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis (TRIPOD) guidelines [37].The Hunter
New England Human Research Ethics Committee granted
this project ethics approval (2021/PID00346).

2.1. Data Sources. We collected data by conducting a retrospec-
tive cohort study of the paediatric diabetes clinic in the Central
Coast Local Health District (CCLHD). The CCLHD is a large,
geographically distinct region in Australia. The paediatric
diabetes clinic is the only public paediatric diabetes service
in the region and provides care to all children with diabetes
in the district. The clinic provides care to approximately 160
children and adolescents with TIDM and is staffed by two
paediatricians, diabetes nurse educators, dietitians, and one
social worker.
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Children were included in this study if they (1) were aged
between 1 and 17 years, (2) had a duration of T1IDM of more
than 9 months at the time of enrolment, and (3) were seen at
the CCLHD paediatric diabetes clinic between 1 January
2018 and 1 January 2020. We excluded patients from our
study if they (1) had a new diagnosis of T1IDM with positive
IAA, TA2, or GAD antibody levels (less than 9 months at the
time of enrolment), (2) had another form of diabetes (as
suggested by antibody levels, genetic testing, or clinical his-
tory) or (3) were transitioning to the young adult diabetes
clinic. Nine months was chosen as the average period of the
“honeymoon” phase [38].

We extracted baseline and ongoing clinical data from the
electronic medical records (EMR) of participants. Baseline
was defined as their first routine clinic visit after 1 January
2018. We then extracted the data from each clinic visit until 1
January 2020 and observed participants from study enrol-
ment to 31 December 2020 to identify hospital presentation
or admission for diabetes-related complications.

2.2. Outcome. The primary outcome of our model was acute
healthcare utilisation, defined as emergency department (ED)
presentations or hospital admissions for (1) DKA, (2) hypergly-
caemia, or (3) severe hypoglycaemia, defined as a low blood glu-
cose event with severe cognitive impairment needing external
assistance to perform corrective actions in keeping with the
2018 ISPAD clinical practice consensus guidelines [39].
Participants who had planned hospital admissions for glycaemic
stabilisation were excluded (n=5). We manually reviewed all ED
presentations and hospital admissions to confirm that the
presentation was due to DKA, hyperglycaemia, or severe
hypoglycaemia as defined by the 2018 ISPAD Clinical Practice
Consensus Guidelines [39].

2.3. Predictors. Predictors for acute diabetic outcomes were
identified based on input from the CCLHD paediatric diabetes
team and a systematic review of the literature (Supplementary
file 1). Supplementary file 1 lists the definitions, data sources, and
timing of collection for each predictor variable. Predictors were
classified into modifiable and non-modifiable categories.
Non-modifiable predictors included gender, current age,
age at diagnosis, duration of diabetes, socioeconomic status,
acute healthcare utilisation in the previous 12 months, pres-
ence of neuropsychiatric comorbidities, and any involvement
with the Department of Communities and Justice (DC]J),
which is a state department that provides child protection
services. Socioeconomic status (SES) was coded based on the
Index of Relative Socioeconomic Advantage and Disadvan-
tage (IRSAD) quintiles, which summarise the economic and
social conditions of residents within an area based on the
2016 Australian Bureau Statistic calculator [40]. An IRSAD
score of one indicates “most disadvantaged”, and five indi-
cates “least disadvantaged”. Acute healthcare utilisation in
the previous 12 months due to DKA, hyperglycaemia with
ketosis, or severe hypoglycaemia was coded as “none”, “one
or two”, and “more than two”. The presence of neuropsychi-
atric comorbidities (defined as neurodevelopmental and psy-
chiatric disorders) was coded as “none”, “one or two”, or
“more than two” based on the manual review of EMR.
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Involvement with DCJ was extracted from the diabetes social
worker notes and coded as “no involvement, ever”, “previous
involvement”, and “current involvement”.

Modifiable predictors included glycosylated haemoglo-
bin (HbAlc), number of missed clinic visits in the previous
6 months (any scheduled appointment not attended, with on
average an appointment scheduled once every 3 months),
method of insulin administration, whether the child wore a
continuous glucose monitoring device (CGM) with hyper-
glycaemia or hypoglycaemia alarms, and average number of
blood glucose monitoring checks per day. Since April 2017,
the Australian Government has fully funded CGM products
for young people living with TIDM aged <21 years through
a national scheme. Glycaemic monitoring parameters varied
depending on the mode of monitoring. For participants who
wore CGM, we extracted their percentage of time in range,
percentage of wear time, and the number of calibrations per
day. For participants who wore insulin pumps, we extracted
the number of insulin boluses delivered per day and the
average number of days between site changes. Insulin pumps
are currently not funded by the Australian Government, and
patients usually obtain them via private health insurance
cover or the JDRF Insulin Pump Program for children who
meet the financial and clinical eligibility requirements. All
the insulin pumps used by participants in this study had a
low-glucose suspension option. HbAlc was collected as part
of routine clinic management using a DCA Vantage HbAlc
analyser. HbAlc values were recorded for each clinic visit
during their follow-up period and an average generated;
values greater than 14 (ie., above the range of the DCA
Vantage assay) were recorded as 14. The number of missed
clinic visits in the previous 6 months was extracted from
EMR and classified as “none”, “one”, or “two or more”.
CGM was coded as “yes” if the child wore CGM frequently
(>50% wear time) or “no” if the child did not have CGM or
was recorded in the participant’s EMR as infrequently wear-
ing CGM (<50% wear time). The average number of blood
glucose monitoring checks was only recorded for children
who did not wear CGM and instead performed fingerstick
blood glucose monitoring. This value was extracted from
their blood glucose meter download during their clinic
appointment and recorded in the participant’s EMR. The
method of insulin administration was defined as “multiple
daily injections” or “insulin pump”. CGM and insulin pump
parameters were extracted from each device’s download,
uploaded to the child’s EMR at every clinic appointment.

2.4. Missing Data. We planned to handle missing data with
complete case analysis.

2.5. Statistical Analysis. We summarised data as absolute
numbers and percentages for categorical variables, means
with standard deviations for normally distributed continu-
ous variables, and medians with interquartile ranges for non-
normally distributed variables.

To estimate the relationship between our predictors and
outcomes, we conducted univariate analyses using logistic
regression to estimate the effect of a single unit change in
our predictor on the odds of experiencing an acute diabetic

complication during our study period. We accepted a p value
of <0.05 as significant and did not adjust for multiple testing,
as the primary purpose of our study was hypothesis genera-
tion. Variables that were significant predictors in the initial
analyses were then included in a multivariable logistic regres-
sion where the outcome was any acute healthcare utilisation
due to acute diabetic complications. We then sequentially
removed variables that contributed <1% to the model’s
pseudo-R-squared value to generate the most parsimonious
multivariable model.

We applied our final multivariable equation to each child
in our cohort. This generated a baseline score for each child.
We then generated receiver operator characteristic (ROC)
curves to assess the sensitivity and specificity of the model
at predicting acute healthcare utilisation due to acute diabetic
complications during the entire study duration, as well as at
6, 12, 18, and 24 months from baseline. Using the cut-offs
derived from our full study duration ROC curve, we further
divided our cohort into three groups: (1) low risk, who had
scores below the 95% sensitivity threshold (n=25); (2) high
risk, who had scores above the 90% specificity threshold
(n=27); and (3) moderate risk, who had scores between
these thresholds (n=51).

We also generated Kaplan—Meier survival curves and
conducted Cox regression to compare time to acute health-
care utilisation among risk groups. We assessed proportional
hazard assumption both graphically and numerically and
performed log-rank tests to assess the equality of survivor
functions across our risk groups. We then generated both
mean and median time to acute healthcare utilisation for
each of these groups.

Additionally, we conducted repeated measures analyses
using linear mixed models and an unstructured covariance
matrix. We set HbAlc as our outcome and categorical risk
factors as our exposures to assess these relationships within
participants over time. Analyses were adjusted for age, sex,
and study duration.

Finally, we conducted negative binomial regression to
assess the relationship between risk groups and the number
of acute healthcare utilisation episodes. Although we observed
several zero-counts, we found no evidence that this was sec-
ondary to inflation. We used negative binomial regression
instead of a standard Poisson regression because the variance
of our outcome was higher than the mean. We conducted all
analyses on STATA 15.

3. Results

There were 103 patients aged 1-17 years with established
T1DM observed at the CCLHD paediatric diabetes clinic
between 1 January 2018 and 1 January 2020 who met the
inclusion criteria. Thirty-nine patients presented with acute
healthcare utilisation during this time. The baseline demo-
graphic and clinical characteristics of these patients are sum-
marised in Table 1. In general, the cohorts that experienced
acute healthcare utilisation had a slightly higher baseline
HbAlc, were more likely to use multiple daily injections,
were less likely to use CGM, had more acute healthcare
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TasLE 1: Baseline characteristics by acute healthcare utilisation.
Characteristic Children who experienced Children who experienced
no AHU (n=64) AHU (n=39)

Baseline age (years); median (IQR) 12 (24.0) 11 (23.0)
Gender (N (%))

Male 27 (42.2) 22 (56.4)

Female 37 (57.8) 17 (43.6)
Duration of diabetes (years); median (IQR) 5 (10.5) 4 (9.0)
Age at TIDM diagnosis (years); median (IQR) 5.5 (12.0) 7 (15.0)
Baseline HbA1lc (%); median (IQR) 8 (15.9) 8.6 (17.4)
Method of insulin administration (N (%))

Multiple daily injections 26 (40.6) 24 (61.5)

Insulin pump 38 (59.4) 15 (38.5)
Continuous glucose monitoring (CGM) device (N (%))

No 28 (43.8) 27 (69.2)

Yes 36 (56.3) 12 (30.8)
Acute healthcare utilisation in previous 12 months (N (%))

None 58 (90.6) 24 (61.5)

1 event 4 (6.3) 5(12.8)

>2 events 2 (3.1) 10 (25.6)
Missed clinic visits in previous 6 months (N (%))

None 59 (92.2) 25 (64.1)

1 visit 4 (6.3) 7 (18.0)

>2 visits 1(1.6) 7 (18.0)
Number of neuropsychiatric comorbidities (N (%))

None 49 (76.6) 24 (61.5)

1or2 14 (21.9) 12 (30.8)

>3 1(1.6) 3(7.7)
Involvement with DCJ (N (%))

No involvement, ever 60 (93.8) 31 (79.5)

Previous involvement 2 (3.1) 0 (0.0)

Current involvement 2(3.1) 8 (20.5)
SES, by IRSAD quintiles (N (%))

Ist quintile (most disadvantaged) 7 (10.9) 10 (25.6)

2nd quintile 25 (39.1) 10 (25.6)

3rd quintile 12 (18.8) 9 (23.1)

4th quintile 15 (23.4) 7 (18.0)

5th quintile (least disadvantaged) 5(7.8) 3(7.7)
Study duration (days); median (IQR) 563 (1,064) 540.5 (647.0)

AHU, acute healthcare utilisation; IQR, interquartile range; T1IDM, type 1 diabetes mellitus; HbAlc, glycosylated haemoglobin; DCJ, Department of Com-
munities and Justice; SES, socioeconomic status; IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage.

utilisation episodes in the 12 months preceding baseline, had
more missed clinic appointments, had more neuropsychiat-
ric comorbidities, were more likely to have an active DCJ
case, and were more likely to be in the lowest IRSAD quintile.
Both cohorts were similar in age, gender, age at onset, and
duration of diabetes. Overall, there was complete informa-
tion about the predictors and outcomes for our analysis.

3.1. Model Development. Eight individual predictors (base-
line HbAlIc, insulin administration method, CGM device
worn, previous acute healthcare utilisation, missed clinic vis-
its, DCJ involvement, SES, and number of insulin boluses per
day) were significant in univariate analyses for DKA, severe

hypoglycaemia, or acute healthcare utilisation (Table 2). For
DKA, significant predictors included elevated baseline
HbAlc (=0.57; 95% CI, 0.24-0.90; p <0.01), no CGM
wear (CGM wear, f=—1.17; 95% CI, —2.27 to —0.07; p=
0.04), two or more episodes of acute healthcare utilisation in
the last 12 months (#=3.19; 95% CI, 1.71-4.67; p<0.01),
and an active DCJ case (f=2.64; 95% CI, 1.16-4.11;
p<0.01). Only participants on multiple daily insulin injec-
tions (instead of insulin pump) were significantly associated
with severe hypoglycaemia (insulin pump, f=-2.29; 95%
CI, —4.41 to —0.17; p=0.03). Parameters associated with
acute healthcare utilisation were elevated baseline HbAlc
(=0.40; 95% CI, 0.11-0.69; p <0.01), multiple daily insulin
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TasLE 2: Univariate relationship between predictors, diabetic ketoacidosis, severe hypoglycaemia, and acute healthcare utilisation.

Diabetic ketoacidosis
(n=20)
£ (95% CI)

Individual predictors

Severe hypoglycaemia
(n=9)
p (95% CI)

Acute healthcare
utilisation (n=39)
£ (95% CI)

0.03 (—0.13 to0 0.18)
—0.12 (~1.10 to 0.86)
—0.02 (=0.15 to 0.11)

0.04 (—0.09 to 0.18)

0.57 (0.24 to 0.90)
—0.07 (—1.05 to 0.90)

Baseline age (years)

Female gender

Duration of diabetes (years)
Age at TIDM diagnosis (years)
Baseline HbAlc (%)

Insulin pump

CGM device (yes)

Acute healthcare utilisation in the previous 12 months (ref: none)

0.84 (=0.88 to 2.56)
3.19 (1.71 to 4.67)
0.40 (—0.03 to 0.82)

1 event

>2 events
Number of missed clinic visits in the previous 6 months
Number of neuropsychiatric comorbidities (ref: none)

1 0.92 (=0.13 to 1.97)

>2 0.63 (~1.72 to 2.98)
Active DCJ case (ref: no involvement) 2.64 (1.16 to 4.11)
SES, IRSAD quintiles (ref: 1st quintile)

2nd quintile —0.97 (—2.30 to 0.36)
—1.19 (-2.76 to 0.39)

—1.70 (—3.46 to 0.06)

3rd quintile
4th quintile

—1.17 (=2.27 to —0.07)

0.11 (=0.11 to 0.34)
—0.35 (=1.73 to 1.02)
0.03 (—0.14 to 0.21)
0.05 (—0.13 to 0.23)
0.08 (—0.33 to 0.49)

—2.29 (—4.41 to —0.17)

—1.21 (—2.83 to 0.41)

0.29 (—1.93 to 2.51)
—0.03 (—2.22 to 2.16)
0.40 (=0.10 to 0.89)

—0.07 (=1.74 to 1.59)
1.31 (~1.10 to 3.73)
Nil cases

—1.26 (~3.16 to 0.63)
—0.25 (—2.00 to 1.49)
—1.50 (—3.87 to 0.86)

—0.01 (=0.13 to 0.11)
—0.57 (—1.38 to 0.23)
—0.07 (=0.18 to 0.04)
0.06 (—0.05 to 0.17)
0.40 (0.11 to 0.69)
—0.85 (—1.66 to —0.03)
—1.06 (—1.90 to —0.22)

1.11 (—0.29 to 2.50)
2.49 (0.90 to 4.08)
1.01 (0.27 to 1.76)

0.56 (—0.35 to 1.47)
1.81 (—0.50 to 4.13)
2.05 (0.44 to 3.66)

—1.27 (—2.49 to —0.06)
—0.64 (—1.94 to 0.65)
—1.12 (—2.44 to 0.20)

5th quintile
BMI Z-score (percentile)
Predictors for children with CGM device
Baseline time in range (%)
Baseline wear time (%)
Baseline average number of calibrations per day
Predictor for children with no CGM device
Baseline number of BGM checks per day
Predictors for children with insulin pump
Baseline average number of days between set changes
Baseline average number of boluses per day

0.10 (—1.65 to 1.84)
—0.55 (—2.42 to 1.33)

—0.07 (=0.15 to 0.02)
—0.01 (=0.07 to 0.05)
—0.06 (=0.34 to 0.22)

—0.13 (=0.41 to 0.16)

0.27 (—0.26 to 0.80)
—0.40 (—0.83 to 0.02)

Nil cases
—1.02 (—3.43 to 1.39)

—0.87 (—2.59 to 0.86)
—0.68 (=2.22 to 0.86)

—0.08 (—0.19 to 0.04)
0.03 (—0.09 to 0.16)
—0.47 (~1.34 to 0.41)

—0.04 (=0.09 to 0.01)
0.00 (—0.05 to 0.04)
—0.11 (=0.31 to 0.09)
—0.07 (=043 t0 0.29)  —0.12 (=0.36 to 0.13)

—0.44 (=2.55 to 1.67)
0.27 (—0.43 to 0.96)

0.23 (—0.27 to 0.72)
—0.40 (—0.77 to —0.03)

CI, confidence interval; T1IDM, type 1 diabetes mellitus; HbAlc, glycosylated haemoglobin; CGM, continuous glucose monitoring; DCJ, Department of
Communities and Justice; SES, socioeconomic status; IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage; BMI, body mass index. Bolded

values indicate a p value <0.05.

injections (insulin pump, = —0.85; 95% CI, —1.66 to —0.03;
p=0.04), no CGM device (CGM wear, f=—1.06; 95% CI,
—1.90 to —0.22; p=0.01), multiple hospitalisations in the
last 12 months (f=2.49; 95% CI, 0.90—4.08; p <0.01),
increased number of missed clinic visits in the last 6 months
(f=1.01; 95% CI, 0.27-1.76; p <0.01), active DCJ case (=
2.05; 95% CI, 0.44-3.66; p=0.01), low SES (2nd IRSAD
quintile, f=-1.27; 95% CI, —2.49 to —0.06; p =0.04), and
reduced number of insulin boluses per day (= —0.40; 95%
CI, —0.77 to —0.04; p=0.04).

In addition to study duration, these eight variables were
entered into multivariable analysis. The final parsimonious
model retained five predictors: CGM wear (ff =—0.86; 95%
CI, —1.92-0.21; p=0.12), acute healthcare utilisation in the
previous 12 months (1 event, #=1.80; 95% CI, 0.07-3.53;
p=0.04; >2 events, f=2.87; 95% CI, 0.52-5.22; p=0.02),
number of missed clinic visits in the previous 6 months

(1 visit, f=0.70; 95% CI, —1.02-2.43; p = 0.43; >2 visits,
=2.38;95% CI, 0.06—4.70; p = 0.04), active involvement with
DCJ (f=1.61; 95% CI, —0.26-3.49; p =10.09), and SES (see
Table 3). Previous acute healthcare utilisation and number of
missed clinic visits remained significant in multivariable
analysis. The final model accounted for 26% of the variance
in children who experience diabetes-related acute healthcare
utilisation.

3.2. Model Assessment: Receiver Operator Characteristic
Curves. Table 4 indicates the area under the curve (AUC)
values for the model’s discrimination at predicting acute
healthcare utilisation at 6, 12, 18, and 24 months and the
full study period (906 days). The model indicated low dis-
crimination at 12 months (AUC =0.67; 95% CI, 0.55-0.78)
and moderate discrimination at 6 (AUC=0.79; 95%
CI, 0.64-0.94), 18 (AUC=0.79; 95% CI, 0.69-0.89), and
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TasLE 3: Multivariable relationship of parsimonious multivariable model.

Acute healthcare utilisation

B (95% CI) P

CGM device (yes vs. no)
Acute healthcare utilisation in the previous 12 months (ref: none)
1 event
>2 events
Number of missed clinic visits in the previous 6 months (ref: none)
1
>2
Active involvement with DC]J (ref: no involvement)
SES, IRSAD quintile (ref: 1st quintile)
2nd quintile
3rd quintile
4th quintile
5th quintile

—0.86 (—=1.92 to 0.21) 0.12
1.80 (0.07 to 3.53) 0.04
2.87 (0.52 to 5.22) 0.02
0.70 (—1.02 to 2.43) 0.43
2.38 (0.06 to 4.70) 0.04
1.61 (—0.26 to 3.49) 0.09

—1.16 (—2.71 to 0.38) 0.14

—0.65 (—2.23 to 0.93) 0.42

—0.47 (—2.06 to 1.13) 0.57

—2.26 (=5.03 to 0.52) 0.11

CI, confidence interval; CGM, continuous glucose monitoring; DCJ, Department of Communities and Justice; SES, socioeconomic status; IRSAD, Index of
Relative Socioeconomic Advantage and Disadvantage. Multivariable analysis controlled for study duration. Bolded values indicate significance (p<0.05).

TasLE 4: Discriminatory utility of parsimonious multivariable model.

AHU at 6 months  AHU at 12 months

AHU at 18 months

AHU at 24 months ~ AHU for full study period

AUC (95% CI)
Sensitivity

0.79 (0.64-0.94) 0.67 (0.55-0.78)
0.69 0.61

Specificity 0.78 0.77

0.79 (0.69-0.89)

0.78 (0.68-0.89)
0.70
0.76

0.81 (0.72-0.90)
0.68
0.84

0.72
0.75

AHU, acute healthcare utilisation; AUC, area under the receiver operating characteristic curve.

24 months (AUC=0.78; 95% CI, 0.68-0.89) and performed
its best for the full study period (AUC=0.81; 95% CI,
0.72-0.90).

The ROC curve of the final model (Figure 1) provided
values that corresponded to a 95% sensitivity and 90% spec-
ificity for predicting acute healthcare utilisation during the
tull study period. These equated to scores of 0.17 and 0.49,
respectively. We therefore defined the model’s risk groups as
follows: (1) low-risk group for acute healthcare utilisation,
participants with a score of less than 0.17; (2) high-risk group
for acute healthcare utilisation, participants with a score
greater than 0.49; and (3) moderate-risk group for acute
healthcare utilisation, participants with scores between 0.17
and 0.49.

3.3. Survival Time Analyses. Cox regression of our survival
data showed that participants in the high-risk group were
11.7 (95% CI, HR 2.75-49.99) times more likely to experience
acute healthcare utilisation compared to low-risk participants
(Table 5). Similarly, moderate-risk participants experienced
acute healthcare utilisation 3.5 times more frequently (95%
CIL, HR 0.80-15.38), though this result was not statistically
significant. We assessed the proportional hazard assumption
numerically (proportional hazards test, p = 0.40) and visually,
which suggested that the assumption was met. The differences
in time to acute healthcare utilisation between risk groups are
clearly illustrated in Figure 2. Low- and moderate-risk groups
experienced a significantly longer time to acute healthcare
utilisation compared to high-risk participants. The median

time to acute healthcare utilisation was 295 days for partici-
pants in the high-risk group (95% CI, 175-605) and 765 days
in the moderate-risk group (95% CI, inestimable) and could
not be ascertained for the low-risk group, as a significant
proportion of these participants did not experience the pri-
mary outcome during the study duration.

3.4. Negative Binomial Regression: Number of Acute Healthcare
Utilisation Episodes. We also conducted negative binomial
regression to determine the relationship between our risk groups
and the number of acute healthcare utilisation episodes. Our
results showed that even when age, study duration, sex, and
baseline HbAlc were controlled, the incidence rate ratios for
acute healthcare utilisation were 6.94 (95% CI, 1.37-35.26) to
35.5 (95% CI, 6.48-194.55) times higher in moderate- and high-
risk groups, respectively, compared to the low-risk group
(Table 6).

3.5. Repeat Measures Analyses: Linear Mixed Models. We
generated linear mixed models adjusted for age, gender, and
study duration to examine the trajectories of glycaemic con-
trol within our risk groups over time (Supplementary file 1).
Figure 3 demonstrates that compared to low-risk participants,
high-risk participants had consistently higher mean HbAlc
readings over time (f=1.54; 95% CI, 0.72-2.36). These dif-
ferences were more pronounced between the Ist to 3rd and
6th to 8th appointments, though only the former was statisti-
cally significant. We then examined each of the variables that
comprise the score with linear mixed models. These models
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FiGure 1: ROC curve for diagnostic ability to predict acute healthcare utilisation.

TasLe 5: Cox hazard ratios of parsimonious multivariable model.

Parsimonious multivariable model

Model group Hazard ratio (95% CI) p
Low risk — —
Moderate risk 3.51 (0.80-15.38) 0.10
High risk 11.73 (2.75-49.99) <0.01
Proportional hazard assumption 0.40
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FiGure 2: Kaplan—Meier survival curves for time to acute healthcare
utilisation by risk groups.

showed that the mean HbAlc was persistently lower among
participants wearing CGM at baseline (f=-1.06; 95% CI,
—1.72 to —0.43; Supplementary file 1). Contrastingly, the

mean HbAlc was persistently higher among participants with
acute healthcare utilisation in the 12 months preceding baseline
(p=1.66; 95% CI, 0.62-2.68; Supplementary file 1) as well as
participants with an active DCJ case at baseline (#=1.70; 95%
CI, 0.60-2.82; Supplementary file 1). Over time, the differences
between groups diminished. We found no consistent relation-
ships between SES and HbA1c (data not presented). Finally, we
compared HbA1c over time between participants with and with-
out acute healthcare utilisation during our study period; as
expected, participants with acute healthcare utilisation had per-
sistently higher HbAlc, an effect that was amplified with time
(=0.94; 95% CI, 0.28-1.60; Figure 4).

4. Discussion

Children and adolescents with TIDM are at an increased risk of
being hospitalised for acute, life-threatening diabetic complica-
tions. Early identification of children at greater risk of experienc-
ing these preventable complications may allow for early targeted
intervention. This could reduce the morbidity, cost, and risk of
mortality associated with diabetic decompensation. While sev-
eral risk factors are associated with developing these complica-
tions, there is currently no unified tool that synthesises these risk
factors into an individualised risk score for children with TIDM.
The main aim of our study was, therefore, to develop a tool to
predict a child’s risk of requiring ED presentation or hospital
admission for DKA, hyperglycaemia, or severe hypoglycaemia
using a simple suite of known risk factors.

4.1. Comparison with Existing Literature and Novel Risk
Factor Findings. Our univariate analyses of risk factors for
acute diabetic complications were largely consistent with
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TasLE 6: Negative binomial regression of the number of acute healthcare utilisation episodes on risk group, adjusted for age, sex, baseline

HbAlc, and study duration.

P (95% CI) IRR (95% CI) P
Moderate risk 1.94 (0.31 to 3.56) 6.94 (1.37 to 35.26) 0.02
High risk 3.57 (1.87 to 5.27) 35.51 (6.48 to 194.55) <0.01
Age (years) 0.1 (—=0.04 to 0.24) 1.1 (0.96 to 1.27) 0.17
Female sex —0.36 (—1.19 to 0.46) 0.7 (0.3 to 1.59) 0.39
Baseline HbAlc 0.01 (—0.3 to 0.32) 1.01 (0.74 to 1.38) 0.94
Chibar 91.64 — <0.01
14 inconsistent relationships between gender, age, and acute dia-
betic complications; this result conforms with the existing litera-
b ture, which itself reports mixed findings (Supplementary file 1).
. We also contribute several novel observations. Firstly, we
% observed that CGM was associated with a reduced risk of
f: 10 acute healthcare utilisation; in our study, children who wore
T CGM were 1.17 times less likely to experience DKA (95% CI,
8 D S— —2.27 to —0.07; p=10.04) and 1.06 times less likely to require
acute healthcare utilisation (95% CI, —1.90 to —0.22; p=
6 0.01). These children also had lower mean HbAlc values
; ; 7 . . : ; 2 5 over time (Supplementary file 1). While CGM wear has pre-
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FiGure 3: HbAlc trends by multivariable risk groups.
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FIGURE 4: HbA1c trends by acute healthcare utilisation.

existing literature (Supplementary file 1). In our analyses, lower
baseline HbAlc [18, 22, 27, 29, 33, 41, 42], use of an insulin
pump [25], no acute healthcare utilisation in the previous 12
months [22, 33], a lower number of missed clinic visits [21],
and higher SES [31] were each associated with a reduced risk of
acute diabetic complications (see Table 2). We observed

viously been correlated with optimised glycaemic variability
in children and adolescents [43, 44] and reduced hospitalisa-
tion rates in adults with TIDM [45], our observed associa-
tion between CGM wear and reduced acute diabetes-related
healthcare utilisation is novel among children and adoles-
cents with TIDM. An important explanation for this finding
could be that CGM technology provides real-time feedback
about glycaemic control [46-48]. Instant access to blood
glucose levels may, therefore, enhance the ability of wearers
or carers to make effective decisions around insulin dosing or
diet [49]. We also observed that an increased number of
missed appointments was associated with an increased risk
of acute healthcare utilisation; this association remained sig-
nificant across univariate and multivariate analyses. Reasons
for missing appointments may be complex and multifacto-
rial, incorporating several unobserved biopsychosocial fac-
tors [50-53].

We also contribute novel observations regarding sociodemo-
graphic predictors of diabetic decompensation. In our study,
children with active DCJ involvement were more than twice as
likely to experience DKA (f=2.64; 95% CI, 1.16-4.11;
p = <0.01) and present to ED or be hospitalised for acute dia-
betic complications (=2.05; 95% CI, 0.44-3.66; p=0.01). To
our knowledge, this has not been explored elsewhere in the
literature. While we could not identify any specific mechanistic
link to glycaemic control, this reflects another sociodemographic
variable that may have long-term consequences on healthcare
outcomes among children with TIDM. Australian socioeco-
nomic status, defined by the Index of Relative Socioeconomic
Disadvantage (IRSAD), was another novel predictor of acute
healthcare utilisation. In our study, we observed that participants
from higher IRSAD quintiles were less likely to experience acute
healthcare utilisation compared to participants in the most
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disadvantaged (1st) IRSAD quintile. The difference was most
pronounced among the 2nd quintile for acute healthcare utilisa-
tion (f=—-1.27; 95% CI, —2.49 to —0.06; p = 0.04). Contrast-
ingly, children from the most advantaged IRSAD quintile
exhibited a similar risk of diabetic ketoacidosis to those from the
lowest quintile (4 =0.10; 95% CI, —1.65-1.84); for this outcome,
IRSAD followed a “U-shaped” pattern. While socioeconomic
disadvantage is a known risk factor for acute diabetic complica-
tions [21, 31], our findings will require replication in larger
cohorts. Nonetheless, we contribute important data examining
the association between an Australian SES index and a child’s
risk of adverse diabetic outcomes.

In addition to these findings, we also made observations
contrary to our initial hypothesis. First, several well-established
variables were uninformative or insignificant in our final multi-
variable model; these included baseline HbA 1¢, wearing an insu-
lin pump, and the number of daily boluses delivered via an
insulin pump. Although these variables were significant inde-
pendent predictors of acute diabetic complications in univariate
analyses, our sample size may have been too small to detect
significant differences in a multivariable model with several other
variables. Alternatively, simultaneous adjustment for variables
linked to these risk factors may have diminished their individual
effect; this would explain why, respectively, each of these vari-
ables contributed less than 1% to our final model’s R-squared
value in the presence of other explanatory variables. Another
unexpected finding was the lack of association between our
predictors and severe hypoglycaemia; only insulin pump therapy
was significant in univariate analyses. Again, this may be due to
the small number of participants who experienced this outcome
in our cohort (1 =9). Nonetheless, a child’s risk for severe hypo-
glycaemia was significantly reduced 2.29 times if they were man-
aged with an insulin pump compared to those on multiple daily
injections (95% CI, —4.41 to —0.17; p=10.03). This finding
underscores the role of iatrogenic hypoglycaemia among chil-
dren with T1DM [25, 27, 30].

4.2. Prediction Model. The primary aim of this study was to
develop a prediction tool to identify children at risk of
experiencing acute diabetic complications. Our final model
comprised five predictors and had good discrimination at 6,
18, and 24 months (see Table 4 for ROC values). We then
categorised our cohort into low-, moderate-, and high-risk
groups using 95% sensitivity and 90% specificity cut-offs
from the full study duration. Our analyses showed that parti-
cipants from the high-risk group experienced globally worse
outcomes. Compared to their low-risk peers, high-risk parti-
cipants (1) were 11.7 times more likely to experience acute
diabetic healthcare utilisation, (2) had a 35 times higher inci-
dence rate ratio for repeated episodes of acute diabetic health-
care utilisation, and (3) experienced acute diabetic healthcare
utilisation hundreds of days sooner. Using linear mixed mod-
els, we then showed that glycaemic control was persistently
worse in the high-risk group over time and replicated this
finding among each of the variables that comprise the model
except for SES. Furthermore, 50% of these high-risk children
required acute healthcare utilisation by 314 days; in compari-
son, this event took more than twice longer (765 days) among

moderate-risk children. Our model did not perform well at
12 months (AUC =0.67). The specific mechanism for this
remains unclear. These analyses were adjusted for age, gender,
and study duration.

Our results suggest that a simple suite of baseline char-
acteristics could estimate future risk of acute healthcare uti-
lisation. This could assist healthcare providers to effectively
allocate resources towards children who are more likely to
experience diabetic decompensation. Depending on the local
clinical context and medical record setup, it might be possi-
ble to have a semi-automated system, and after further vali-
dation work, we plan to provide an open access interactive
web app that would perform the necessary calculations. Sec-
ondly, we observed that similar children with TIDM can
experience vastly different outcomes. In our cohort, diabetic
outcomes varied by access to external support, and these sup-
ports had lasting effects on glycaemic control. This is rein-
forced by our finding that these factors have an ongoing
relationship with HbAlc over time; early intervention may,
therefore, change the trajectory of a child’s diabetic outcomes
into adulthood. Therefore, increasing access to (1) CGM, (2)
insulin pump devices, and (3) support services while dili-
gently following up on children who have missed appoint-
ments may reduce rates of acute diabetic decompensation, as
well as improve long-term glycaemic control. Finally, our
findings suggest that many factors affecting a child’s diabetes
remain out of their control, e.g.,socioeconomic status. In the
context of rapid technological development such as hybrid
closed loop insulin pumps [54, 55] and an increasing preva-
lence of TIDM [1, 56, 57], equity may play an increasingly
important role in the future of outcomes in childhood TIDM.

5. Strengths and Limitations

There are some important strengths to our study. Firstly, we
informed our analysis of predictive risk factors using a sys-
tematic literature search (Supplementary file 1), which iden-
tified 22 individual predictors; 11 of these were available and
explored in our dataset. Secondly, our study contributes sev-
eral novel findings; these include insights into the role of
CGM, dynamic monitoring parameters, and various socio-
demographic factors in the prediction of acute diabetic com-
plications in children with T1IDM. Finally, we contribute a
simple, five-variable risk prediction tool that could be used to
triage children with TIDM in resource-limited outpatient
settings.

Despite this, our study also has several limitations. Firstly,
our cohort was small (n =103). Important predictive variables
may have been omitted on this basis; we also did not adjust
our analyses for multiple testing and may have committed
type I error. Type II errors may have also been made; e.g.,
no cases of severe hypoglycaemia and DC]J involvement were
recorded limiting our ability to explore this association. Sec-
ondly, our study is a pilot; we have not yet validated our tool
temporally or with an external cohort. We postponed this
study component due to SARS-COV-2 public health orders
(lockdowns) in NSW and the CCLHD, which would likely
confound the associations between our baseline risk factors
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and diabetic decompensation among children in our cohort.
Our tool may, therefore, be unreliable in a pandemic setting.
Research suggests that in populations of children with estab-
lished T1IDM, COVID-19 is associated with increased rates of
hyperglycaemia but stable rates of hypoglycaemia [58]. Other
environmental factors, including lifestyle, eating habits, and
exercise, may also affect the incidence of acute complications.
Our study is also retrospective, and comorbidities were noted
from medical records instead of standardised assessments;
although we have identified potential therapeutic targets, it
is possible that interventions to optimise these risk factors
may be ineffective in prospective, randomised studies. Further
details not available in this study, such as reasons for missed
appointment, may allow for greater accuracy in model build-
ing. We did not find an increased risk of complications in
younger children, but this may have been related to our lim-
ited sample size and age distribution. Some of the variables in
our final model also may not be reproducible in other settings.
For example, a child’s involvement with DC]J is specific to the
Government of New South Wales, and we did not record the
indication for their involvement. Although there are child
welfare services in other states, this predictor would need to
be validated before implementing the tool. Socioeconomic
status was also measured by IRSAD quintiles, which the Aus-
tralian Bureau of Statistics provided. To implement the model
in another country, this variable would require modification.
Finally, there are several alternative methods of model build-
ing which we did not pursue; future studies should look to
combine individual patient data to attempt these approaches.
Ultimately, this would enhance the accuracy and applicability
of the model to diverse populations.

6. Conclusion

Acute healthcare utilisation occurs commonly among chil-
dren and adolescents with T1IDM due to diabetic decompen-
sation. These preventable episodes carry significant morbidity
and cost, but identifying children at high risk for these com-
plications remains challenging. We provide a simple risk pre-
diction model to estimate a child’s risk for acute healthcare
utilisation. Future feasibility testing and external and tempo-
ral validation of this model could establish it as a safe and
cost-effective way to preventing diabetic decompensation in
children and adolescents with TIDM.
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