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Objective. 0is experiment was designed to determine whether erythropoietin-producing human hepatocellular carcinoma (Eph)
receptors were involved in the development of visceral pain. Methods. Adult male Sprague-Dawley rats were randomly divided
into three groups receiving different treatments (n� 16 per group): intracolonic vehicle (control group), intracolonic 2, 4, 6-
trinitrobenzene sulfonic acid (TNBS) (TNBS group), and intracolonic TNBS and intrathecal EphB1 receptor blocking reagent
(TNBS +EphB2-Fc group). Visceral hyperalgesia was evaluated with quantification of visceral pain threshold induced by co-
lorectal distention. 0e spinal expressions of EphB1 and ephrinB2 and levels of their phosphorylated forms (p-EphB1 and
p-ephrinB2) were assessed by Western blotting and immunohistochemistry. Results. 0e TNBS-treated rats developed significant
visceral hyperalgesia. 0e spinal expressions of EphB1, p-EphB1, ephrinB2, and p-ephrinB2 were significantly increased in the
TNBS group compared with the control group, but visceral hyperalgesia and elevation of spinal EphB1 and p-EphB1 expressions
were evidently alleviated by intrathecal administration of EphB2-Fc in the TNBS +EphB2-Fc group. 0e number of EphB1- and
p-EphB1-immunopositive cells, the average optical (AO) value of EphB1, and its phosphorylated form in the spinal dorsal horn
were significantly increased in the TNBS group than in the control group, but they were obviously reduced by intrathecal
administration of EphB2-Fc. 0ere were no significant differences in the number of ephrinB2- and p-ephrinB2-immunopositive
cells and the AO value of ephrinB2 and its phosphorylated form between the TNBS and TNBS+EphB2-Fc groups. Conclusion.
EphB1 receptors in the spinal dorsal horn play a pivotal role in the development of visceral pain and may be considered as a
potential target for the treatment of visceral pain.

1. Introduction

Abdominal pain is one of the major and troublesome
hallmarks of gastrointestinal diseases, such as gastroin-
testinal tumors, inflammatory bowel disease, and irritable
bowel syndrome. Visceral hyperalgesia, which refers to a
decrease of visceral pain threshold to mechanical dis-
tension, is regarded as one of the pivotal players in the
development of abdominal pain [1–3]. Increasing research
has attempted to reveal the molecular mechanism of
visceral hyperalgesia [4–8], but this issue is still not
completely understood.

Erythropoietin-producing human hepatocellular carci-
noma (Eph) receptors, including types A (A1–A10) and B
(B1–B6), are the largest subfamily of transmembrane re-
ceptor tyrosine kinases (RTKs). It has been shown that the
Eph receptors and their ligands Eph-receptor interacting
proteins (ephrin) play a critical role in the development of
the nervous system, such as regulation of axon guidance
[9, 10]. Currently, it has been known that ephrin ligands
have two types: glycosylphosphatidylinositol (GPI) an-
chored type (ephrinA1–A10) and transmembrane type
(ephrinB1–B3). Recently, accumulating evidence indicates
that the ephrinB/EphB signaling pathway is a crucial player
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in the development of various chronic pains, including
inflammatory pain, neuropathic pain, bone cancer pain, and
viscerovisceral referred pain [11–20].0is signaling pathway
can not only regulate the function of synapse [21–26] but
also modulate chronic pain by interacting with N-methyl-D-
aspartate (NMDA) receptors [20, 26–28] as well as other
targets [29–31]. However, the importance of this signaling
pathway is mainly identified in the development of somatic
pain. Up to now, only a few studies are focused on the
involvement of ephrinB2/EphB1 signaling pathway in the
pathogenesis of visceral pain [32, 33]. For example, a pre-
vious work using pelvic-urethra-related pain model found
that ephrinB2 potentiated the pelvic-urethra reflex due to
phosphorylation of EphB1 and/or 2 via the Src kinase [32].
Recently, another study using ephrinB2 knockout animals
demonstrated that both ephrinB2 and EphB1 played im-
portant roles in 2, 4, 6-trinitrobenzene sulfonic acid- (TNBS-
) induced chronic (postinflammatory) visceral pain, but only
ephrinB2 was involved in the development of stress-induced
visceral pain [33]. Most important, it remains unclear
whether administration of specific blockers to interrupt the
phosphorylation of EphB1 and/or expression of ephrinB2
would attenuate visceral pain. 0us, this experiment was
designed to assess the spinal expressions of EphB1 and
ephrinB2 and their phosphorylation levels in a rat model of
visceral pain induced by intracolonic injection of TNBS and
determine the effects of using an EphB1 receptor blocking
reagent on the development of visceral pain and the spinal
expression of EphB1 receptors.

2. Data and Methods

2.1. Animals. After the experimental protocol was approved
by the Animal Care and Use Committee of XuanwuHospital
of Capital Medical University, adult male Sprague-Dawley
(SD) rats, aged 8–10 weeks and weighing 150–250 g, were
used in this experiment. Furthermore, all animal experi-
ments were conducted in the Animal Experiment Center of
Xuanwu Hospital. 0e animals were housed in plastic cages
with soft bedding at room temperature and a 12 :12-hour
light-dark cycle every day. 0ey were free to access food and
water and acclimated for 3 days before the experiment. By
using a randomized digital table, the rats were divided into
three groups receiving different treatments (n� 16 per
group): intracolonic vehicle (control group), intracolonic
TNBS (TNBS group), and intracolonic TNBS and intrathecal
EphB1 receptor blocking reagent (TNBS +EphB2-Fc group).

2.2. Establishment of Colonic Hyperalgesia Model. In this
experiment, a colonic hyperalgesia model was established by
injection of TNBS (Sigma-Aldrich, MO, USA), as previously
described [34, 35]. Briefly, the rats were anesthetized with 2%
isoflurane and fasten in a supine position. A polyethylene
catheter (1.2mm in diameter) was inserted into the colon,
with the distal tip 6 cm far from the anus.0e TNBS solution
of 100 μl (14–16mg/ml in 25% ethanol) was injected into the
colon via the catheter in the TNBS and TNBS+ EphB2-Fc
groups, and vehicle solution of 100 μl including only 25%

ethanol was injected in the control group. 0en, the lower
portion of the rat body was elevated for 30 seconds.

2.3. Histological Assessment of Colonic Damage. 0e level of
colonic damage was evaluated before administration of
TNBS (baseline), 1 day after administration of TNBS (in-
flammatory stage) and 15 days after administration of TNBS
(postinflammatory stage). Four animals were euthanized
under anesthesia with 2% isoflurane at each time-point. 0e
1 cm distal colon was excised, rinsed with saline, fixed in 4%
formalin, and embedded in paraffin. Sections of full-
thickness colon samples (8 μm thick) were stained with
hematoxylin (Leica Biosystems) and eosin (Leica Bio-
systems) and observed under microscopy. 0e levels of
colonic damage were scored according to the criteria de-
scribed in previous literature [36, 37]: mucosal architecture
loss (0–3); goblet cell depletion (0, absent; 1, present); crypt
abscess (0, absent; 1, present); cellular infiltration (0–3); and
tunica muscularis thickening (0–3).

2.4. EphB2-Fc Preparation and Intrathecal Injection. 0is
experiment used mouse recombinant chimaera of EphB2-Fc
(Bio-Techne, MN, USA) as an EphB1 receptor blocking
reagent, as reported in previous studies with rats [17, 18, 24].
By combining with the endogenous ephrinB, EphB2-Fc can
cause EphB1 substituted and cleaved, and then result in the
blockade of the downstream signals of EphB1. EphB2-Fc
chimaera was prepared on the day of intrathecal injection
(100 μg/ml in sterile PBS). On 14, 15, and 16 days after
intracolonic injection of TNBS or vehicle, the rat was
anesthetized with 2% isoflurane and lumbar puncture was
performed at L4-5 intervertebral space. When successful
intrathecal puncture was confirmed by a typical tail-flick,
EphB2-Fc of 5 μl was administrated in the TNBS+EphB2-Fc
group and vehicle (sterile PBS) of 5 μl in the other groups,
once a day for three consecutive days.

2.5. Behavioral Test. In each animal, colorectal distension
(CRD) was carried out 17 days after intracolonic injection of
TNBS or vehicle, as previously described [4, 33, 38]. In brief,
a latex double-lumen catheter was attached to a balloon
dilator with a diameter of 5mm. 0e lubricated dilator was
gently inserted into the descending colon until its distal tip
was 6 cm from the anus. 0en, CRD was maintained by
injection of increasing air (0.1–5.0ml). 0e rats were placed
in a small lucite cubicle in which they were kept waking up
and acclimated for 30min before CRD.

0e abdominal withdrawal reflex (AWR) responses,
which referred to a sudden and persistent abdominal muscle
contraction with abdomen lift off the platform, were eval-
uated by an observer who was blind to the group assignment.
0e volume of injected air that elicited an observable AWR
was used to quantify the visceral pain threshold. For each rat,
the behavioral test was performed three times with an in-
terval of 5min. 0e averaged value of three measurements
was used as the visceral pain threshold.
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2.6.Western Blotting. After the behavioral test, animals were
euthanized under anesthesia with 2% isoflurane, and then the
spinal cord at lumbosacral levels (L6-S1) was freshly extracted
and stored in liquid nitrogen. To quantify the expression
levels of EphB1, ephrinB2, and their phosphorylated forms
(p-EphB1 and p-ephrinB2) in the spinal cord by Western
blotting, spinal samples were homogenized in ice-cold (4°C)
lysis buffer containing 50mM Tris-HCl, 150mM NaCl, 1%
Triton X-100, 0.5% deoxycholate, 0.1% SDS, 0.2mM EDTA,
10mM NaF, 10 μg/ml aprotinin, 1 μg/ml leupeptin, 10 μg/ml
pepstatin, 0.4mM 4-(2-amino-ethyl)-benzenesulfonyl fluo-
ride, and 1mM sodium orthovanadate (pH 7.5). Next, pre-
cipitation procedures were conducted on the homogenate.
0e protein concentrations were analyzed using a BCA
protein assay kit (Pierce Biotechnology, MA, USA). 0ese
proteins were separated with 8% or 10% SDS-PAGE and then
transferred to a nitrocellulose membrane.

0e protein levels were detected by antibodies including
anti-EphB1 (Santa Cruz Technology, CA, USA), anti-phos-
phorylated EphB1 (Santa), anti-ephrinB2 (Bioss Biotechnology,
MA, USA), and anti-phosphorylated ephrinB2 (Bioss) anti-
bodies. 0e membrane was blocked with 5% milk in Tris-
buffered saline for 1h, incubated with anti-phosphorylated
EphB1 (1 :1000) and anti-phosphorylated ephrinB2 (1 :1000)
antibodies, and then incubated with horseradish peroxidase-
conjugated secondary antibody. 0e bands were processed by
enhanced chemiluminescence reagents (Millipore, MA, USA).
0e same membrane was stripped and processed with primary
antibodies against EphB1 (1 :1000) and ephrinB2 (1 :1000).

0e films were digitized, and densitometric quantifica-
tion of immunoreactive bands was performed by using the
Image J 1.51 software (Softonic International, Barcelona,
Spain). 0e expression of a specific protein was normalized
to that of β-tubulin.

2.7. Immunohistochemistry. 0e lumbosacral spinal cord
sample was fixed in 4% formalin and embedded in paraffin.
Sections 8 μm thick were incubated with polyclonal rabbit
antibodies of anti-EphB1 (1 : 200, Santa), anti-ephrinB2 (1 :
200, Santa), anti-phosphorylated EphB1 (1 : 200, Santa), and
anti-phosphorylated ephrinB2 (1 : 200, Santa). 0e anti-
rabbit IgG antibody (1 : 200, Sigma) was used to incubate the
tissue sections. After the tissue slides were incubated with
ABC reagent (1 : 200, 0ermo Fisher Scientific), they were
strained with diaminobenzidine solution for 1 to 2min and
then rinsed in distilled H2O2. Next, the tissue slides were
strained with hematoxylin solution for 1 to 2min and were
then rinsed in distilled H2O2 again. Normal goat serum was
used as a negative background control. Finally, EphB1 and
ephrinB2 immunopositive cells in the spinal dorsal horn
were counted and the integrated optical density values were
measured by the IPP 6.0 software (Media Cybernetics).
Averaged optical (AO) values were calculated by the ratio of
integrated optical density/area of tissue.

2.8. Statistical Analysis. All data are expressed as the
mean± standard error of mean (SEM).0e differences in the
spinal expression levels of detected proteins and the

threshold of visceral pain among groups were analyzed using
one-way analysis of variance (ANOVA) with the SPSS
software (Version 20.0, International Business Machines
Corporation, NY, USA). A P value of less than 0.05 was
considered statistically significant.

3. Results

3.1. Colonic Damage. As shown in Figure 1, microscopic
scores of colonic damage were markedly increased at 1 day
after administration of TNBS compared with those at the
baseline. However, microscopic scores of colonic damage
were significantly decreased at 15 days after administration
of TNBS compared with those at 1 day after administration
of TNBS. Furthermore, there was no difference in the mi-
croscopic scores of colonic damage between the baseline and
15 days after administration of TNBS.

3.2. Behavioral Test. As shown in Figure 2, the visceral pain
threshold was significantly decreased in the TNBS group
compared with the control group. Intrathecal administra-
tion of EphB2-Fc evidently attenuated the TNBS-induced
visceral hyperalgesia.

3.3. Spinal Expressions of EhpB1, ephrinB2, p-EphB1, and
p-ephrinB2. As compared with the control group, spinal
expression levels of EphB1 and p-EphB1 were markedly
elevated in the TNBS group, and these expression evalua-
tions were significantly decreased by intrathecal adminis-
tration of EphB2-Fc in the TNBS+EphB2-Fc group
(Figure 3(a)).

As compared with the control group, the spinal ex-
pression level of ephrinB2 was significantly increased in the
TNBS group, with a remarkable upregulation of p-ephrinB2
expression. However, intrathecal administration of EphB2-
Fc failed to suppress the TNBS-induced expression upre-
gulation of two proteins (Figure 3(b)).

3.4. Immunohistochemical Assay for EhpB1, ephrinB2,
p-EphB1, and p-ephrinB2 in the Spinal Dorsal Horn.
When goat serum was used instead of the first antibody for a
negative background control, no immunopositive cell was
noted (Figure 4(a)). 0e representative immunohisto-
chemical staining images of EphB1, ephrinB2, and their
phosphorylated forms distribution in the spinal dorsal horn
are shown in Figure 4(b). 0e expression levels of these
proteins were obviously increased in the TNBS group
compared to the control group. 0e expression levels of
EphB1 and p-EphB1 were markedly reduced in the
TNBS+EphB2-Fc group compared to the TNBS group, but
expression levels of ephrinB2 and p-ephrinB2 were not
different between TNBS and TNBS+ EphB2-Fc groups.

0e numbers of EphB1- and p-EphB1-immunopositive
cells in the spinal dorsal horn were significantly increased in
the TNBS group compared to the control group, but they
were obviously decreased by intrathecal administration of
EphB2-Fc. 0e numbers of ephrinB2- and p-ephrinB2-
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immunopositive cells were significantly increased in the
TNBS group compared with the control group.0ere was no
significant difference in the numbers of ephrinB2- and
p-ephrinB2-immunopositive cells between TNBS and
TNBS+EphB2-Fc groups (Figure 5).

0e AO values of EphB1, ephrinB2, and their phos-
phorylated forms in the spinal dorsal horn are shown in
Figure 6. As compared to the control group, AO values of
EphB1 and p-EphB1 were obviously elevated in the TNBS
group. Intrathecal administration of EphB2-Fc significantly
suppressed the TNBS-induced increase of AO values of
EphB1 and p-EphB1. 0e AO values of ephrinB2 and
p-ephrinB2 were obviously higher in the TNBS group than
in the control group, but they were not decreased by in-
trathecal administration of EphB2-Fc.

4. Discussions

0e present experiment aimed to assess the effects of EphB1
receptor blockade on the development of visceral hyper-
algesia and spinal expressions of EphB1 and ephrinB2 in a
rat model of visceral pain induced by TNBS. Our results

showed that EphB1 receptor blockade with EphB2-Fc could
significantly alleviate visceral hyperalgesia and decrease
spinal expression of EphB1.

Accumulating evidence indicates that ephrinB/EphB
signaling is a critical player in the development of somatic
and neuropathic pain. 0e expression of EphB1 is upre-
gulated and the nociceptive behaviors of thermal hyper-
algesia and/or mechanical allodynia are induced by applying
cutaneous inflammation [27], peripheral nerve injury
[11, 14, 16, 24], or carcinoma cells inoculation [17, 18, 39]. In
the neuropathic pain models evoked by chronic constriction
nerve injury [12–14] and/or partial nerve ligation [13],
however, these nociceptive behaviors can be alleviated by
interrupting the EphB1 signaling pathway with EphB1 small
interfering RNA [14] or knockout technique [12, 13]. Fur-
thermore, blockade of EphB1 receptors has been demon-
strated to produce a remarked alleviation on these
nociceptive behaviors in the rodents evoked by chronic
constriction nerve injury [12, 24, 29, 30], tumor cell im-
plantation [18, 39], or subcutaneous remifentanil infusion
[27, 31]. By using a visceral hyperalgesia model induced by
intracolonic TNBS, this experiment showed that intrathecal
administration of EphB1 receptor blocking reagent signifi-
cantly alleviated visceral hyperalgesia with downregulation
of spinal EphB1 expression. 0is is in accord with the results
of a recent study [33], in which visceral hyperalgesia induced
by intracolonic TNBS in wild-type mice did not occur in the
ephrinB2 knockout mice.

Our results also indicated that intracolonic TNBS-pro-
voked visceral hyperalgesia, with a significant upregulation
of spinal p-EphB1 expression. 0e EphB1 receptor blocking
reagent not only alleviated the upregulation of spinal EphB1
expression but also decreased the level of spinal p-EphB1 in
the rats with TNBS-induced visceral pain. 0is suggested
that phosphorylation of EphB1 receptors may play a critical
role in the development of postinflammatory visceral
hyperalgesia. Even previous studies demonstrated that
EphB1 receptor agonist could induce transient thermal
hyperalgesia in the rats [18, 24, 28, 29], with an increased
phosphorylation level of NR2B (a subunit of NMDA
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receptors) in the spinal cord [18, 28], which was reversed via
pretreatment of Src-family kinase inhibitor [28]. 0is
transient thermal hyperalgesia was not related to the

upregulation of total EphB1 but was dependent on the
activation of EphB1, indicated by the upregulation of
phosphorylated NR1 (a subunit of NMDA receptors) and
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NR2B [18]. Additionally, the pretreatment with NMDA
receptor antagonist could eliminate thermal hyperalgesia
and mechanical allodynia in the rats receiving an intrathecal
administration of EphB1 receptor agonist (ephrinB1-Fc)
[27]. Similarly, knockdown of ERK5 inhibited activation of
cAMP-responsive element-binding protein (CREB) and
alleviated thermal hyperalgesia and mechanical allodynia
provoked by intrathecal administration of EphB1 receptor

agonist (ephrinB2-Fc) [29]. 0ese findings of previous
studies demonstrate that NMDA receptors, Src-family ki-
nase, and ERK/CREB may be the potential downstream
signal transducers of EphB1 receptors, and the interactions
between EphB1 receptor and its downstream signal trans-
ducers may be crucial for the development of hyperalgesia
and allodynia induced by intrathecal administration of
EphB1 receptor agonist. 0e results of the present
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experiment were similar to the findings from a previous
study by Slack and colleagues [28], in which the pretreat-
ment with EphB1 receptor blocking reagent attenuated
thermal hyperalgesia and mechanical allodynia and
inhibited the upregulation of phosphorylated NR2B ex-
pression in an inflammatory pain model induced by
intraplantar injection of carrageenan. Furthermore, Peng
and colleagues [20] reported that the pretreatment with Src
inhibitor could reverse phosphorylation of Src and NR2B
receptors and alleviate the urethra reflex sensitization in the
rats of mustard oil-induced acute colitis. 0e same results
have been also described in a previous study with the
pretreatment using a NMDA receptor antagonist in the rats
receiving intrathecal administration of ephrinB2 [32]. 0e
pretreatment with EphB receptor block reagent can not only
produce these effects achieved by the pretreatment with Src
inhibitor or NMDA receptor antagonist but also reverse the
phosphorylation of EphB1/2 [20, 32]. In addition, the
pretreatment with a NMDA receptor antagonist has been
demonstrated to eliminate thermal hyperalgesia and me-
chanical allodynia in the rats receiving intraplantar injection
of remifentanil [27]. 0ese previous findings suggest that
both NMDA receptors and Src-family kinase are likely to be
downstream signal transducers of EphB1 receptors, through
which EphB1 receptors mediate in inflammatory pain and
viscerovisceral referred pain.

As described by Klein [40], ephrin-Eph system can
function in a bidirectional fashion, to trigger reverse sig-
naling into the ephrin-expressing cells, forward signaling
into the Eph-expressing cells, or bidirectional signaling into
both cells; that is, Eph receptors can act as a ligand and an
ephrin ligand can also play a receptor role. However, this
experiment showed that EphB1 blocking reagent failed to
reduce the upregulation of spinal ephrinB2 and p-ephrinB2
expressions in the TNBS-treated rats. 0is indicates that
EphB1 blocking reagent maybe plays a forward role by
inhibiting activation of related downstream receptors and
kinases. Previous studies in the bone cancer pain model and
CCI-induced neuropathic pain model demonstrated that
EphB1 receptor antagonist relieved hyperalgesia and allo-
dynia by downregulating phosphorylation of NR1, NR2B,
Src, ERK, MK2, and CREB or reducing activation of ERK5/
CREB in the spinal cord [18, 29]. 0us, similar signaling
mechanisms may also be attributable to postinflammatory
visceral hyperalgesia induced by TNBS in this experiment. In
fact, EphB1 receptors have been identified in the spinal cord,
locating in the neurons [11, 16–18], astrocytes, and
microglial cells [17]. 0us, the detailed role of phosphory-
lation of spinal EphB1 receptors in the development of
visceral pain warrants future study.

As a relay station for pain signals, the spinal dorsal horn
has many signal transducers involving pain. In the bone
cancer pain model induced by tumor cell implantation
[17, 39] and the neuropathic pain model provoked by
chronic constriction nerve injury [11] or crush spinal nerve
injury [16], the immunostaining and/or immunofluores-
cence assessment shows that EphB1 receptors are mainly
distributed in the spinal dorsal horn. In the rats with tumor
cell implantation-evoked bone cancer pain by

immunoblotting [39], moreover, ephrinB2 ligands have
been observed to be mainly located in the spinal dorsal horn.
In this experiment, thus, the numbers of EphB1, ephrinB2,
p-EphB1, and p-ephrinB2 immunopositive cells in the
dorsal horn and their AO values were assessed by immu-
nohistochemistry to further determine the changes of their
expressions in the spinal dorsal horn. Similar to our results
obtained by theWestern blotting, intrathecal administration
of EphB1 receptor blocking reagent significantly attenuated
visceral hyperalgesia, with a significant downregulation of
EphB1 and p-EphB1 expressions in the spinal dorsal horn in
the TNBS-treated rats. However, intrathecal administration
of EphB1 blocking reagent failed to decrease the upregu-
lation of ephrinB2 and p-ephrinB2 expressions in the spinal
dorsal horn in the TNBS-treated rats. 0ese results further
support that the EphB1 receptors in the spinal dorsal horn
play a pivotal role in the development of TNBS-induced
visceral pain.

It must be pointed out that there are several limitations
in the design of this experiment. First, as intrathecal ad-
ministration of EphB1 receptor blocking reagent has shown
an inability to change normal pain perception in the rats
[18], a group of animals receiving EphB1 receptor blocking
reagent on 14, 15, and 16 days after the intracolonic vehicle
was not included. Second, as the behavioral test was not
performed before the initial intervention, it was unable to
compare the visceral pain thresholds before and after in-
tervention.0ird, this experiment was mainly focused on the
role of the ephrinB2-EphB1 signaling pathway in the de-
velopment of visceral pain. It cannot provide any clue re-
garding the possible contributions of the related
downstream signaling pathways to the development of
visceral hyperalgesia. 0us, further experiments are still
needed to address these issues.

In conclusion, this experiment demonstrates that
blockade of spinal EphB1 receptors is able to alleviate the
visceral hyperalgesia and reduce upregulation of spinal
EphB1 expression in a rat model of TNBS-provoked visceral
pain. It indicates that spinal EphB1 receptors play a crucial
role in the development of visceral pain and may be a
promising target of visceral pain treatment.
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