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Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of four endogenous proteins that primarily function to inhibit
the activities of proteases such as the matrix metalloproteinases (MMP). Altered MMP/TIMP ratios are frequently observed in
several human diseases. During aging and disease progression, the extracellular matrix (ECM) undergoes structural changes in
which elastin and collagens serve an essential role. MMPs and TIMPs significantly influence the ECM. Classically, elevated
levels of TIMPs are suggested to result in ECM accumulation leading to fibrosis, whereas loss of TIMP responses leads to
enhanced matrix proteolysis. Here, we outline the known roles of the most abundant TIMP, TIMP2, in pulmonary diseases but
also discuss future perspectives in TIMP2 research that could impact the lungs. TIMP2 directly inhibits MMPs, in particular
MMP2, but TIMP2 is also required for the activation of MMP2 through its interaction with MMP14. The protease and
antiprotease imbalance of MMPs and TIMPs are extensively studied in diseases but recent discoveries suggest that TIMPs,
specifically, TIMP2 could play other roles in aging and inflammation processes.

1. Introduction

Tissue inhibitors of metalloproteinases (TIMPs) 2, one of
four members of the TIMP family, govern pericellular prote-
olysis of the extracellular matrix (ECM) and cell surface pro-
teins through inhibition of matrix metalloproteinases
(MMP) activity and are an important component in the reg-
ulation of ECM turnover [1]. MMPs consist of a family of
enzymes that are directly responsible for the degradation of
the ECM but also play a part in the pathogenesis of multiple
diseases, including lung diseases [2]. Importantly, MMPs do
play a major role in other physiologic processes, such as cell
migration and angiogenesis [3]. Thereby, MMPs facilitate
the maintenance of the cellular environment during
embryogenesis, morphogenesis, and continuous tissue
remodeling [4]. They function as endopeptidases, which
break apart amino acids within a molecule or exopeptidases,
which cleave the penultimate peptide bond. Their activity is
regulated by the expression of genes, zymogenic conversion,
and the presence of proteolytic inhibitors. Despite differ-

ences in affinity, all TIMPs are generally viewed as broad-
spectrum MMP inhibitors. TIMP1 has the highest affinity
for MMP9, which is implicated in immune cell function
and fibrosis in cardiovascular disease [5]. TIMP3 exhibits
the strongest interaction with low-density lipoprotein
receptor-related protein 1 (LRP-1), a disintegrin and metal-
loproteases (ADAM)10, angiotensin II type 2 receptor
(AT2R), MMP9, and MMP13 [6]. It also forms a complex
with MMP2, though TIMP2 is considered a more potent
inhibitor of MMP2 [7]. Finally, TIMP4, a key modulator of
MMP9 and PAR-1 activity [8], may decrease pro-MMP2
activation when coexpressed with TIMP2 [9].

TIMPs inhibit the activities of these MMPs, as well as
several ADAMs and ADAMs with thrombospondin type I
motifs (ADAMTSs) [10]. The extracellular localization of
TIMPs is controlled by LRP1-mediated endocytosis, which
dynamically regulates pericellular TIMPs, MMPs, and
ADAMs [11]. TIMPs also are known to exert diverse biolog-
ical functions independent of their ability to inhibit metallo-
proteinases. However, the majority of TIMP literature
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primarily focuses on their antiprotease functions, which we
will outline before evaluating other possible functions of
TIMP2, such as modulation of cell growth, proliferation,
inflammation, migration and inhibition of cellular invasion,
tumorigenesis, metastasis, angiogenesis, and cellular aging.

2. TIMP2: Function, Regulation, and Structure

TIMP2 is known to form noncovalent high-affinity com-
plexes with the following MMPs: MMP1, MMP2, MMP3,
MMP7, MMP8, MMP9, MMP10, MMP13, MMP14,
MMP15, MMP16, and MMP19 [12–14]. More specifically,
an MMP14 molecule binds to TIMP2 to form a complex
which acts as an adaptor for pro-MMP2. The binding of this
complex to pro-MMP2 occurs via the interaction of the
TIMP2 C-domain and the MMP2 hemopexin domain. Once
the tertiary complex is formed, a second MMP14 molecule
can act as an activator to cleave pro-MMP2 and release the
active MMP2 [15–17]. MMP2 is highly expressed in numer-
ous cancers including breast cancer [18], cervical cancer
[19], bladder cancer [20], gastric cancer [21], and lung can-
cer [22], which makes MMP2 an important anticancer ther-
apy target. Not only does MMP2 play a role in excessive
ECM degradation allowing for tumor cell metastasis and
invasion [23] but MMP2 is also implicated in cancer
advancement through cellular apoptosis, proliferation, and
angiogenesis [2, 24, 25]. MMP2 also plays a role in skin can-
cer, as B16 melanoma cells that express MMP2 have slower
kinetics in Tlr2-/-Tlr4-/- mice, which suggests that MMP2
overexpression could contribute to tumor growth [26].

Depending on the cell line and specific inhibitor, TIMPs
may have either inhibitory or stimulatory effects on cell
cycle. Both TIMP1 and TIMP2 can activate MMP2 and
MMP9 by binding MMP14 and ADAM 10 receptors on
the cell surface [17]. More specifically, the binding of TIMP2
to MMP14 allows cleavage of pro-MMP2 by a free MMP14
molecule, as active MMP2 can cleave pro-MMP9 leading to
dual gelatinase activity. TIMP2 can also bind α3β1 integrin
at the cell surface leading to SHP-1 activation which pro-
motes cell cycle arrest through nuclear localization of p27
[17]. Therapeutic agents may target pro-MMP2 activation
which occurs in the presence of MT1-MMP through extra-
cellular c-Src tyrosine kinase phosphorylation of TIMP2
[27]. Additionally, HT-1080 fibrosarcoma cells have
increased cyclic adenosine 3′,5′-monophosphate (cAMP)
levels when treated with purified recombinant TIMP2, sug-
gesting cell-surface binding of the TIMP2-pro-MMP2 com-
plex and activation of a second messenger system [28]. In
vitro studies suggest that the activation of proMMP-2 occurs
through formation of a trimolecular complex involving
MMP14, TIMP2, and proMMP2 at the cell surface [29].
Pro-MMP2 also forms a tight complex with TIMP2 in the
fibroblasts of mice, with Timp2-deficient mice incapable of
activating pro-MMP2 [30]. The loss of TIMP2 did not
adversely affect normal development, viability, or fertility
on the C57BL/6 background but led to a significant decrease
in activation of proMMP-2 [30]. Hence, TIMP2 does play a
significant role in MMP2-dependent activation and expres-

sion. It should be noted that there are also MMP14-
independent means of activating MMP2 [31].

The TIMP2 gene, located on chromosome 17q25.3, con-
tains 5 exons; all of which are separated by 4 introns of 54.8,
2.7, 9.1, and 1.7 kb [32]. However, only 2 transcripts of 1.2
and 3.8 kb are reported [33]. Ultimately, this gene codes
for a proprotein initially produced in the endoplasmic retic-
ulum with a size of 220 amino acids and a molecular mass of
24.4 kDa; though, when activated, the proprotein is cleaved
to generate the mature TIMP2, which is 194 amino acids
long with a mass of approximately 21 kDa [19]. TIMP2 is
expressed in the majority of cell types throughout the body
[7] and is the most widely expressed and observed TIMP
in all normal tissues [34]. In the developing human fetus,
TIMPs 1-3 are all detected in the fetal epithelium, while
TIMP2 and TIMP3 are the only TIMPs detected in the pul-
monary vascular endothelium [35]. In the fetal mouse,
TIMP2 is expressed on days 11.5 and 13.5 [36]. Cloning of
a 2.5 kb genomic portion of the human TIMP2 gene pro-
moter sequence identified 519 base pairs of the 5′ flanking
region; the initial codon is located at 432 base pairs [37].
The 5′ region has an increased G-C content and a noncod-
ing TATA DNA sequence (AATAAAA) located at 23-37
base pairs upstream from a collection of transcription start
points, several Sp1 motifs and one AP-2 motif, and an AP-
1 sequence at position 590 to 583 from the start codon
[37]. The position of the AP-1 sequence of TIMP2 is impor-
tant, as treatment with 12-O-tetradecanoylphorbol-13-ace-
tate only provokes a response within specific AP-1
consensus regions [38]. Methylation influences TIMP2 gene
expression [39, 40], as well as TIMP1 [41] and TIMP3 [42].
Further, hypermethylation of the TIMP2 promoter causes
transcriptional repression of TIMP2 levels in many types
of tumors, including lymphoma [43] and prostate cancer
[44], resulting in tumor metastasis through MMP activation.

TIMP2 mRNA differs from TIMP1 and TIMP3 by the
selection of polyadenylation signal sites [38]. The mRNA sta-
bility of TIMP2 is reasonably long with its mRNA’s half-life
(approximately 48 hours) being longer than the human β-
actin mRNA (20 hours) [38]. Therefore, changes in TIMP2
expression may not be dependent on mRNA stability. TIMP2
expression is negatively regulated by the microRNA, miR-410,
and is associated with non-small-cell lung cancer progression
[45]. TIMP2 is further downregulated by a feedback circuit
consisting of HIF-1α/miR-210/HIF-3α [46]. Equally, miR106a
suppresses TIMP2 expression resulting in enhanced cell pro-
liferation, migration, and invasion in human gastric cancer
cells in vitro [47]. Transcriptional suppression of TIMP2 in
C57BL/6 J mice is mediated by CCAAT enhancer-binding
protein alpha (CEBPA) and MYC following mono-2-
ethylhexyl phthalate exposure [48].

The TIMP2 protein is nonglycosylated and has 2 distinct
domains, an N-terminal domain containing 127 amino acids
and a C-terminal domain comprised of 67 amino acids; each
domain is stabilized by 3 disulfide bonds [49]. These disul-
fide loops located at the 1 netrin domain within the C-
terminal facilitate binding to hemopexin-like domains of
numerous members of the MMP-family, such as MMP2
[50]. Most of the interactions between TIMPs and their
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counterparts are made by the continuous ridge formed by the
N-terminal five residues, C-S-C-S-P [7]. Single-site mutations
in either the TIMP side chain (Cys1-Cys3 and Ser68-Cys72) or
the AB loop (Ser31-Ile41) significantly change its affinity for
MMPs, including MMP2 [51]. TIMP2 has an extended AB
loop when compared to other TIMPs, which allows it to form
a complex with MMP2 [52]. Carbamylation of the alpha-
amino group of the N-terminal Cys1may eventually inactivate
TIMP2 [53]. TIMP2 activation can also be regulated by DNA
methylation in cotyledon villous tissue, whereas investigators
show that TIMP2 concentration increases when treated with
lipopolysaccharide (LPS) but decreases when treated with
methylation inhibitor 5-aza-2′-deoxycytidine (AZA) [54].
Therefore, modulation of TIMP2 should directly influence
several MMPs, primarily MMP2 and MMP14, and impact
several biological functions (See Figure 1).

There is also currently some controversy regarding the
role that TIMP2 plays in cancers. Some data suggests that
TIMP2 biological activity acts as a tumor suppressor. While
there are various in vitro studies and clinical prognosis

reports linking TIMP2 with tumor cell survival and prolif-
eration. These oncogenic effects are contributed to
TIMP2’s interaction with MMP14 and subsequent down-
stream signaling [55]. This TIMP2 and MMP14 interac-
tions are linked to PI3K/Akt and MAP kinase signaling
activity [55, 56], but TIMP2 can also inhibit receptor tyro-
sine kinase signaling resulting in reduced proliferation
and/or angiogenesis [57, 58].

3. TIMP2 Signaling beyond MMPs

TIMP2 expression also influences several responses, includ-
ing those of mitogen-activated protein kinase (MAPK) [59]
and β-catenin [60]. TIMP2 also plays several roles in various
organs, such as growth-stimulatory activity [59], hippocam-
pal function in aged mice [61], and the promotion of leuke-
mia cell invasion [62]. Alternatively, Timp2 deficiency is
associated with abnormal motor function [63] and cognitive
dysfunction [64], as well as unfavorable outcomes in cancer
development [65]. TIMP2 expression is induced by
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Figure 1: The primary established functions of TIMP2. TIMP2 inhibits several MMPs that cleave a range of substrates that impact
structural and cellular aspects of tissue architecture. MMPs, membrane type 1 matrix metalloproteinase (MT1-MMP, also known as
MMP-14), and ADAMTS break down ECM and structural proteins during cell invasion, motility, and tumor progression. Through
proteolytic functions, TIMP2 affects a vast range of cellular processes in cells and the lung microenvironment. ADAMTS: a disintegrin
and metalloproteinase with thrombospondin domains; CCL: CC-chemokine ligand; CXCL: CXC-chemokine ligand; FGF: fibroblast
growth factor; FGFR1: FGF receptor 1; IL-1R: interleukin-1 receptor; KITL: KIT ligand; pro-HGF: prohepatocyte growth factor; TGF:
transforming growth factor; TNF: tumor necrosis factor; TNFR: TNF receptor; TNFLS11: tumor necrosis factor ligand superfamily
member 11; VEGF: vascular endothelial growth factor—created with http://BioRender.com.

3Pulmonary Medicine

http://biorender.com/


cytokines and chemokines, ROS, proliferation stimuli (such
as βFGF and EGF), and differentiation factors (such as reti-
noic acid and NGF). Overexpression of TIMP2 significantly
inhibited the production of nitric oxide (NO), tumor necro-
sis factor-alpha (TNFα), interleukin (IL) 1β, and ROS while
increasing anti-inflammatory IL-10 production in mouse
and rat microglia [66]. Alternatively, inflammatory
responses can trigger TIMP2 expression or activity. Li et al.
showed that TNFα and IL1β can regulate TIMP2 expression
in cardiac cells [67]. TIMP2 levels are suppressed in cardiac
fibroblasts by both cigarette smoke and aging [68]. IL-4 and
IL-13 signaling are also linked to the expression of TIMP2
[69]. Lee and Kim showed that inhibition of TIMP2 in
LPS-stimulated BV2 mouse microglial cells amplified the
production of proinflammatory cytokines [66]. Further,
overexpression of TIMP2 produces a neuroprotective effect
via the suppression of microglial activation through anti-
inflammatory Nrf2 and cAMP-response element-binding
protein transcription factors [22], suggesting that TIMP2
may play a significant anti-inflammatory role, see Table 1
for a summary of TIMP2 functions in diseases.

In addition to TIMP2’s function on MMP2, TIMP2
directly interacts with cell surface receptors [70], such as
the Janus kinase- (JAK-) signal transducer and activator of
transcription (STAT) 3 [71]. TIMP2 also negatively regu-
lates endothelial cell migration and invasion through α3β1
integrin [57]. TIMP2-deficient lung cancer cells grown in
spheroids exhibit enhanced epidermal growth factor recep-
tor (EGFR) signaling [72]. Putative targets for TIMP2 also
include insulin-like growth factor 1 receptor (IGF1R) and
LRP1/2 [73–75], see Figure 2 for a summary of TIMP2
interactions.

TIMP2 induces G1 cell cycle arrest by binding to human
endothelial cells through integrin α3/β1. This TIMP2 associ-
ation with G1 cell cycle arrest during the very early phase of
cellular damage can serve as a biomarker to predict acute
kidney injury in vivo [76]. In combination with insulin-like
growth factor binding protein (IGFBP) 7, TIMP2 can block
cyclin-dependent protein-kinase complex-mediated cell
cycle promotion, thereby resulting in G1 cell cycle arrest to
prevent the dividing of damaged cells [77]. TIMP2 also
inhibits the mitogenic response of endothelial cells to growth
factors, like vascular endothelial growth factor- (VEGF-) A
and fibroblast growth factor-2 in vitro and in vivo [78].
TIMP2 could also bind to the α3β1 integrin heterodimer
and thereby stimulate SHP1-mediated dephosphorylation
of fibroblast growth factor receptor 1 (FGFR1) or EGFR.
This would influence angiogenesis responses [57, 79]. Inter-
estingly, TIMP2 is reported to inhibit tubulogenesis in aged
human microvascular endothelial cell lines [80]. TIMP2
mediates growth arrest by inducing de novo synthesis of
kinesin-related motor protein 1 (KIP1) and possibly leading
to inhibition of cyclin-dependent kinase (CDK) 2 and CDK4
[81].

4. The Influence of TIMP2 Expression in
Pulmonary Diseases and
Associated Comorbidities

Timp2-deficient mice have no active lung MMP2 and do not
exhibit any gross morphological or phenotypic effects under
nonstressed conditions [30]. Within humans, increased
levels of MMP2 and TIMP2 were detected in the bronchial

Table 1: Known functions of TIMP2 and corresponding-associated diseases.

Functions Diseases Mechanism Reference

Protooncogene induction
Asthma exacerbations

Lung cancer
TIMP2 enhances c-fos expression; c-fos increased in

lungs of asthmatic rats.
[14, 101]

Pro-MMP-2 activation
Squamous cell lung

carcinoma
c-SRC tyrosine kinase induced pro-MMP-2 activation in the presence of

MMP-14; MMP-2 found in high concentrations in SCLC.
[28]

Cell proliferation and
inhibition of angiogenesis

Various types of lung
cancers

Inhibition of VEGF-A and FGF-2 in vitro and in vivo. TIMP2 can bind
α3β1 integrin heterodimer and stimulate SHP1-mediated

dephosphorylation of FGFR1 or EGFR.

[70, 73,
82, 83]

Matrix stability and lung
remodeling

IPF
TIMP2 colocalizes with Ki67+fibroblasts in IPF lungs; TIMP2 observed
along with MMP1, 2, and 9 in regenerated epithelial cells covering intra-

alveolar fibrosis.
[93, 94]

Inhibition of apoptosis COPD
TIMP2 may inhibit apoptosis of macrophages and foam cells in airway

epithelial cells, leading to decreased inflammation.
[88]

Extracellular matrix
deposition

Acute lung injury Bleomycin induces expression of TIMP2 in interstitial compartments. [90, 92]

Antiaging
Dementia

Age-related decline in TIMP2 protein is observed in hippocampal lysates,
neurons of the subgranular zone, and hilar areas of dentate gyrus of mice.

[14, 15]

Tendinopathy Age-dependent reduction of TIMP2 expression in rabbit patellar tendons [130]

Anti-inflammatory

Systemic inflammatory
response syndrome
Neuroinflammatory

disorders

TNFα/IL1β regulate TIMP2 expression in cardiac cells; inhibition of
TIMP2 in microglial cells increase cytokine production. TIMP2 suppresses
microglial activation through regulation of Nrf2 and cAMP-response

element binding protein transcription factors.

[22, 69,
70]
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alveolar lavage fluid of 48 patients with various types of lung
cancers [82]. Moreover, MMP2 expression was elevated in
the cytoplasm and membranes of those with poorly differen-
tiated lung squamous cell carcinoma [83]. However, dysreg-
ulation between TIMP2 and MMP2 may lead to cellular
dysfunction. Yao et al. showed that treatment with the toxic
metabolite mono-(2-ethylhexyl) phthalate in rodent Sertoli
cells causes an increase in MMP2 but a decrease in TIMP2
over time resulting in the interference of cellular processes
like gametocytogenesis [84]. Additionally, TIMP2 influences
MMP14 activity, and overexpression of MMP14 is observed
in epithelial and stromal cells in non-small-cell lung cancer
patients [85] and neurodegeneration and age-related
changes [86]. MMP14 plays a crucial role in cancer migra-
tion and metastasis by ECM remodeling and cell motility,
and MMP14 responses can be regulated by the scaffolding
protein NEDD9 (neural precursor cell expressed develop-
mentally downregulated 9) and TIMP2 levels [87]. The
activity of MMP2 is regulated by MMP14 in combination
with TIMP2 [15]. In a mouse myocardial infarction model,
the heart tissue in Timp2-/- mice is less dense with disorga-
nized fibrillar collagen due to greater MMP14 activity [88].

Reduced expression of TIMPs is observed in senescent
human fibroblasts [89], with senescence linked to several
lung pathologies [90]. H2O2-induced premature senescent
intervertebral disc cells have reduced expression of TIMP1,
TIMP2, and TIMP3 [91]. Within aortic sections of aged rats,

the medial content of TIMP2 is significantly reduced in
older animals [92]. TIMP2 inhibits the migration and apo-
ptosis of macrophages and foam cells and inhibits athero-
sclerotic plaque development and destabilization [93].
TIMP2 deficiency accelerates adverse postmyocardial infarc-
tion remodeling due to enhanced MT1-MMP activity,
despite a lack of MMP2 activation [88]. Overexpression of
TIMP2 reduces brachiocephalic lesion area and stabilized
plaques in an atherosclerosis model of ApoE-/- mice on a
high-fat diet [94]. These effects were linked to the inhibition
of MMP14-dependent monocyte/macrophage infiltration
and apoptosis.

Unlike TIMP1, loss of TIMP2 does not impact
bleomycin-induced neutrophil recruitment [95].
Bleomycin-induced idiopathic pulmonary fibrosis (IPF), a
disease characterized by chronic, progressive scarring of
the lungs associated with a decline in respiratory function
[96], induces the expression of both TIMP1 and TIMP2 in
the alveolar and interstitial compartments [97]. Inhibition
of GSK3β decreased the expression of MMP9, MMP2,
TIMP1, and TIMP2 in inflammatory cells from bleomycin-
treated mice [98]. Therefore, GSK3β could play a significant
role in TIMP2 levels. SOCS1 can suppress the expression of
TIMP2 as A549 cells and human embryonic lung fibroblasts
[99]. In IPF patient samples, TIMP2 localizes to fibroblast
foci, and TIMP2 colocalized with Ki67 in fibroblasts [100].
One IPF study suggested that TIMP2 in myofibroblasts
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Figure 2: TIMP2 interacts with transcription factors and cell surface receptors. TIMP2 directly interacts with signaling molecules and
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transduction—created with http://BioRender.com.
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contributed to the stable ECM deposition and the irrevers-
ible pulmonary structural remodeling, as TIMP2 was
observed with MMP1, MMP2, and MMP9 in the regener-
ated epithelial cells covering intra-alveolar fibrosis [101].

Plasma levels of serpina3g, MMP9, TIMP1, and TIMP2
concentrations are reported higher in COPD patients com-
pared to the controls, and higher levels are observed in
COPD groups III and IV than in groups I and II [102]. This
is surprising as others report an age-dependent reduction of
plasma levels of TIMP2 [61]. The TIMP2 rs2277698 SNP is
associated with overall and paraseptal emphysema and with
FEV1/FVC ratio and MEF50 in a cohort of 951 construction
workers [103]. COPD patients with elevated expression of
both TGFβ1 and TIMP2 have better pulmonary function
test indices and reduced exacerbation frequency [104]. An
immunohistochemical study of human lungs found an age-
dependent increase of TIMP2+ cells in the lung, mostly deter-
mined in alveolar macrophages, bronchial epithelial cells, and
mucosal fibroblasts [105]. There tends to be no gender-specific
difference in plasma TIMP2 levels [106].

TIMP2 is expressed in postmitotic neurons and promotes
neurite outgrowth and the differentiation of cells [107]
because of cell cycle arrest through increased production of
the cyclin-dependent kinase inhibitor p21Cip and decreased
expression of cyclins B and D. In in vitro models, TIMP2 is
expressed in α3 integrin-positive cells, suggesting that
TIMP2-α3β1 integrin interactions participate in neurogenesis
[63]. Interestingly, epithelial cell-specific deletion of α3 integ-
rin prevents epithelial-mesenchymal transition in mice and
protects against bleomycin-induced fibrosis [108]. Since
TIMP2 enhances the expression of c-fos activation, this sug-
gests a possible link to asthma as c-fos protein, and neuropep-
tide content in the lungs of asthmatic rats is related to asthma
attacks [109]. However, little else is known about the role of c-
fos activation in other pulmonary diseases. TIMP2 secreted by
monocyte-like cells was identified as a potent suppressor of
invadopodia formation in pancreatic cancer cells. TIMP2
may play a similar role within the lungs [110].

The link between TIMP2 and LRP1 could be relevant
to pulmonary diseases. LRP1, a receptor involved in many
cellular processes including cellular signaling, lipid homeo-
stasis, and apoptotic cell clearance, is expressed in various
tissues including the lungs [111]. This multitasking macro-
globulin receptor mediates thrombospondin-dependent
endocytosis of the pro-MMP-2-TIMP2 complex, as evi-
denced by the addition of receptor-associated protein to
human fibrosarcoma HT1080 cells [112]. A genome-wide
association study (GWAS) meta-analysis study of Euro-
pean subjects identified a significant association between
lung function, specifically a reduction in the forced expira-
tory volume in 1 second (FEV1)/forced vital capacity
(FVC) ratio to a single nucleotide polymorphism (SNP)
that is mapped to an LRP1 intron [113]. Equally, smooth
muscle cell-specific knockout of Lrp1 alters the pulmonary
function and airway responsiveness in mice [114]. Airway
epithelial club cell knockout of Lrp1 in mice influences
lung inflammation and tissue damage and exacerbates
smoke-induced lung disease due to a dysregulation of
ROS and antioxidants [115].

A recent paper suggests that overexpression of TIMP2 or
the stress-inducing gene, activating transcription factor 3
(ATF3), enhances autophagy activity with elevated p62
levels and the LC3BII/LC3BI ratio observed and decreased
IL-6 and TNF-α levels in Mycobacterium tuberculosis-
infected A549 cells [116]. This inflammation suppression
was NFκB-mediated. Therefore, TIMP2 may be playing a
role in the lungs’ anti-inflammatory responses.

5. Potential Antiaging Role of TIMP2

Recently, TIMP2 was linked to the overall survival in mice
[117] and reduced aging within the brain [61]. At the time
of writing this review, little is known about the potential of
TIMP2 to prevent aging within the lungs. This is of impor-
tance as the initiation and progression of several pulmonary
diseases are associated with aging. Time-dependent DNA
damage, mutations, epigenetic alterations, accumulation of
damaged and dysfunctional protein, altered energy metabo-
lism oxidative stress, mitochondrial dysfunction, and senes-
cence are frequently observed in aging [118]. Lung
pathologies, such as IPF, COPD, and acute lung injury,
increase considerably with age [119, 120]. Some of these
changes occur at the molecular level and involve the accumu-
lation of damaged and dysfunctional proteins, an increase in
reactive oxidative species (ROS), expression of endoplasmic
reticulum stress markers [121], epigenetic regulation [122],
oncogene stimulation [123], mitochondrial dysregulation
[124], and radiation-induced DNA destruction [125].

TIMP2 expression is sensitive to senescent responses,
with lower expression levels of TIMPs observed in replica-
tive senescent human fibroblasts and Werner syndrome
fibroblasts [89, 126]. The disruption of the balance between
the production of TIMPs and MMPs may contribute to
aging and pulmonary disease [127]. Interestingly, age-
related decline in TIMP2 protein is observed in hippocampal
lysates, neurons of the subgranular zone, and hilar areas of
the dentate gyrus of mice [61]. Systemic pools of TIMP2
are necessary for spatial memory in young mice, and treat-
ment of brain slices with a TIMP2 antibody prevented
long-term potentiation [61]. These investigators also
observed that four 50μg/kg TIMP2 injections every second
day elicit significant c-fos activation [61]. This suggests that
c-fos could be critical in neuronal excitability and survival
[128]. Equally, a recent article demonstrated that TIMP2
plays a role in fibroblast repair to prevent blood-brain bar-
rier damage and hemorrhagic brain injury [129].

Wen et al. genetically engineered an attenuated strain of
Salmonella as an anti-invasive vector for targeted delivery of
TIMP2 into the striatum of U-87-malignant-glioma-bear-
ing-BALB/cAnN nude mice and enhanced the survival rate
by approximately 60% [117]. The expression of TIMP2 is
also decreased in the patellar tendons of 3-year-old rabbits
compared to 1-year-old rabbits [130]. However, TIMP2
expression and function must be further validated in pulmo-
nary diseases as plasma levels of TIMP2 concentrations are
reported higher in COPD patients compared to controls
[102], and TIMP2 colocalizes with Ki67-positive fibroblasts
in IPF patient lungs [100] with similar levels observed in
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the plasma of IPF and control patients [131]. Equally, we
must be mindful that systemic levels of TIMP2 may not
reflect the local lung levels and lung-specific signaling.

6. Concluding Remarks

The current literature suggests that we should consider
TIMP2 not merely as an antiprotease but as a protein that
could influence many signaling processes, including aging
and inflammation processes. Systemic changes in blood
levels of TIMP2 could have pulmonary implications. How-
ever, additional pulmonary-specific studies are required to
explore the potential of TIMP2 signaling in the aging lung
and its role in inflammation.
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