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Background. There is a significant role for peroxisome proliferator-activated receptors (PPARs) in the development of cancer.
Nevertheless, the role of PPARs-related genes in ovarian cancer (OC) remains unclear. Methods. The open-accessed data used
for analysis were downloaded from The Cancer Genome Atlas database, which was analyzed using the R software. Results. In
our study, we comprehensively investigated the PPAR target genes in OC, including their biological role. Meanwhile, a
prognosis signature consisting of eight PPAR target genes was established, including apolipoprotein A-V, UDP
glucuronosyltransferase 2 family, polypeptide B4, TSC22 domain family, member 1, growth hormone inducible transmembrane
protein, renin, dedicator of cytokinesis 4, enoyl CoA hydratase 1, peroxisomal (ECH1), and angiopoietin-like 4, which showed
a good prediction efficiency. A nomogram was constructed by combining the clinical feature and risk score. Immune
infiltration and biological enrichment analysis were applied to investigate the difference between high- and low-risk patients.
Immunotherapy analysis indicated that low-risk patients might respond better to immunotherapy. Drug sensitivity analysis
indicated that high-risk patients might respond better to bleomycin, nilotinib, pazopanib, pyrimethamine, and vinorelbine, yet
worse to cisplatin and gefitinib. Furthermore, the gene ECH1 was selected for further analysis. Conclusions. Our study
identified a prognosis signature that could effectively indicates patients survival. Meanwhile, our study can provide the
direction for future studies focused on the PPARs in OC.

1. Introduction

Around the world, ovarian cancer (OC) remains one of the
most lethal gynecological cancers [1]. With high mortality,
the incidence rate of OC still shows an upward trend, mak-
ing it a serious public health threat [2]. Nowadays, surgery
and chemotherapy are the main treatments for OC. Mean-
while, as a result of hidden early symptoms, many patients
have entered the progressive stage of the disease after their
first diagnosis, missing the best time for treatment [3]. Con-
sequently, exploring new targets with potential for clinical
application is extremely important [4].

Peroxisome proliferator-activated receptors (PPARs) are
a kind of nuclear receptors regulated by ligands and are
involved in sensing nutrients, regulating metabolism, and
regulating lipids [5]. Considering the wide regulatory effect
of PPARs, researchers have begun paying attention to their
role in a variety of diseases, especially in cancers [5]. Yang
et al. found that the interaction between PPARγ and
Nur77 can contribute to fatty acid uptake, therefore, pro-
moting breast cancer development [6]. Zou et al. noticed
that the PPARγ signaling could be activated by the polyun-
saturated fatty acids from astrocytes, further facilitating the
brain metastasis process of cancer [7]. Moreover, PPARs
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signaling is associated with the immune cells in cancer tis-
sue. Liu et al. indicated that S100A4 could regulate the fatty
acid oxidation dependent on PPARγ and, therefore, induce
M2 polarization in cancer [8]. Furthermore, various pieces
of evidence indicate that cancer cells up-regulated PPARδ,
which can be used as a defense mechanism against nutritional
deprivation and energy stress to improve its survival rate and
promote cancer progression [9]. In OC, some studies have pre-
liminarily explored the potential mechanism of PPARs [10].
However, there are still few studies focusing on PPAR in OC.

In recent years, the development of bioinformatics is
accompanied by the arrival of the big data era, which provides

convenience for researchers [11–13]. In our study, we com-
prehensively investigated the PPAR target genes in OC,
including their biological role. Meanwhile, a prognosis signa-
ture consisting of eight PPAR target genes was established,
including apolipoprotein A-V (APOA5), UDP glucuronosyl-
transferase 2 family, polypeptide B4 (UGT2B4), TSC22
domain family, member 1 (TSC22D1), growth hormone
inducible transmembrane protein (GHITM), renin (REN),
dedicator of cytokinesis 4 (DOCK4), enoyl CoA hydratase 1,
peroxisomal (ECH1), and angiopoietin-like 4 (ANGPTL4).
Immune infiltration and biological enrichment analysis were
applied to investigate the difference between high- and low-

Table 1: The baseline information of the enrolled patients.

Clinical features Number Percentage (%)

Age (years)
≤60 326 55.5

>60 261 44.5

Grade

G1–G2 75 12.8

G3–G4 496 84.5

Unknown 16 2.7

Data collection
(TCGA-OV)

List of PPAR
genes

Prognosis model

Model evaluation

Immune
infiltration

Immunotherapy
and drug sensitity

Biological
enrichment

Biological
enrichment

Immune function

Training and
validation cohort Nomogram plot

Univariate Cox
regression analysis

LASSO regression

Multivariate Cox
regression analysis

Biological
enrichment GO and KEGG

Figure 1: The flow chart of whole study.
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Continued.
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risk patients. Immunotherapy and drug sensitivity analysis
were then conducted. Furthermore, the gene ECH1 was
selected for further analysis.

2. Methods

2.1. Acquisition of Open-Accessed Data. The expression pro-
file and clinical characteristics of OC patients were down-
loaded from The Cancer Genome Atlas Program (TCGA)
database (TCGA-OV project). The individual file was
merged using the R code. Data pre-processing was con-
ducted before the analysis. The list of 126 PPAR target genes
was obtained from the PPARgene database (Supplementary
Table S1) [14]. The baseline information of enrolled patients
was shown in Table 1.

2.2. Biological Difference Investigation. Clusterprofiler was
used in the R environment to perform Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis [15]. Gene Set Enrichment Analysis (GSEA) was per-
formed to identify the biological differences based on the spe-
cific gene set, including Hallmark and GO [16].

2.3. Prognosis Signature. First, patients were randomly divided
into the training group and validation group according to the
ratio of 1 : 1. Univariate Cox regression analysis was performed
to identify the genes closely related with patients survival. The
Least absolute shrinkage and selection operator (LASSO)
regression algorithm was applied to screen the optimized vari-
ables through data dimension reduction. Ultimately, themulti-
variate Cox regression was utilized to identify a prognosis
signature.

2.4. Model Evaluation and Nomogram. The performance of
identified prognosis signature was completed using the
Kaplan–Meier (KM) and receiver operating characteristic

(e)

Figure 2: Role of PPAR target genes in OC. (a) The expression pattern of PPAR target genes in OC. (b) GO-BP analysis of these PPAR
target genes. (c) GO-CC analysis of these PPAR target genes. (d) GO-MF analysis of these PPAR target genes. (e) KEGG analysis of
these PPAR target genes.
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(ROC) curves. A nomogram combining our prognosis sig-
nature and clinical features was established using the rms
package. The calibration curve was used to compare the fit
between nomogram-predicted and actual survival.

2.5. Immune Infiltration and Function Analysis. The quanti-
fication of the OC tumor microenvironment was evaluated
using multiple algorithms, including CIBERSORT, EPIC,
MCP-counter, quanTIseq, TIMER, and xCell [17]. The
expression profile of OC patients was set as the input file.
Immune function analysis was performed based on the sin-
gle sample GSEA (ssGSEA) algorithm [18].

2.6. Evaluation of Immunotherapy and Drug Sensitivity. The
assessment of patients on immunotherapy response was per-
formed using the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm [19]. Drug sensitivity analysis was
conducted based on the data from the Genomics of Drug
Sensitivity in Cancer database [20].

2.7. Statistical Analysis. Analysis based on public data was all
analyzed using the R software. The threshold of statistical
significance was set as 0.05. Different statistical methods
are selected according to different data distribution forms.
The data with normal distribution were analyzed using the
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Figure 3: Identification a prognosis signature based on the PPAR target genes. (a) Univariate Cox regression analysis was performed to
identify the prognosis-related genes. (b and c) LASSO regression analysis. (d) Multivariate Cox regression analysis was utilized to
identify the prognosis signature.
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Students T test, and the non-normal distribution data was
analyzed using the Mann–Whitney U test.

3. Results

The flow chart of the whole study was shown in Figure 1.

3.1. Collection of PPAR Target Genes in OC. First, the expres-
sion data of 126 PPAR targets were extracted, which was
shown in Figure 2(a). Results of GO-Biological Process
(BP) showed that the regulation of the lipid catabolic pro-
cess, lipid metabolic process, and carboxylic acid biosyn-
thetic process were top enriched terms of these genes
(Figure 2(b)). For the GO-Cell Component (CC), these
genes were primarily enriched in the endocytic vesicle,
membrane raft, membrane microdomain, and chylomicron
(Figure 2(c)). For the GO-Molecular Function (MF), these
genes were mainly enriched in lipoprotein particle receptor
binding, lipoprotein particle binding, protein–lipid complex
binding, and cholesterol-transported activity (Figure 2(d)).

For the KEGG analysis, these genes were mainly enriched
in the PPAR signaling pathway, cholesterol metabolism, bile
secretion, and fatty acid metabolism (Figure 2(e)).

3.2. Identification of a Prognosis Signature Robustly
Indicating Patients Survival. Then, based on these PPAR target
genes, the univariate Cox regression analysis was utilized to iden-
tify the genes close to patients survival with P < 0:1 (Figure 3(a)).
Subsequently, the LASSO regression analysis was utilized to
screen the optimized variables through data dimension reduction
(Figures 3(b) and 3(c)). Finally, multivariate Cox regression anal-
ysis identified a prognosis signature consisting of eight PPAR
target genes, including APOA5, UGT2B4, TSC22D1, GHITM,
REN, DOCK4, ECH1, and ANGPTL4 (Figure 3(d)). The for-
mula of “Risk score =APOA5×−1.358 +UGT2B4× 1.334
+ TSC22D1 × 0.218 + GHITM × 0.192 + REN × −0.134
+DOCK4× 0.211 +ECH1× 0.228 +ANGPTL4× 0.146” was
utilized to calculate the risk score. The median value of risk
score was used to divide high- and low-risk patients. The
biological enrichment analysis of these model genes was
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Figure 4: Evaluation of the prognosis model. (a) KM and ROC curves of our model in training cohort. (b) KM and ROC curves of our
model in validation cohort. (c) A nomogram was established by combining the risk score and clinical features. (d) Calibration plots.
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shown in Figure S1. Results indicated that for the patients
with high ANGPTL4 expression, the top 3 enriched
pathways were angiogenesis, cholesterol hemoostasis, and
interleukin 6/Janus kinase/signal transducer and activator of
transcription 3 signaling (Figure S1(a)); for the patients with
high APOA5 expression, the top 3 enriched pathways were
V-Ki-ras2 Kirsten ratsarcoma viral oncogene homolog
(KRAS) signaling, spermatogenesis, and pancreatic beta cells
(Figure S1(b)); for the patients with high DOCK4
expression, the top 3 enriched pathways were angiogenesis,
hedgehog signaling, and transforming growth factor-beta
signaling (Figure S1(c)); for the patients with high ECH1
expression, the top 3 enriched pathways were KRAS
signaling DN, E2F targets, and G2M checkpoint
(Figure S1(d)); for the patients with high GHITM expression,
the top 3 enriched pathways were reactive oxygen species
pathway, MYC targets, and cholesterol homeostasis
(Figure S1(e)); for the patients with high REN expression, the
top 3 enriched pathways were estrogen response late, KRAS
signaling, and G2M checkpoint (Figure S1(f)); for the patients
with high TSC22D1 expression, the top 3 enriched pathways
were angiogenesis, hedgehog signaling, and Wnt/β-catenin
signaling (Figure S1(g)); and for the patients with high UGT2B4
expression, the top 3 enriched pathways were epithelial–
mesenchymal transition (EMT), mitotic spindle, and ultraviolet
(UV) response DN (Figure S1(h)).

3.3. Model Evaluation. Our training cohort showed that
patients with a high-risk score may have a worse survival
rate (Figure 4(a)). ROC curves presented a satisfactory
prediction efficiency of our signature on patients survival

(Figure 4(a); the area under the curve (AUC) value of 1-,
3-, and 5-year survival were 0.624, 0.685, and 0.753).
The same result was also observed in the validation cohort
(Figure 4(b); the AUC value of 1-, 3-, and 5-year survival
were 0.665, 0.675, and 0.689). A nomogram was con-
structed by combining the risk score and clinical features
to better predict patients survival (Figure 4(c)). The cali-
bration curve indicated a good fit between the actual and
nomogram-predicted survival (Figure 4(d)).

3.4. Microenvironment Quantification. We next quantified
the cell infiltration of OC patients using multiple algorithms,
including CIBERSORT, EPIC, MCP-counter, quanTIseq,
TIMER, and xCell (Figure 5(a)). Results indicated that the
risk score was positively correlated with neutrophils, macro-
phages, monocyte, myeloid dendritic cells, and endothelial
cells, whereas negatively correlated with B cells and CD8-
positive T-lymphocytes (CD8+ T) cells (Figures 5(b) and
5(c)). Immune function analysis showed that the high-risk
patients might have a lower activity of major histocompati-
bility complex (MHC) class I (Figure 5(d)).

3.5. Evaluation of Immunotherapy and Drug Sensitivity. We
next evaluated the immunotherapy sensitivity differences. The
result indicated a positive correlation between the risk score
and the TIDE score (Figure 6(a), r = 0:207, P < 0:001). Mean-
while, we noticed that the immunotherapy non-responders
might have a higher risk score (Figure 6(b)). Moreover, we
noticed a higher level of immune exclusion and Carcinoma-
associated fibroblasts (CAFs) infiltration in high-risk patients
(Figure 6(c)). Drug sensitivity analysis indicated that high-risk
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patients might respond better to bleomycin, nilotinib, pazopa-
nib, pyrimethamine, and vinorelbine, yet resistant to cisplatin
and gefitinib (Figures 6(d), 6(e), 6(f), 6(g), 6(h), 6(i), 6(j), 6(k),
6(l), 6(m), 6(n), 6(o), 6(p), 6(q), 6(r), and 6(s)).

3.6. Biological Enrichment Analysis. The GSEA analysis
based on the Hallmark gene set indicated that the pathways
of EMT, myogenesis, KRAS signaling, apical junction, and
inflammatory response were activated in high-risk patients
(Figure 7(a)). The GSEA analysis based on the GO gene set
showed that the terms of external encapsulating structure
organization, forebrain development, and muscle system
process were activated (Figure 7(b)).

3.7. Further Investigation of ECH1. The ECH1 was then
selected for further analysis. Although not statistically signif-
icant, considering the significant difference between KM
curves, we believed that the patients with high ECH1 tend
to have a worse prognosis (Figures 8(a), 8(b), and 8(c)).
Immune infiltration analysis showed that ECH1 was posi-
tively correlated with Th2 cells, yet negatively correlated with
T helper cell 17 (Th17) cells, CD8+ T cells, plasmacytoid DC
(pDC), Central Memory T cell (Tcm), and CD56dim NK
cells (Figure 8(d)). GSEA analysis indicated that the top 3
pathways ECH1 was involved in were E2F targets, G2M
checkpoints, and estrogen response late (Figures 8(e), 8(f),
and 8(g)).
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4. Discussion

OC remains the primary threat to women’s health globally
[21]. OC often occurs in perimenopausal women. Due to
the lack of early symptoms and effective diagnostic
methods, the mortality of OC ranks first among gynecolog-
ical malignancies [22]. Moreover, the recurrence of OC can
be considered a fatal chronic disease with limited treat-
ment. Therefore, exploring its internal mechanism from a
molecular perspective can effectively promotes the clinical
application of OC.

The development of bioinformatics provides us with an
opportunity to deeply understand the mechanism of disease
[23]. In our study, we comprehensively investigated the
PPAR target genes in OC, including their biological role.
Meanwhile, a prognosis signature consisting of eight PPAR
target genes was established, including APOA5, UGT2B4,
TSC22D1, GHITM, REN, DOCK4, ECH1, and ANGPTL4.
A nomogram was constructed by combining the clinical fea-
ture and risk score. Immune infiltration and biological
enrichment analysis were applied to investigate the differ-
ence between high- and low-risk patients. Immunotherapy
and drug sensitivity analysis were then conducted. Further-
more, the gene ECH1 was selected for further analysis.

Our prognosis signature consists of eight PPAR genes,
including APOA5, UGT2B4, TSC22D1, GHITM, REN,
DOCK4, ECH1, and ANGPTL4. Some studies have explored
their role in cancers. For instance, the polymorphisms of
UGT2B4 were reported to be associated with pancreatic can-
cer, breast cancer, and esophageal cancer [24–26]. In breast
cancer, Meijer et al. found that the TSC22D1 could predict
the clinical outcome of patients treated with tamoxifen
[27]. Zhao et al. noticed that DOCK4 is a biomarker indicat-
ing the prognosis and sensitivity to platinum [28]. Kobaya-
shi et al. revealed that the complex formed by DOCK4 and
SH3YL1 could induce Rac1 activation and promote cell

migration [29]. Zhang et al. found that ECH1 is an effective
inhibitor for lymphatic metastasis of liver cancer [30]. Hui
et al. noticed that the long non-coding RNA (lncRNA)
AGAP2-AS1 induced by RREB1 could affect the malignant
behaviors of pancreatic cancer by suppressing the ankyrin
repeat domain 1 and ANGPTL4 [31]. Our results present
the role of these genes in OC, which can provide direction
for future studies.

GSEA analysis indicated that the pathways of the inflam-
matory response, EMT, myogenesis, and KRAS signaling
were activated in high-risk patients. Liang et al. indicated
that in OC, by competitively binding miR-101-3p, lncRNA
PTAR promotes EMT and invasion-metastasis [32]. Wu
et al. showed that ST3GAL1 could facilitate OC cancer pro-
gression through EMT signaling [33]. Kim et al. indicated
that the silence of the KRAS gene could indicate a novel
treatment strategy for OC [34]. Our result indicated that
the poor prognosis of high-risk patients might be due to
the abnormal activation of these pathways.

Results indicated that the risk score was positively corre-
lated with neutrophils, macrophages, monocyte, myeloid
dendritic cells, and endothelial cells, whereas negatively cor-
related with B cells and CD8+ T cells. Endothelial cells could
promote angiogenesis in the tumor microenvironment,
which is a key factor in tumor metastasis [35]. In OC, Li
et al. found that the chemoresistant OC cells could promote
angiogenesis through exosome manners [36]. Macrophages
have also been found to exert an important role in OC. For
example, Song et al. noticed that the ubiquitin protein ligase
E3 component n-recognin 5 derived from the immunosup-
pressive macrophages could facilitate the OC progression
[37]. Zeng et al. demonstrated that the EGF secreted by the
M2 macrophages could enhance OC metastasis by activating
epidermal growth factor receptor–extracellular regulated
protein kinases signaling and inhibiting the expression of
lncRNA LIMIT [38]. Muthuswamy et al. noticed that the
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Figure 8: Further exploration of the ECH1. (a–c) KM survival curves of ECH1 (OS, DSS, and PFI). (d) Immune cell correlation of ECH1.
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CXCR6 could promote immunosurveillance and control in
the OC microenvironment through increasing the retention
of memory CD8+ T cells [39]. Our results indicated that the
diverse immune cell infiltration pattern can be partly
responsible for the difference in prognosis.

ECH1was selected for our further analysis. Previous stud-
ies have shown its role in cancers. Zhang et al. revealed that
ECH1 is a potent inhibitor in the process of lymphatic metas-
tasis in liver cancer [30]. Dai et al. found that the ECH1 and
HNRNPA2B1 could be a biomarkers for the early diagnosis
of lung cancer [40]. Our study illustrated the role of ECH1
in OC, which could provide direction for follow-up research.

Some limitations should be noticed. First, since most of
the patients included are from Western populations, this
study is inevitably affected by race bias. Second, the results
of bioinformatics can not directly reflect the real biological
role. Consequently, further biological validation is necessary
for the future.
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