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Injury in Mice by Inhibiting Inflammation, Autophagy, and
Apoptosis via the ERK/PPARα Pathway
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Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial
hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury
and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin
(50mg/kg), sham procedure, IR+25mg/kg luteolin, and IR+50mg/kg luteolin group. Serum and tissue samples were collected
at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis
and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor
alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion,
downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and
activated PPARα.

1. Introduction

Ischemia-reperfusion injury is caused by ischemic injury,
followed by blood perfusion recovery, which affects all
oxygen-dependent cells that depend on an uninterrupted
blood supply. Tissues and organs are potential targets of
ischemia-reperfusion injury because they include aerobic
cells that depend on mitochondrial oxidative phosphoryla-
tion for energy [1, 2]. The liver is an oxygen-sensitive organ,
and it may set off a severe chain reaction following IR injury
[3, 4]. Hepatic ischemia-reperfusion injury (HIRI) is an
exogenous antigen-independent local inflammatory
response induced by hypoxic stress [5]. Energy metabolism,
inflammatory responses, and various forms of cell death are
critical processes involved in HIRI [6, 7]. Decreased cellular
energy metabolism and increased oxidative stress are key

responses in ischemia and the initial reperfusion phase.
Mitochondrial function is impaired by free radicals and oxi-
dants, and the generation of excess reactive oxygen species
(ROS) induces subsequent inflammatory reactions. Inflam-
mation is a critical event in both the initial and later phases
of HIRI, in which the activation of Kupffer cells and neutro-
phils plays a central role [6]. Thus, inhibition of the aug-
mented inflammatory response may prove to be an
effective treatment of HIRI.

In addition to generating ROS and inducing inflamma-
tion, the activation of Kupffer cells and macrophages in
HIRI can initiate apoptosis and autophagy [8, 9]. Apoptosis,
or type1 programmed cell death, is highly regulated by two
the BCL-2 family and the caspase family [10], which mediate
hepatocyte death in the initial 24 hours after HIRI. Autoph-
agy, whose role in liver diseases is still under debate, is
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regulated by autophagy-related (ATG) proteins including
P62, Beclin-1, and LC3 [11]. Some researchers consider it
to be a self-digestive process that maintains cell homeostasis
and ensures cell survival under stressful conditions, while
others consider it as type2 cell death, which is different from
apoptosis with the accumulation of autophagosomes and
autolysosomes in the cytoplasm [12]. Normally, ROS, apo-
ptosis, and autophagy are all in dynamic equilibrium. How-
ever, after ischemia-reperfusion injury, the disturbed
equilibrium will lead to cytotoxicity, hepatocyte dysfunction,
and cell death [13], which also affects amounts of signaling
pathways such as extracellular signal-regulated kinase
(ERK) pathway and transcription factors such as PPARα in
hepatocytes.

Peroxisome proliferator-activated receptors (PPARs) are
nuclear hormone receptors that comprise a superfamily of
ligand-activated transcription factors. PPARα is involved in
lipid and lipoprotein metabolism, apoptosis, and inflamma-
tory responses [14–16]. PPARα activation relieves IR-
induced liver, heart, and brain injury by suppressing inflam-
mation, apoptosis, autophagy, and lipid peroxidation [17,
18]. ERK is a mitogen-activated protein kinase (MAPK) that
is involved in the regulation cell proliferation, differentia-
tion, apoptosis, survival, inflammation, and innate immu-
nity [19–21]. The inhibition of ERK has positive effects on
inflammation, apoptosis, autophagy, and other activities
involved in HIRI [22–24]. There is evidence that ERK can
regulate PPARα activation in postprandial hepatic lipid
metabolism [25], indicating that the interactions between
ERK, PPARα, and HIRI deserve to be investigated.

Luteolin is a flavone present in many vegetables, fruits,
and medicinal herbs, and it has antioxidant, antimicrobial,
anti-inflammatory, chemopreventive, chemotherapeutic,
cardioprotective, antidiabetic, neuroprotective, and antialler-
gic activities [26–29]. Previous studies have shown that
luteolin prevents liver injury caused by drugs or chemicals
by suppressing inflammation, ROS, and autophagy
[30–32]. Numerous studies also showed that the mechanism
of luteolin on liver protection involves ERK inactivation and
the consequent inhibition of apoptosis [33]. However, the
exact benefits of luteolin on HIRI have not been described.
The aim of this study was to investigate the hepatoprotective
effectiveness of luteolin in HIRI and the underlying mecha-
nisms. We hypothesized that luteolin could attenuate
inflammation, inhibit apoptosis, and mediate autophagy
via ERK/PPARα pathway.

2. Materials and Methods

2.1. Reagents. Luteolin was purchased from Yuanye Biotech-
nology (Shanghai, China), dissolved in DMSO, and diluted
in saline to the final concentration. Dimethyl sulfoxide
(DMSO) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Platelet-activating factor C-16 (PAF C-16) was
purchased from Santa Cruz Biotechnology (Dallas, TX,
USA). Alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST) reagent kits were obtained from Jian-
cheng Bioengineering Institute (Nanjing, China).
Quantitative real-time PCR kits were purchased from

TaKaRa (Dalian, China). Detailed information on the pri-
mary antibodies used in our study is listed in Table 1. The
anti-mouse and anti-rabbit secondary antibodies for western
blot were purchased from LI-COR Biosciences (NE, USA).
The secondary antibodies for immunohistochemistry were
obtained from Servicebio (Wuhan, China). TdT-mediated
dUTP nick end labeling (TUNEL) apoptosis assay kits were
from Roche (Roche Ltd., Basel, Switzerland).

2.2. Animals. Male BALB/c mice weighing 21–25 g and 6–8
weeks of age were supplied by Shanghai SLAC Laboratory
Animal Co., Ltd. (Shanghai, China). The mice were housed
in plastic cages in a temperature-controlled environment at
22°C and an alternating 12 h:12 h light-dark circadian
rhythm, with free access to food and water. All animal
experiments were in compliance with the guidelines of the
National Institutes of Health and were approved by the Ani-
mal Care and Use Committee of Tongji University in
Shanghai.

2.3. Experimental Design. Sixty mice were randomly assigned
to six treatments: (1) normal control group (NC, n = 6):
mice were injected with vehicle intraperitoneally. (2) Sham
group (n = 12): a laparotomy was performed, and the
abdominal cavity was closed without IR injury. (3) Luteolin
(50mg/kg) group (n = 6): luteolin (50mg/kg) was injected
intraperitoneally once daily for 7 days. (4) IR group (n = 12):
mice received HIRI surgery. (5) IR+luteolin (25mg/kg) group
(n=12): mice were injected intraperitoneally with 25mg/kg
luteolin once daily for 7 days before HIRI surgery. (6) IR
+luteolin (50mg/kg) group (n = 12): mice were injected with
50mg/kg luteolin intraperitoneally once daily for 7 days before
HIRI surgery. The doses were selected according to prelimi-
nary study [34]. Surgical procedures were done under anesthe-
sia. Six mice in the sham group, IR group, IR+luteolin (25mg/

Table 1: The primary antibodies used for western blotting in the
study.

Antibody Supplier
Catalogue
number

Dilution
Molecular

weight (kDa)

β-Actin CST 3700 1 : 1000 42

TNF-α CST 3707 1 : 1000 17

IL-1β CST 12507 1 : 1000 17

IL-6 PT 21865-1-AP 1 : 1000 24

LC3 PT 14600-1-AP 1 : 2000 14.16

Beclin-1 PT 11306-1-AP 1 : 1000 60

Bcl-2 PT 26593 1 : 1000 26

Bax Servicebio GB11690 1 : 1000 21

Caspase 3 PT 19677-1-AP 1 : 1000 17

Caspase 9 PT 66169-1-Ig 1 : 1000 35

P62 PT 18420-1-AP 1 : 1000 62

PPARα PT 15540-1-AP 1 : 500 55

ERK CST 4695 1 : 1000 42.44

P-ERK CST 4370 1 : 2000 42.44

Abbreviations: PT: Proteintech (Chicago, IL, USA); CST: Cell Signaling
Technology (Danvers, MA, USA).
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kg), and IR+luteolin (50mg/kg) were randomly sacrificed 6
and 24 hours [35, 36] after reperfusion to collect blood and
liver tissue for subsequent procedures.

2.4. Establishment of the HIRI Model. A model of segmental
(70%) warm IR was established in mice after fasting for
about 12 h with free access to water. Mice were anesthetized
by intraperitoneal injection of 1.25% sodium pentobarbital
(Nembutal; St. Louis, MO, USA). When the pain response
disappeared, the mice were placed on a sterile table with
their limbs immobilized. After disinfecting the abdominal
skin, a midline laparotomy was performed to expose the
liver hilum. The liver was carefully turned over to fully
expose the first hepatic hilum. The anatomical structure of
the hilum was carefully separated, and the blood vessels in
the left and middle lobe of the liver were blocked with a ster-
ile microvascular clamp for 45 minutes to immediately cause
partial ischemia of the liver. The mice were placed on an
electric blanket, and the incision was covered with wet saline
gauze to maintain body temperature. After 45 minutes of
ischemia, the clamp was removed, and the abdominal inci-
sion was sutured.

2.5. Cell Culture and Vitality. Normal hepatocyte LO2 cells
were cultured in RPMI-1640 medium supplemented with
10% FBS, 100U/mL of penicillin, and 100mg/mL of strepto-
mycin in a humidified incubator at 37°C with 5% CO2 and
plated at a density of 2 × 104 cells/well in 96-well plates in
100μL of medium per well. The cells were pretreated with
luteolin in different concentrations (2.5μM, 5μM, 10μM,
20μM, and 40μM) for 24 hours. Then, the cells were admin-
istered with AR, which means hypoxia (3% O2, 5% CO2, and
92% N2) for 24 h and reoxygenation (5% CO2, 95% air) for
2 h, to simulate the process of HIRI in vitro. Cell viability
was evaluated by CCK-8 assay.

LO2 cells were administered with or without 10μM
luteolin and 4μM PAF C-16 according to the experiment
design in the following five groups: (1) normal control
(NC): no treatment; (2) AR+PAF C-16 group: 4μM PAF
C-16 treated 24h before IR; (3) AR group: administered with
AR injury; (4) AR+luteolin group: 10μM luteolin precondi-
tioned 24 h before AR; and (5) AR+PAF C-16+luteolin
group: 10μM luteolin and 4μM PAF C-16 administered
24 h before AR.

2.6. Serum Assays. After storing blood samples at 4°C for 4–
5h, serum was obtained by centrifuging at 3500 rpm for
10min. Serum levels of alanine transaminase (ALT) and
aspartate aminotransferase (AST) were measured with
microplate test kits.

2.7. Histopathology. The liver specimens removed from the
left lobe were dehydrated in ethanol and embedded in paraf-
fin. The specimens were cut into 3μm thick sections and
stained with hematoxylin and eosin (H&E) to observe the
degree of injury.

2.8. Immunohistochemistry. Paraffin sections of liver tissue
were dewaxed in xylene and dehydrated in an alcohol gradi-
ent. Antigen retrieval was performed by incubating slides in

citrate buffer in a 95°C water bath for 10 minutes, and the
sections were soaked in 3% hydrogen peroxide for 10
minutes to block endogenous peroxidases. Sections were
washed with PBS three times and treated with 5% bovine
serum albumin (BSA) for 20 minutes to block nonspecific
binding sites. The liver sections were then incubated over-
night at 4°C with anti-tumor necrosis factor- (TNF-) α,
anti-interleukin- (IL-) 1β, anti-IL-6, anti-Bcl-2, anti-Bax,
anti-Beclin-1, anti-P62, anti-LC3, anti-PPARα, and anti-p-
ERK primary antibodies (all at 1: 200). The slices were incu-
bated with a secondary antibody (1 : 200) for 1 h at 37°C the
next day. A diaminobenzidine kit was used to visualize anti-
body binding by light microscopy. The stained area was
measured by Image-Pro Plus software (version 6.0).

2.9. Reverse Transcription Polymerase Chain Reaction (RT-
PCR) and Quantitative RT-PCR (qRT-PCR). Total RNA
was extracted from liver tissues by TRIzol reagent and
reverse-transcribed into cDNA by with a reverse transcrip-
tion kit (TaKaRa Biotechnology, Japan). The mRNA expres-
sion was quantified by SYBR Premix EX Taq and a 7900HT
fast PCR system (Applied Biosystems, Foster City, CA,
USA). The primer sequences used for PCR are listed in
Table 2.

2.10. Western Blot Assays. Liver samples stored at −80°C and
LO2 cells were lysed in radioimmunoprecipitation assay lysis
buffer (Epizyme Biomedical Technology, Shanghai, China)
containing protease inhibitors and phenylmethanesulfonyl
fluoride, and the protein concentration was determined with
bicinchoninic acid protein assay kits (Kaiji, China). Equal
amounts of total protein were separated by 10% or 12.5%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) after being boiled at 100°C for 10 minutes
and transferred onto 0.22μm polyvinylidene fluoride mem-
branes. The membranes were blocked with 5% BSA or 5%
nonfat milk for at least 1 h. After incubation overnight at
4°C with primary antibodies (Table 1), the membranes were
washed three times with phosphate buffered saline with
Tween (PBST) and then incubated with anti-rabbit or anti-
mouse secondary antibodies for 1 h at 37°C. Protein expres-
sion was read with an Odyssey two-color infrared laser
imaging system (LI-COR Biosciences, Lincoln, NE, USA)
after washing the membranes three times in PBST. The gray
values were quantified by ImageJ analysis software.

2.11. TUNEL Staining. After dewaxing and dehydration,
liver tissue sections were digested in 20μg/mL proteinase K
for 30 minutes and washed four times with PBS. The sec-
tions were incubated with TUNEL reaction buffer, and pos-
itively stained areas were observed by light microscopy.

2.12. Statistical Analysis. Results were reported asmean ± SD
. All assays were performed at least three times. Differences
among groups were analyzed by one-way analysis of vari-
ance with p < 0:05 considered statistically significant.
Graphics were drawn with GraphPad Prism 8 software.
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3. Results

3.1. Luteolin and Laparotomy Did Not Affect Liver Structure
and Function. To verify that luteolin has no hepatotoxicity
and does no harm to liver structures, we performed H&E
staining and measured the ALT and AST levels of the NC
group, sham group, and luteolin (50mg/kg) group. H&E-
stained sections of each group revealed no obvious changes
(Figure 1(a)). There were no significant differences in the
serum levels of the liver enzymes among the three groups
(Figure 1(b)). Therefore, we believed that laparotomy and
the high dose of luteolin did not affect liver structure and
function.

3.2. Luteolin Preconditioning Mitigated Liver Function Injury
Induced by HIRI. As biomarkers of hepatic function, serum
ALT and AST levels reflect the extent of liver damage. Com-
pared with the sham group, ALT and AST significantly
increased in the IR group at 6 and 24 hours, and the increase
was significantly smaller after luteolin preconditioning. In
addition, the decrease of serum transaminase with luteolin
appeared to be dosage-dependent (Figure 2(a)). Evaluation

of H&E staining and liver pathology confirmed that laparot-
omy did not result in tissue damage in the sham group,
while tissues from the IR group revealed extensive changes
in liver tissue structure changes such as hepatocyte balloon-
ing, necrosis, destruction of lobules, and inflammatory cell
infiltration 6 hours after reperfusion. Luteolin pretreatment
alleviated the damage caused by IR, with better protection
achieved with 50mg/kg luteolin than with 25mg/kg
(Figure 2(b)). Taken together, the results indicate that we
successfully established the HIRI model and that luteolin
protected against liver injury in a dose-dependent manner.

3.3. Luteolin Pretreatment Inhibited the Release of
Inflammatory Factors. The release of inflammatory factors
(e.g., TNF-α, IL-6, and IL-1β) after ischemia-induced mac-
rophage activation is responsible for IR damage and for
exacerbating liver microcirculation disorders. QRT-PCR,
western blotting, and immunohistochemical (IHC) staining
were used to explore the impact of luteolin on inflammation
in mouse livers. The qRT-PCR results revealed that TNF-α,
IL-1β, and IL-6 expressions were significantly higher in the
IR group than in the sham groups and that luteolin

Table 2: Oligonucleotide sequences of primers used for qRT-PCR.

Gene name Forward (5′-3′) Reverse (5′-3′)
β-Actin GTGACGTTGACATCCGTAAAGA GCCGGACTCATCGTACTCC

IL-6 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

Bax AGACAGGGGCCTTTTTGCTAC AATTCGCCGGAGACACTCG

Caspase 9 GGCTGTTAAACCCCTAGACCA TGACGGGTCCAGCTTCACTA

LC3 GACCGCTGTAAGGAGGTGC AGAAGCCGAAGGTTTCTTGGG

P62 GAGGCACCCCGAAACATGG ACTTATAGCGAGTTCCCACCA

PPARα AACATCGAGTGTCGAATATGTGG CCGAATAGTTCGCCGAAAGAA
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Figure 1: Effects of luteolin (50mg/kg) and laparotomy on normal liver tissues. (a) Representative H&E staining in sections of the liver
(original magnification, ×200). (b) Serum ALT and AST levels are presented as mean ± SD (n = 6, p > 0:05).
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preconditioning inhibited the release of the inflammatory
mediators at both 6 and 24h in a dose-dependent manner
(Figure 3(a)). The western blotting results were consistent
with those obtained by qRT-PCR (Figure 3(b)). IHC staining
of liver sections showed that the expression of TNF-α, IL-6,
and IL-1β was the highest in the IR group and that the
expression of all three decreased with luteolin 25mg/kg
and 50mg/kg pretreatment (Figure 3(c)). The results showed
that luteolin attenuated liver inflammation in these mice
with HIRI.

3.4. Luteolin Suppressed Apoptosis and Autophagy Induced
by HIRI. Programmed cell death from apoptosis and
autophagy both increases in HIRI injury. We assessed the
extent of apoptosis by assaying Bcl-2, Bax, cleaved-caspase
3, and cleaved-caspase 9 expressions. The western blotting
and qRT-PCR results indicated that both protein and
mRNA expressions of Bax, caspase 3, and caspase 9 were sig-
nificantly increased at 6 and 24 hours after reperfusion and
that the increases were smaller with luteolin at 25 and
50mg/kg in a dose-dependent manner (Figures 4(a) and
4(b)). The TUNEL assay and IHC results were consistent
with those obtained by western blotting and qRT-PCR
(Figure 4(c)). The expression of the antiapoptotic protein
Bcl-2 was downregulated by IR surgery and upregulated by
luteolin preconditioning, suggesting that luteolin protected
the liver from IR injury by inhibiting apoptosis. Assays of
the mRNA and protein expressions of autophagy-related

factors Beclin-1, LC3, and P62 found that Beclin-1 and
LC3 were upregulated in the IR model and were downregu-
lated by luteolin administration. Changes in the expression
of the antiautophagy protein P62 were in the opposite direc-
tion (Figures 4(a) and 4(b)). The results of IHC staining
were consistent with those obtained with western blotting
and qRT-PCR (Figure 4(c)). The results allow concluding
that luteolin pretreatment inhibited activation of apoptosis
and autophagy during HIRI.

3.5. Luteolin Suppressed ERK Phosphorylation and Activated
PPARα. Luteolin may protect against hepatocyte injury by
reducing inflammatory responses and inhibiting apoptosis
and autophagy. We tested the mechanism underlying the
protective activity of luteolin by assaying ERK, phosphory-
lated ERK (p-ERK), and PPARα expressions, all three of
which participate in inflammation and programmed cell
death. Differences in total ERK expression among the groups
were not significant (Figure 5(b)), but differences in expres-
sion of p-ERK, which is the activated form of ERK, were sig-
nificant. The results indicated that IR was associated with
increased ERK phosphorylation and that luteolin precondi-
tioning inhibited ERK activation (Figure 5(b)). The results
are consistent with those obtained by IHC staining
(Figure 5(c)). QRT-PCR, western blotting, and IHC staining
revealed that PPARα expression was downregulated in HIRI
and that the downregulation was decreased by luteolin pre-
conditioning in the IR groups (Figures 5(a), 5(b), and
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Figure 2: Effects of luteolin on the liver function and histopathology of hepatic IR mice. (a) The levels of serum ALT and AST are presented
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Figure 3: Continued.
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5(c)). In short, luteolin protected the liver from IR injury by
inhibiting ERK phosphorylation and activating PPARα.

3.6. ERK/PPARα Pathway Regulated Hepatocellular
Apoptosis and Autophagy. To further confirm the mechanism,
we conducted in vitro experiments. Normal hepatocyte (LO2)
cells were preconditioned with luteolin and administered with
AR to stimulateHIRI injury in vitro. According to CCK-8 assay,
10μM luteolin was adopted for the following researches
(Figure 6(a)). MAPK pathway agonist PAF C-16 was added to
activate ERK/PPARα pathway. The results revealed that the
proportion of cell death was remarkably increased by IR treat-
ment and the AR+PAFC-16 treatment, while luteolin can effec-
tively protect hepatocytes from hypoxic injury and relieve the
damage caused by ERK activation (Figure 6(b)). The expression
of Bax and Beclin1 was detected by western blotting, indicating
the degree of apoptosis and autophagy. Apparently, the expres-
sion was upregulated in AR group and in AR+PAF C-16 group
whereas downregulated by luteolin administration. PPARα
expression was inhibited by AR and PAF C-16 treatment and
recovered by luteolin pretreatment (Figure 6(c)). Thus, we
deduced that luteolin ameliorated hepatocellular apoptosis
and autophagy via ERK/PPARα pathway.

4. Discussion

Hepatic IR injury is a pathophysiological process that occurs
in numerous clinical settings, including hepatic injury,

trauma, or shock. Previous studies have shown that liver
IR injury not only leads to high mortality in patients under-
going liver surgery but also subsequently results in renal and
myocardial injury [37–39]. Because of that, we attach special
significance to the underlying mechanisms as well as possi-
ble strategies for the prevention and treatment of HIRI.
Luteolin, a common flavonoid extracted from many edible
plants [40], has been shown to protect against IR injury in
the brain, heart, and kidney [41, 42]. Whether luteolin pro-
tects against HIRI is still unknown and is worth investigat-
ing. Therefore, we carried out this study to confirm the
effects of luteolin on HIRI in mice.

Firstly, as a prerequisite for application, the nontoxicity
of luteolin was confirmed by measuring the serum levels of
ALT and AST in mice treated with 50mg/kg luteolin com-
pared with the normal control and sham groups. Changes
in the structure of liver tissue structure were visualized by
H&E staining. The above examinations revealed that
50mg/kg luteolin was nontoxic in vivo. We then established
a reliable model of HIRI in BALB/c mice with different doses
of luteolin pretreatment. IR surgery resulted in substantial
increases in serum ALT and AST, indicating extensive hepa-
tocyte necrosis, but there was a dose-dependent decline in
liver enzyme levels with luteolin preconditioning. Changes
in the areas of necrotic tissue that were observed by light
microscopy were consistent with changes in the ALT and
AST levels, suggesting that the destruction of liver structures
was alleviated by luteolin pretreatment.
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Figure 3: Luteolin reduced the expression of inflammatory cytokines. (a) Relative IL-6, IL-1β, and TNF-αmRNA levels were determined by
qRT-PCR. (b) Western blot results of TNF-α, IL-6, and IL-1β protein levels. (c) Immunohistochemical staining (200x) showed expression of
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The pathophysiology of HIRI is complicated, involving
ATP depletion, mitochondrial permeability transition,
imbalance of the endothelin/nitric oxide ratio, Ca2

+ over-
load, macrophage activation, and other changes [43]. In
the early stage of HIRI, hepatocytes under hypoxia and mal-
nutrition decrease the production of adenosine triphosphate
while increasing oxidative stress [44]. The huge increase of
oxidative radicals results in inflammatory responses and
activates Kupffer cells, endothelial cells, and other immune

cells. Upon activation, the cells release more inflammatory
factors, including IL-1β, IL-6, and TNF-α, which in turn
intensify the release of ROS. Undoubtedly, the cascade reac-
tion exacerbates ischemic injury [45]. Therefore, we used
qRT-PCR, western blot, and IHC to investigate the expres-
sion of the cytokines IL-1β, IL-6, and TNF-α in the HIRI
model. The results demonstrated that luteolin precondition-
ing attenuated the increases of IL-1β, IL-6, and TNF-α in a
dose-dependent manner.
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Figure 4: Luteolin attenuated IR-induced apoptosis and autophagy. (a) The relative mRNA levels of Bax, caspase 9, LC3, and p62. (b)
Protein expression of apoptosis- and autophagy-related proteins. (c) After 6 h reperfusion, liver tissues were stained by TUNEL and
observed under light microscopy (original magnification, ×200). Immunohistochemistry was used to detect Bcl-2, Bax, Beclin-1, LC3,
and P62 expressions in liver tissues (original magnification, ×200). The IOD sum of brown area to total area was analyzed with the
Image-Pro Plus software 6.0. Data were presented as mean ± SD (n = 6; ∗p < 0:05 for IR vs. sham; +p < 0:05 for IR+luteolin (25mg/kg)
vs. IR; ^p < 0:05 for IR+luteolin (50mg/kg) vs. IR; !p < 0:05 for IR+luteolin (50mg/kg) vs. IR+luteolin (25mg/kg)).
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The activation of various immune cells and the subse-
quent excessive release of inflammatory factors induces
autophagy and apoptosis in liver IR injury [6, 46]. The mea-
surement of changes in Beclin-1, LC3, and P62 can help to
explain how luteolin pretreatment regulates autophagy dur-
ing HIRI as those proteins participate in the initiation of
autophagy and the production of autophagosomes. P62 is
thought an autophagy-specific substrate that interacts with
multiple sites on the micro-tubule-associated protein light
chain 3 (LC3), undergoes autooligomerization via the PB1
domain of p62, and enters the autophagy-lysosomal path-
way to complete ubiquitination substrate degradation [47,
48]. Beclin-1 binds to Bcl-2 through its BH3-only domain
to form a Beclin-1/Bcl-2 complex that is associated with
the conversion of LC3 and may affect autophagy. In apopto-
sis process, activation of the proapoptotic protein Bax is
followed by the formation of channels in the mitochondrial
outer membrane and release of large proteins such as cyto-
chrome c from the intermembrane space. Then, caspase 9
and caspase 3 are activated to induce apoptosis. Another
member of Bcl-2 protein family, Bcl2, is an antiapoptosis
mediator and inhibits the release of cytochrome c [49, 50].
Our results showed that luteolin preconditioning enabled
the damaged liver to increase Bcl-2 and P62 expressions
and decrease Beclin-1, LC3, Bax, caspase 9, and caspase 3
expressions. The qRT-PCR and IHC results are consistent
with previous reports, indicating that luteolin attenuated
autophagy and apoptosis during HIRI.

However, the exact molecular mechanisms are not clear
and require further study. ERK is involved in cell develop-
ment, colonization, apoptosis, and malignant transforma-
tion [51] that is activated by Raf serine/threonine kinases.
Raf phosphorylates two serine residues on MEK1/2, result-
ing in the subsequent activation of ERK1/2. Phosphorylated
ERK is active in various hepatic diseases such as liver fibrosis

[52], nonalcoholic steatohepatitis [53], HIRI [24, 54], and
hepatocellular carcinoma [55]. Studies of the impact of
ERK on autophagy and apoptosis have been ongoing world-
wide for many years. Inhibition of the RAF-MEK-ERK cas-
cade was found to increase the dependence of pancreatic
ductal adenocarcinoma on autophagy, thereby enhancing
its responsiveness to autophagy inhibitors, suggesting a
new treatment approach [56]. In inflammation-related dis-
eases, ERK activation following the release of inflammatory
mediators or ROS promotes apoptosis and autophagy, which
leads to severe injury. Thus inhibiting ERK activation is a
promising strategy for attenuating injury in inflammatory
diseases.

PPARs are ligand-inducible transcription factors belong-
ing to the nuclear receptor superfamily. PPARα regulates
lipid metabolism and mitochondrial function and may pro-
tect against liver injury by inhibiting inflammation [18, 57].
In response to inflammation, PPARα activity depends on
effector cells and transcription factors including nuclear fac-
tor kappa B (NF-κB) and the signal transducers and activa-
tors of the transcription family [18, 58]. Previous studies
have shown that increased expression of PPARα alleviates
inflammatory responses and regulates apoptosis and
autophagy through AMP-activated protein kinase (AMPK),
and the PI3K/AKT/mTOR signaling pathway in liver fibro-
sis and nonalcoholic fatty liver disease [59, 60], while the
activity and influence of PPARα on apoptosis and autophagy
in HIRI are not well documented. Our study showed that
luteolin can suppress autophagy and apoptosis caused by
HIRI through inhibiting ERK activation and activating
PPARα in vivo, suggesting that both ERK and PPARα par-
ticipate in HIRI. However, the regulatory relationship
between ERK and PPARα is not yet clear. Researchers Jiao
et al. have reported that PPARα modulated the extent of
inflammation by reducing MAPK phosphorylation [16],
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Figure 5: The protective effect of luteolin during hepatic IR injury is closely related with ERK/PPARα pathway. (a) Relative PPARα mRNA
levels were determined by qRT-PCR. (b) Western blot results and analysis of total ERK, p-ERK, and PPARα levels. (c) Levels of p-ERK and
PPARα in liver tissues at 6 hours after reperfusion are shown by immunohistochemical staining. Final evaluations were made by Image-Pro
Plus 6.0 software to calculate the IOD of the positive staining area. Data are presented as mean ± SD (n = 6; ∗p < 0:05 for IR vs. sham;
+p < 0:05 for IR+luteolin (25mg/kg) vs. IR; ^p < 0:05 for IR+luteolin (50mg/kg) vs. IR; !p < 0:05 for IR+luteolin (50mg/kg) vs. IR
+luteolin (25mg/kg)).
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while Mooli et al. found that MEK-ERK signaling acts in
postprandial hepatic lipid metabolism by regulating hepatic
PPARα signaling [25]. The differences indicate that more

studies are needed. To further explore the mechanism, we
carried out in vitro study. The western blot results revealed
that PPARα activation and expression were inhibited by
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Figure 6: ERK/PPARα pathway regulated hepatocellular apoptosis and autophagy. (a) Cell viability was measured by CCK-8 assay under
different doses of luteolin (n = 3; ∗p < 0:05 vs. NC group; &p < 0:05 vs. AR group; #p < 0:05 vs. 10μM luteolin group). (b) Cell viability
under different treatments was measured by CCK-8 assay. (c) Western blotting analysis of Bax, Beclin-1, and PPARα. The western blot
results were quantified with ImageJ 8.0 software (n = 3; !p < 0:05 for AR+PAF C-16 vs. AR; ∗p < 0:05 for AR vs. NC; ^p < 0:05 for AR
+luteolin vs. AR; +p < 0:05 for AR+luteolin+PAF C-16 vs. AR+PAF C-16).
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AR injury and PAF C-16, the MAPK pathway agonist,
whereas improved by luteolin treatment. The apoptosis
and autophagy of hepatocytes were enhanced by AR and
ERK activation while alleviated by drug treatment. So we
can conclude that luteolin alleviates hepatocyte apoptosis
and autophagy via ERK/PPARα pathway.

In summary, luteolin had a pharmacological activity that
protected the liver from damage caused by HIRI, and it
involved the ERK/PPARα pathway (Figure 7). The protec-
tive mechanisms included the elimination of inflammatory
mediators and inhibition of autophagy and apoptosis. The
results add to our understanding of hepatic IR injury but
are limited because the relationship between luteolin and
ERK/PPARα pathway still needs further investigation, and
the safety of luteolin for clinical use requires verification.

5. Conclusions

Luteolin attenuated HIRI in this mouse model. Luteolin
decreased liver enzyme levels and alleviated pathological
changes caused by HIRI. The hepatoprotective effects of
luteolin were associated with inhibition of inflammation,
autophagy, and apoptosis via the ERK/PPARα pathway.
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