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9Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, Naples 80100, Italy

Correspondence should be addressed to Alessandro Vittori; alexvittori82@gmail.com

Received 22 November 2022; Revised 3 February 2023; Accepted 20 April 2023; Published 28 June 2023

Academic Editor: Li Hu

Copyright © 2023MarcoCascella et al.Tis is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although proper pain evaluation is mandatory for establishing the appropriate therapy, self-reported pain level assessment has
several limitations. Data-driven artifcial intelligence (AI) methods can be employed for research on automatic pain assessment
(APA). Te goal is the development of objective, standardized, and generalizable instruments useful for pain assessment in
diferent clinical contexts. Te purpose of this article is to discuss the state of the art of research and perspectives on APA
applications in both research and clinical scenarios. Principles of AI functioning will be addressed. For narrative purposes, AI-
based methods are grouped into behavioral-based approaches and neurophysiology-based pain detection methods. Since pain is
generally accompanied by spontaneous facial behaviors, several approaches for APA are based on image classifcation and feature
extraction. Language features through natural language strategies, body postures, and respiratory-derived elements are other
investigated behavioral-based approaches. Neurophysiology-based pain detection is obtained through electroencephalography,
electromyography, electrodermal activity, and other biosignals. Recent approaches involve multimode strategies by combining
behaviors with neurophysiological fndings. Concerning methods, early studies were conducted by machine learning algorithms
such as support vector machine, decision tree, and random forest classifers. More recently, artifcial neural networks such as
convolutional and recurrent neural network algorithms are implemented, even in combination. Collaboration programs involving
clinicians and computer scientists must be aimed at structuring and processing robust datasets that can be used in various settings,
from acute to diferent chronic pain conditions. Finally, it is crucial to apply the concepts of explainability and ethics when
examining AI applications for pain research and management.
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1. Introduction

Recognizing pain correctly is mandatory to establish the
appropriate therapy [1, 2]. Nevertheless, accurate pain
evaluation can be a challenging task [3, 4]. Although the
expressive subjectivity of the symptom represents the main
obstacle, the problems to be addressed are manifold. In some
clinical settings, such as cancer pain [5], it is difcult to
distinguish the diferent components of pain [6]. Emotional
factors, lifestyle, behavioral components, and personal ca-
pacity to face pain are just some of the many elements that
may complicate pain assessment [7]. Almost insurmount-
able problems in pain assessment concern specifc categories
of patients, such as children with cognitive disabilities [8]
and patients of all ages with communication difculties such
as people with dementia [9] or nonverbal, intubated
patients [10].

Artifcial intelligence (AI) encompasses a wide range of
symbolic and statistical approaches to learning and rea-
soning, emulating several aspects of human brain func-
tioning. Tere are diferent classifcations based on the
processes and characteristics that lead machines to mimic
humans in terms of versatility and performance. Machine
learning (ML), computer vision (CV), fuzzy logic (FL), and
natural language processing (NLP) are subsets of AI. ML is
a type of AI that allows systems to learn and improve from
experience without being explicitly programmed. It involves
training a computer model on a dataset, allowing it to make
predictions or decisions without being explicitly pro-
grammed to perform the task. Deep learning (DL) is
a subfeld of AI that is inspired by the structure and function
of the brain’s neural networks. It involves training artifcial
neural networks (ANNs), which are made up of layers of
interconnected nodes or “neurons,” on large sets of data.
Tese networks are able to automatically learn and extract
features from the data. Te advent of DL marked a signif-
cant turning point in the feld of AI, fundamentally changing
the way AI systems are developed and applied. Processes of
CV, FL, and NLP involve the development of ANNs which,
in their complexity, are part of DL [11].

Starting from complex datasets, AI systems can de-
velop predictive modeling tasks also useful for pain re-
search [12]. In particular, data-driven AI models can be
adopted to bypass the limitations of subjective pain
evaluation. Te aim is the development of reliable pain
assessment methods based on objective, standardized, and
generalizable elements. Overall, these methods are in-
dicated as automatic pain assessment (APA) [13–15]
(Figure 1). Despite this ambitious goal seeming to be
a chimera to clinicians, research is making progress at an
incredible speed. Several research groups worldwide are
engaged in the feld of APA research, but the lack of
knowledge can represent an obstacle to the potential
translation into clinical practice. Tese limitations con-
tribute to the AI chasm phenomenon, namely, the gap
between the development of an AI algorithm and its
application [16, 17].

Te purpose of this article is to review the key research
and perspectives on the subject. Principles of AI functioning

will be addressed to ofer more details to less experienced
readers.

In this paper, the AI-based methods are grouped into
two categories: (1) behavioral-based approaches including
facial expressions, linguistic analyses, and nonverbal phys-
ical indicators of pain such as body movements and (2)
neurophysiology-based pain detection methods. Although
this division is useful for narrative purposes, many ap-
proaches involve multimode strategies by combining be-
haviors with neurophysiological techniques. For example,
electromyography (EMG) can be used for developing pre-
dictive models using facial expressions. Te text will explore
both experimental and clinical pain scenarios.

2. Behavior-Based Approaches

Afective computing, also known as artifcial emotional
intelligence or emotion AI, refers to the feld of computing
that deals with emotions and their infuence on human
behavior. It encompasses a broad range of topics and uses,
one of which is the assessment and representation of af-
fective phenomena such as pain [18]. Pain and other afective
processes have observable markers, including facial ex-
pressions, language features, body postures, and respiratory-
derived elements. Tese behaviors can be recorded and
analyzed using technology.

2.1. Facial Expressions. Since pain is generally accompanied
by spontaneous facial behaviors, facial expressions can be
a useful method for pain evaluation. Notably, it was dem-
onstrated that facial expressions of pain show consistency
across ages, genders, cognitive states (e.g., non-
communicative patients), and diferent types of pain and
may correlate with self-report of pain [19]. On these bases,
diferent attempts were conducted by using simple facial
images or video recordings. Te facial action coding system
(FACS) is a manual method for describing and analyzing
observable facial movements. It breaks down facial move-
ments into a set of basic units (n� 44) called action units
(AUs) which correspond to the activation of a specifc
muscle or group of muscles and can be identifed and scored
independently from other AUs. Te FACS manual provides
guidelines for scoring these AUs, using a set of photographs
and illustrations as aids [20]. Tis system is widely used in
felds such as psychology, sociology, and communication
studies, as well as in the development of facial animation
software and the evaluation of facial paralysis. FACS has
been used to study the facial expressions of pain in a variety
of populations, including healthy individuals, patients with
chronic pain conditions, and individuals with neurological
or psychiatric disorders [21]. Researchers have used FACS to
study the facial expressions of pain in response to diferent
types of pain stimuli, such as thermal, electrical, and pressure
stimuli, as well as in response to diferent types of pain
medication [22].

Tese approaches were burdened with multiple biases
such as identifcations of typical expressions during analysis
(e.g., smile) and diferences between cohorts of populations
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[23]. Moreover, FACS is carried out by human observers
who need to go through specialized training to make as-
sessments that can be trusted in scientifc research. Un-
doubtedly, the advancement of AI techniques has changed
the landscape stimulating the development of strategies for
computer-mediated automatic detection of pain-related
behaviors [24].

Several approaches for AI-based image processing have
been implemented [25]. It is important to note that the
choice of model will depend on the specifc task and dataset
and that diferent models may perform better for
diferent tasks.

Image classifcation and object recognition tasks are
usually performed by using convolutional neural networks
(CNNs). In brief, CNNs are a type of feedforward ANN
where, unlike recurrent neural networks (RNNs), connec-
tions between nodes do not form loops. Tey are high-
performance networks that recall the functioning of the
retina, mapping one input to one output. In addition to
vision tasks (i.e., computer vision), speech recognition is
another application of CNNs. Schematically, CNNs are
formed by the frst layer (convolutional layer) used to detect
features, a nonlinearity layer (introduction of nonlinearity
into the system), and a series of pooling layers (parameters
downsampling) until the fully connected layer (fattening).
Each node in the output layer connects directly to a node in
the previous layer. In the fnal neuronal layer, the classif-
cation is carried out based on the characteristics extracted
through the previous layers and the diferent flters applied
[26]. Te CNN architecture may vary, but visual geometry
group (VGG) 16 architecture is a reference model for
building CNNs. It consists of 16 convolutional layers with
3× 3 and numerous flters. For pain research, VGGFace is
often implemented. It is a variant of the VGG16 and VGG19
models that were using a large dataset of face images
(VGGFace2), which contains more than 3 million images of
faces from more than 9,000 individuals [27]. Te VGGFace

model can be fne-tuned for a variety of facial recognition
tasks, such as face verifcation, face identifcation, and
emotion recognition. Other CNN architectures include
AlexNet, LeNet, ResNet, and GoogLeNet.

Beyond the CNN, many types of ANNs can be used for
image-processing tasks. Deep residual networks (ResNets),
for example, are an improvement on traditional CNNs that
are able to handle deeper architectures, thus allowing to
improve performance. Moreover, generative adversarial
networks (GANs) are a type of the ANN that are used to
generate new images by using two neural networks: one that
generates images and another that verifes if the generated
images are similar to the real ones. Another neural network
architecture is autoencoder. It can be used to compress and
reconstruct images. Te autoencoder consists of two main
parts: an encoder and a decoder. Te encoder is responsible
for learning a compact representation of the input data
(latent representation), while the decoder is responsible for
reconstructing the original input data from this compact
representation [28]. Finally, U-Nets are a type of CNN
model useful for image segmentation tasks.

Diferent models of ANNs are used for image processing.
According to Yu et al. [29], a dual model can better imitate
the human brain’s visual functioning. On these premises,
a dual CNN model was planned to detect pain from facial
expressions. Te authors implemented a modifed residual
neural network architecture and achieved an accuracy of
99% on a pretrained dataset (UNBC-McMaster shoulder
pain database) and 90% on unseen subject data [30]. In the
case of complex visual data (diferent dimensionality) that
need adequate preprocessing, the Siamese model is often
used. It consists of two identical ANNs that work in parallel
(tandem working) according to a feedforward and back-
propagation fow, and result in comparative outputs. Chang
et al. [31] adopted a convolutional Siamese network from
magnetic resonance imaging (MRI) for the assessment of
knee pain.

(a) (b)

Figure 1: Automatic pain assessment in a cancer patient. “Pain” and “no-pain” states. Pretrained system based on a combination of
computer vision and natural language processing methods. In the two selected frames, the system recognizes when the patient passes from
a state of absence of pain (a) to a state of pain when she touches her right shoulder (b). Te right shoulder is the site of a secondary bone
lesion for breast cancer. Patient consent was acquired for the study (clinicaltrials.gov identifer: NCT04726228) and scientifc divulgation.
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Ensemble deep learning models (EDLMs) or fusion
models are featured by the integration of two or more
algorithms. In EDLMs, the models work together to
improve the overall performance of the system. Tis can
be done by combining the predictions of multiple models,
or by training a higher-level model to make decisions
based on the outputs of lower-level models. According to
complex approaches, hybrid models were proposed for
pain research. For example, Bellantonio [32] demon-
strated that a combination of the CNN and recurrent
neural network (RNN) improved spatial and temporal
pain data from facial videos. Another EDLM CNN-RNN
method was proposed by Bargshady et al. [23]. Tey used
the VGGFace dataset for fne-tuning and the UNBC-
McMaster Shoulder Pain dataset as a test dataset.

RNNs are neural networks that are designed to process
sequential data such as time series data or natural language
text, by using feedback connections that allow information
to be passed from one step of the sequence to the next.
Consequently, vanishing and exploding gradients with
difcult learning of long-term dependencies are the main
limitations of traditional RNNs. Tanks to the activation of
memory layers called “gates,” the recurrent model long
short-term memory network (LSTM) “remembers” the past
knowledge of the network (input gates) and “forgets” ir-
relevant data (output gates). In particular, LSTM is a type of
the RNN that is able to efectively learn and remember long-
term dependencies in sequential data. Te gates are re-
sponsible for deciding which information to keep and which
to discard in the memory cells, allowing the network to
selectively remember or forget information from previous
time steps.

LSTMs have been applied to various tasks such as natural
language processing, speech recognition, and time series
forecasting. A bidirectional LSTM (BiLSTM) network
comprises two LSTMs, one that processes the input sequence
in the forward direction and one that processes the input in
the backward direction. Te outputs of these two LSTMs are
then concatenated and fed as input to the next layer. Te
bidirectional nature of the network allows it to consider both
past and future contexts when making predictions. Tradi-
tional and BiLSTM networks are also used in the feld of pain
research, where they can be used to analyze physiological
signals such as facial expressions, body language, speech, and
physiological signals such as heart rate and galvanic skin
response [33–35].

A hybrid neural network that combines a CNN with an
LSTM network has been proposed for pain research. CNNs
are good at extracting features from images, while LSTM
networks are good at processing sequential data. Recently,
Rodriguez et al. [36] exploited the CNN and LSTM for facial
expression classifcation of diferent publicly available
datasets. Te study’s approach frst adopted CNNs to learn
facial features from the VGGFace dataset. Tese features
were then linked to an LSTM network to exploit the tem-
poral relationship between video frames. Te study com-
pared the performance of using a schema based on
canonically normalized appearance versus using the
whole image.

2.2. Language Analysis. Language analysis includes lan-
guage feature extraction and classifcation. In this
regard, the verbal taxonomy of pain represents the
starting point for this type of research. Te pain de-
scriptor system (PDS) is composed of 24 descriptors and
8 subcategories [37]. Based on this classifer, several types
of investigation such as survey analysis on pain issues can
be conducted [38].

Te application of natural language processing (NLP)
represents the evolutionary step in the language analysis
for APA. NLP is the feld of AI aimed at “exploiting rich
knowledge resources with the goal of understanding,
extraction, and retrieval (of data) from unstructured
(written and spoken) texts” [39]. It focuses on the in-
teraction between computers and human language
combining computer science, AI, and linguistics. Clas-
sifcation, annotation, and prediction are the three main
NLP methodologies. Tasks of NLP include language
translation, text summarization, sentiment analysis, and
question answering. NLP is commonly used in a wide
range of applications such as chatbots, virtual assistants,
and language-enabled applications.

Te various phases of NLP include the tokenization (text
division into tokens corresponding to spaces, words,
punctuation, and sentences), the morphological and lexical
analysis, the syntactic analysis and the generation of parse
trees, the named entity recognition (information extraction),
semantic analysis, and speech analysis. NLP has several
practical applications inmedicine. For example, it can enable
computerized clinical decision support systems, improve
healthcare management (feedback analysis), and can be used
for building tele-triage services (chatbots) and other aims
[40, 41].

Te feld of NLP faces a unique challenge when it comes
to the concept of “pain,” as it is a subjective and often
ambiguously described phenomenon [42]. It can encompass
physical discomfort, emotional sufering, and other biop-
sychosocial elements, making it difcult to accurately ana-
lyze and understand through text-based data sources.
Diferent lexicons were developed for pain investigations.
For example, Chaturvedi et al. [43] validated a lexicon of 382
terms useful for selecting suitable pain-related elements
from electronic health record databases.

NLP can be used in pain research and clinical scenarios
to analyze and extract information (e.g., pain location, in-
tensity, and duration) from text-based data sources such as
electronic medical records, clinical notes, and patient-
reported outcomes [42]. Tis can help researchers un-
derstand the patient’s experience of pain and identify pat-
terns or trends in pain management. Interestingly, Naseri
et al. [44] developed a method helpful for automatically
identifying and categorizing pain reported by physicians in
clinical notes, even when the pain is not recorded through
structured data entry. Te MetaMap and NegEx algorithms
were used for medical terms’ extraction.

In clinical contexts, NLP can be used to automatically
summarize clinical notes, and for dialogue systems, such as
chatbots, that can interact with patients and help them
manage their pain. Furthermore, NLP can be used to develop
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question-answering systems that can provide patients with
accurate and up-to-date information about pain
management.

Another application of NLP in pain research is sentiment
analysis [45]. It combines ML algorithms (e.g., SVM clas-
sifer) and NLP processes for classifying whether a block of
text is positive, negative, or neutral. Valence, activation
(depression), and identifcation of the arousal component of
emotion are usually investigated. Tis approach can be used
for investigating patient-reported outcomes and analyzing
the language used in patient surveys or online patient forums
to understand patients’ emotions and opinions about their
pain and treatment.

Several algorithms were improved for NLP applica-
tions in pain research. For example, Word2Vec is a two-
layer ANN and GloVe is an unsupervised ML algorithm.
Tey work on datasets of representative words, sentences,
and phrases in a given language for a given argument
(linguistic corpora). A recent systematic review was
conducted for evaluating applications of NLP in low
back pain and spinal disease [46]. In the fnal analysis,
the authors included 16 articles and collected diferent
rule-based [47] and supervised or unsupervised ML
approaches [48].

For pain research, language analysis can be combined
with the facial expression analysis. For example, the ELAN
tool is open source under the GNU General Public License.
It can be used to assemble diferent behavioral features
(Figure 2).

2.3. Other Behaviors. In a fascinating article, Walsh et al.
[49] investigated links between body posture and pain. Tey
planned a stimulus set and, during the validation stage,
highlighted that “head averted,” “gaze downward,” and
“forward body lean” are common body postures for pain as
performed by actors. On these fndings, it was suggested that
reduced head motion and altered postures could be used as
pain behaviors. For instance, Werner et al. [50] found that
head movements and postures tend to be oriented down-
wards or towards the pain location.

Recently, Cao et al. [51] extracted potential pain-related
respiratory features from photoplethysmography (PPG) in
postoperative patients included in the UCI iHurtDB pain
protocol [52]. Tey implemented fve ML algorithms in-
cluding ADABoost, XGBoost, random forest, SVM, and
KNN classifers. Te accuracies were satisfactory for all fve
classifers, and the authors compared their results with those
obtained by Tiam and Schwenker [53] who used 65 au-
tomatic respiratory features using an appropriate fusion
architecture method (Table 1).

3. Neurophysiology-Based Pain Detection

Neurophysiology-based pain detection is a method of
measuring and assessing pain that relies on the study of
the physiological changes that occur in response to pain.
Te feld is dynamic and continuously advancing, with
new research uncovering new areas for exploration.

3.1. Electroencephalography. Accumulating evidence sug-
gested that chronic pain is associated with structural and
functional changes in the brain [54]. Interestingly, elec-
troencephalography (EEG) can be used to track these
changes and thus utilized for investigating biomarkers of
pain [55]. For example, typical neuronal activities in the
sensorimotor cortex, such as an increase of theta and gamma
oscillations, can be the expression of distinct pain states [56].
Moreover, it was found that the gamma band is a pre-
dominant predictor of acute thermal pain [57] and peak
alpha frequency recorded at the bilateral temporal scalp was
linked with a verbal pain report during stimulation and at
rest [58].

In a recent investigation, Chen et al. [59] proposed
a multilayer CNN model for objective EEG-based pain
detection. Ten volunteers underwent a series of 15 move-
ment tasks (M) (e.g., jogging on a running machine) and
watched a set of 15 short videos (V) related to pain scenes.
After data acquisition and preprocessing, the model vali-
dation was performed for testing the algorithm’s ability to
distinguish between “nonpain” and “pain” states. In AI
analyses, the overall performance of a model is given by the
area under the receiver operating characteristic curve
(AUC). Reducing the false positive rate and, at the same
time, increasing the true negative rate is fnding a trade-of
cut point between error rates. An AUC of 0.7 to 0.8 is
considered acceptable, 0.8 to 0.9 is excellent, and more than
0.9 is an outstanding result. In their analysis, the AUCs were
0.83 and 0.81, in M and V, respectively.

Other attempts with EEG datasets were conducted.
Misra et al. [56] used a support vector machine (SVM)
algorithm. It is a typical supervised ML algorithm that re-
ceives precataloged data as input for decision-making
processes (output). SVM maximizes the margin by mini-
mizing the classifcation error and expresses a binary clas-
sifcation (e.g., pain/no-pain). Levitt et al. [60] used an SVM
for obtaining pain phenotypes from EEG features. Te study
collected EEG data from 20 individuals sufering from
chronic lumbar radiculopathy, 20 healthy individuals, and
17 patients afected by chronic lumbar pain and scheduled
for neuromodulation therapy.

K-nearest neighbor (KNN) is another ML classifer. It
does not require a training phase and is highly sensitive to
noisy samples. When a dataset contains both categorical and
numerical attributes, KNN and SVM can be used for de-
veloping a decision tree. It seeks the best split to subset the
data. More recently, Nezam et al. [61] collected EEG and
electromyogram (EMG) signals and used SVM and KNN
decision tree models for evaluating diferent pain levels. Te
classifcation accuracies were over 80% for both models.

In another study, Elsayed et al. [62] used a combination
of signal processing techniques and ML strategies to analyze
brain signals related to pain and categorize them into four
levels of pain intensity (no pain, low, moderate, and high).
Tey discovered that the signal processing revealed a direct
link between the alpha frequency band power and the level of
pain. Te classifer developed had an accuracy of 94.83%.
Tese results were supported by other studies, indicating
that the normalized alpha power in the central region of the

Pain Research and Management 5



brain may serve as a reliable and quantifable marker for
chronic pain, with potential for clinical use [63].

Overftting and underftting are typical ML issues
(model ftting errors). Overftting occurs when the
learning of a function adapts very well to the training data
but is unable to generalize other information (test set). On
the contrary, underftting occurs when a model performs
poorly on the training set. Although decision trees are
easy-to-use algorithms, they can be afected by model
ftting errors. Random forest (RF) is another ML and can
be used for overcoming this problem. It combines the
output of multiple decision trees for obtaining a single
result (yes/not). In healthy subjects, Vijayakumar et al.
[64] trained an RF model to predict pain scores. Tonic

thermal stimuli (from a thermal stimulator) were used to
mimic pain responses, and EEG data were achieved. Te
intrasubject and intersubject accuracies were 93% and
89.5%, respectively.

Creating predictive models can be highly valuable in the
feld of pain medicine, particularly for complex conditions of
chronic pain that are challenging to treat. In these clinical
scenarios, patients should receive prophylactic treatments.
Vuckovic et al. [65] used the ANN, SVM, and linear dis-
criminant analysis (a supervised learning method used to
identify the linear combination of features that best separates
two or more classes) to recognize spinal cord injured in-
dividuals at risk of developing central neuropathic pain. For
the three considered models, the accuracy was higher than

Table 1: Selected methods for pain behavior research.

Behavior Method Notes Ref.

Facial
expressions

Dual CNN Development of an image classifcation model [29]
Siamese network MRI for the assessment of knee pain [31]
CNNs and LTSM Image analyses [36]
CNN and RNN Spatiotemporal pain recognition [32]

CNN and RNN VGGFace dataset for fne-tuning and the
UNBC-McMaster shoulder pain dataset for testing [23]

Language
analysis

MetaMap and NegEx algorithms
Automatic extraction and classifcation of

physician-reported pain from clinical notes in cancer
patients

[44]

Diferent ML and ruled-based algorithms A systematic review on NLP for LBP [46]

Body posture

16 actors posed in various body postures to depict
pain, and 20 observers selected the most efective
images. After validation, a set of 144 images was

established

“Head averted,” “gaze downward,” and “forward body
lean” are common body postures for pain [49]

Respiratory
features

ADABoost, XGBoost, RF, SVM, and KNN Features from PPG in postoperative patients [52]
Fusion architectures 65 automatic respiratory features [53]

CNN: convolutional neural network; MRI: magnetic resonance imaging; LSTM: long short-term memory network; RNN: recurrent neural network; ML:
machine learning; NLP: natural language processing; LBP: low back pain; RF: random forest; SVM: support vector machine; KNN: k-nearest neighbors; PPG:
photoplethysmography.

Figure 2: Te ELAN tool (version 6.3) is implemented to combine and analyze frame-by-frame facial expressions (pain/no-pain) and
language analysis including textual phonetic and prosodic analysis, sentimental analysis (e.g., neutral and disgust), and arousal. Patient
consent was acquired for the study (clinicaltrials.gov identifer: NCT04726228) and scientifc divulgation.
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85%. Finally, it was recently demonstrated that EEG features
can be also used to predict the efects of pain treatments [66].

3.2. Electrodermal Activity. Te link between pain and au-
tonomic nervous system activity is an interesting feld of
study. Te eccrine sweat glands have the highest density on
palmar/plantar surfaces of hands/feet (600 to 700 glands/
cm2). Since there is a predominant sympathetic innervation,
these glands are activated within the fght-or-fight response.
Furthermore, they are more responsive to psychological
stimuli than to thermal inputs. Tus, their activation can
represent a valid means to study objective responses to pain.

Also known as skin conductance, galvanic skin response,
and sympathetic skin response, electrodermal activity (EDA)
is the continuous variation in the electrical characteristics of
the skin, which varies with the moisture level. Concerning
the physical functioning basis, a low constant voltage current
is passed through a pair of electrodes placed on the surface of
the skin. With a constant voltage, it is possible to measure
the current which varies directly with the skin conductance
(measured in µ Siemens). Several wearable noninvasive
devices are available. For example, EDA is integrated into
Internet-of-Tings devices such as the BITalino® multi-
channel platform. It is an open-source biosignal platform
compatible with easy-to-use software such as OpenSignals
that can be used for obtaining data from electrocardiography
(ECG), EMG, electrodermal activity EDA, and EEG
(Figure 3).

Empatica E4 Wristband (Empatica Inc, Boston, MA,
USA) is another device for EDA and PPG recording. It also
measures heart rate and motion-based activity (acceler-
ometer x-, y-, and z-axes), as well as skin temperature and
can mark events through a tag button. Tis wearable device
is primarily used for research in felds such as psychology,
neuroscience, and physiology. It is also used for monitoring
stress and emotional states, as well as for tracking sleep
patterns and physical activity in chronic pain rehabilitation
[67], and for monitoring opioid use in patients with pain
conditions [68].

Due to these characteristics, EDA would have space in
acute pain research or for investigating typical acute pain
phenomena in the context of cancer pain, such as
breakthrough cancer pain. Diferent EDA-based studies
for APA were conducted. For example, Susam et al. [69]
distinguished pain levels in children who underwent
surgery (laparoscopic appendectomy). Moreover, Gruss
et al. [70] created a database of EDA and other bio-
potentials (EMG and ECG) collected on healthy partici-
pants (n � 85) subjected to painful heat stimuli. Tey
implemented SVM and obtained an accuracy of ap-
proximately 90% when the pain tolerance threshold was
compared to the baseline.

Te EDA approach has several limitations and must be
well placed in the context of the multiparametric analysis.
Several clinical experiences have shown that there is notable
variability in EDA measurement. Tis method also appears
to have sensitivity but poor specifcity in pain assessment.
Variations in tonic signals and latency in phasic activation

(acute pain) are recognized challenges to be addressed.
Consequently, the data analysis must include an accurate
timescale decomposition to extract salient features from the
original signal (preprocessing stage). Despite limitations, the
technique has ample room for improvement and several
approaches have been proposed to improve its accuracy. For
example, Hossain et al. [71] proposed an ad hoc algorithm to
solve the problem of noise and motion artifacts.

3.3.OtherNeurophysiologicalMethods. Heart rate variability
(HRV) is a physiological measure that refects the variation
in time between successive heartbeats. It is considered an
important indicator of the body’s ability to regulate itself and
maintain homeostasis. HRV is often used as an indirect
measure of the activity of the autonomic nervous system
(ANS). Moreover, HRV is also an important marker of
emotional processing. Emotions such as stress and anxiety
can lead to changes in HRV, which can be measured and
used to assess emotional states. HRV can be measured
through various techniques such as electrocardiography
(ECG) or PPG.

PPG is a noninvasive optical method that measures
fuctuations in blood volume by using a light source and
a corresponding photodetector. Te light source illuminates
a part of the body’s surface, including the skin and blood
vessels, and the photodetector detects the variations in light
(either refected or transmitted, depending on the PPG
sensor design), which are modulated by the pulsatile blood
fow.Tis blood fow is largely determined by factors such as
the heartbeat, the rigidity of blood vessels, and the re-
spiratory rate [72]. In recent years, advancements have been
made in the feld of PPG, with researchers developing au-
tomatic classifers to detect PPG pulses. Tese classifers are
designed to recognize the unique morphological charac-
teristics of the PPG signals, which are indicative of the pulse
waveform. By utilizing these classifers, it should be efec-
tively ameliorated the selection of PPG features that are
suitable for further processing and analysis. Tis is an im-
portant step in obtaining accurate and reliable information
from PPG signals and ultimately advancing our un-
derstanding of various physiological processes, including
pain-related phenomena [73].

Research indicated that a higher level of HRV at rest
refects a state of highly adaptive emotional responses, while
low HRV is linked to various health issues such as car-
diovascular disease, mood disorders, and increased risk of
disease [74]. Concerning HRV applications for pain man-
agement, despite the expectative, a recent systematic review
found limited evidence of its efcacy for chronic pain
assessment [75].

Other investigated hemodynamic parameters are the
systolic and diastolic pressure values. In a recent systematic
review, Moscato et al. [76] found that among various
physiological signals, blood pressure and parameters ob-
tained from ECG are most widely investigated. In particular,
the low-frequency/high-frequency (LF/HF) ratio, which is
derived from ECG, has received signifcant attention. Studies
have shown that there is a positive relationship between pain
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and several physiological signals, including HRV, LF/HF
ratio, and systolic blood pressure.

Functional MRI and positron emission tomography
(PET) are other neurophysiological techniques that can be
used to detect pain-related changes in the brain activity.
Tese methods are implemented for research aims [77, 78].

Surface EMG (sEMG) is a promising technology in
automatic pattern recognition. It uses noninvasive elec-
trodes placed on the skin to measure the electrical activity of
superfcial muscles. sEMG has the advantage of detecting
subtle facial muscle activity that may not be visible to the
naked eye. However, a recent evidence-based analysis found
only one study that used sEMG to objectively detect facial
pain expressions [79]. As a result, the proposed correlation
between muscle tension and pain intensity requires further
research [80].

Te advantages and disadvantages of behavior-based
approaches and neurophysiology-based modalities are
shown in Table 2.

4. Research Perspectives and Issues

Research in this feld must address several issues. A key
aspect is multimodal data collection. It must address the
diferent settings of acute (e.g., postoperative pain) and
chronic pain (benign and cancer-related) and must be
performed in clinical scenarios that require special attention
such as patients with communication difculties [6, 8]. Te
quality of the data, suggested by the “Incredible Five V’s”
that include variety, velocity, volume, veracity, and value
[81], must presuppose the dynamism of their acquisition. In
other words, big data must be well structured, but this is not
enough as there is a need for continuous updating. Te
performance of AI systems depends on it. Furthermore, due
to the complexity of cancer pain phenomena [82], it is
important to capture physiological signals in real-world
settings, even using wearable devices [13].

In the context of multimodal datasets, data from mul-
tiple measures could be included. Pupillometry, for example,
can ofer interesting study perspectives, and research on its

applications for pain assessment is currently scarce [83].
Data from body temperature, hormonal analyses, genetics
(changes as a result of chronic pain), and brain scan-derived
measures such as near-infrared spectroscopy, cerebral blood
fow velocity, positron emission tomography, and single-
photon emission computer tomography could be used for
implementing multiparametric datasets [84]. Furthermore,
in chronic osteoarticular pain, MRI fndings were used to
discriminate painful from nonpainful knees [31]. It suggests
that imaging data can be valuable elements for structuring
a reference dataset.

Several datasets are publicly available for AI-based pain
research (Table 3). Tey include the VGGFace2 [27], the
BioVid Heat Pain Database (BioVid) [85], and the UNBC-
McMaster Shoulder Pain dataset acquired from individuals
sufering from shoulder pain [86], as well as the BP4D-
Spontaneous Database (BP4D) [87], the Multimodal In-
tensity Pain (MIntPAIN) [89], the EmoPain [90], and the
SenseEmotion Database obtained through heat stimulation
in healthy volunteers [88]. Te research community can also
use classic datasets designed for automatic facial image
analysis such as the Cohn Kanade + facial expression data-
base [91]. All these databases can be used for model testing
and evaluation.

A serious gap to be faced is that most of the proposed
methods were evaluated on stimulated pain collected from
healthy participants. Nevertheless, multimodal datasets were
collected from patients sufering from postoperative pain
[52] and chronic musculoskeletal pain [86, 90]. Despite these
acquisitions, there is a need for the development of pain
datasets in key settings, such as cancer pain [92], and pri-
mary chronic pain conditions [93]. Tese datasets should
also collect data from children [94], elderly individuals, or
individuals with disabilities [95] for tailoring interventions
to specifc populations.

Te analysis of large datasets with diverse compositions,
which can include a combination of numerical data, images,
and patient-generated descriptions of symptoms, poses
signifcant challenges in the feld of APA. Te ultimate goal
of this analysis is to extract valuable information from the

Figure 3: Electrodermal activity recorded through the BITalino® platform (in the box).

8 Pain Research and Management



data that can be transformed into knowledge about pain
[96]. As a consequence, the choice and proper use of the AI
system have a key role in improving results.

When approaching the study of bio parameters,
a number of factors must be taken into account. Cancer pain
research and investigation on APA should prioritize ex-
amining the underlying pathophysiological mechanisms and
evaluating the efectiveness of study models for diferent
types of pain [97]. Cancer-induced neuropathic pain, for
instance, has distinct pathophysiology, and this issue should
be carefully addressed during the collection and analysis of
physiological signals [98]. Moreover, distinct autonomic
dysfunctions can be produced by anticancer therapy
[99, 100], and a bias in the analysis.

Tere are several factors that can impact the de-
pendability of physiological parameters. For instance, var-
iables such as physical activity, age, sex, and health status can
afect the quality of PPG signals and PPG waveform pa-
rameters. Of these variables, physical activity has a negative
impact on the quality of the PPG output [101].

Finally, research must address explainability and ethics
issues.Tey are critical components of responsible AI, which
is the practice of developing and using AI in a way that is
transparent, accountable, and aligned with human values.
Explainability in AI refers to the ability of a model to provide
a clear and understandable explanation of its decision-

making process [102]. Tis is important because it allows
stakeholders, such as users, regulators, and developers, to
understand how the model arrived at its conclusions and
identify any potential biases or errors [103]. Ethics in AI
refers to the moral principles and guidelines that govern the
development, deployment, and use of AI systems. Tis in-
cludes issues such as privacy, fairness, transparency, ac-
countability, and human autonomy [104]. Ensuring that AI
systems are designed and used in an ethical manner is crucial
for protecting the rights and welfare of individuals and
society as a whole [105]. It is essential to also incorporate the
principles of explainability and ethics in the examination of
AI applications related to pain research and management.

5. Conclusion

Research in the interdisciplinary feld of APA can beneft
from the utilization of various AI techniques. Te feld is
constantly evolving, and new research is constantly shedding
light on new areas for exploration. Although the verbal
report is sometimes characterized as the “gold standard” for
pain assessment, it remains problematic from a scientifc
perspective for numerous reasons, including its subjectivity
and uncertain underlying metric properties and reliability.
While AI can be a great opportunity for developing tools for
objective pain evaluation, the pathway development passes

Table 2: Advantages and disadvantages of behavioral and neurophysiological approaches.

Advantages Disadvantages
Behavioral methods

Facial expressions
Consistency across ages, genders, cognitive states

(e.g., noncommunicative patients), and diferent types
of pain. Tey may correlate with self-report of pain

Complex processing

Language analysis Useful for sentiment analysis and more suitable for text
extraction (e.g., from electronic medical records)

High-complexity processing requiring proper pain
taxonomy should be combined with other methods

Neurophysiology-based

Electroencephalography Correlation with structural and functional
changes in the brain

Better suited for experimental settings rather
than clinical use

Electrodermal activity Easy to use Good sensitivity but poor specifcity
Heart rate variability Easy to use Poor reliability

Table 3: Selected datasets for pain research.

Dataset n Setting Included features Ref.

VGGFace2 9000 Healthy
subjects Facial expressions [37]

BioVid Heat Pain Database (BioVid) 90 Healthy
subjects Videos and physiological data [85]

UNBC-McMaster Shoulder Pain
Dataset 129 Shoulder pain Facial expressions, pain frame-by-frame scores, and observer

measures [86]

BP4D-Spontaneous Database 41 Healthy
subjects Facial expressions and head poses [87]

SenseEmotion Database 45 Healthy
subjects Multimodal sensory data∗ [88]

Multimodal iIntensity Pain
(MIntPAIN) 20 Healthy

subjects Facial expressions [89]

EmoPain Chronic pain Multimodal dataset̂ [90]
°Electrocardiography, photoplethysmography, electrodermal activity, facial expressions, and body postures. ∗Biopotentials, camera images of the facial
region, and audio signals. F̂ace videos, audio signals, and electromyographic signals from back muscles.
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towards the creation and analysis of big data and metadata
(data about data). Te strengthening of collaboration pro-
grams must provide for the structuring of datasets that can
be used in diferent settings, from acute pain to the diferent
forms of chronic pain. Finally, the principles of explain-
ability and ethics must be considered in the study and use of
AI applications in pain research and management.
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