
Research Article
Orientin Reduces the Effects of Repeated Procedural Neonatal
Pain in Adulthood: Network Pharmacology Analysis, Molecular
Docking Analysis, and Experimental Validation

Dong-Dong Guo ,1 Hai-Yan Huang ,2 Hai-E. Liu ,1 Kun Liu ,1 and Xing-Jing Luo 1

1Department of Anesthesiology, National Children’s Medical Center, Children’s Hospital of Fudan University,
Shanghai 201102, China
2Department of Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine,
Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

Correspondence should be addressed to Xing-Jing Luo; 11231240005@fudan.edu.cn

Received 20 February 2023; Revised 8 May 2023; Accepted 8 November 2023; Published 24 November 2023

Academic Editor: Alessandro Vittori

Copyright © 2023 Dong-Dong Guo et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Background. Premature infants often undergo painful procedures and consequently experience repeated procedural neonatal
pain. Tis can elicit hyperalgesia and cognitive impairment in adulthood. Treatments for neonatal pain are limited. Orientin is
a favonoid C-glycoside that has repeatedly been shown to have pharmacological efects in the past decades. Te aim of this study
was to systematically explore the efect of orientin on repeated procedural neonatal pain using network pharmacology, molecular
docking analysis, and experimental validation.Methods. Several compound-protein databases and disease-protein databases were
employed to identify proteins that were both predicted targets of orientin and involved in neonatal pain. A protein-protein
interaction (PPI) network was constructed, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed to explore the potential mechanism of action. Molecular docking analysis was employed to
calculate the binding energy and visualize the interactions between orientin and potential target proteins. Finally, a mouse model
of repeated procedural neonatal pain was established and orientin was administered for 6 days. Te mechanical and thermal pain
thresholds were assessed in neonates and adult mice. A Morris water maze was employed to investigate cognitive impairment in
adult mice. Results. A total of 286 proteins that were both predicted targets of orientin and involved in neonatal pain were
identifed. Te hub proteins were SRC, HSP90AA1, MAPK1, RHOA, EGFR, AKT1, PTPN11, ESR1, RXRA, and HRAS. GO
analysis indicated that the primary biological process (BP), molecular function (MF), and cellular component (CC) were protein
phosphorylation, protein kinase activity, and vesicle lumen, respectively. KEGG analysis revealed that the mitogen-activated
protein kinase (MAPK) signaling pathway may be the key to the mechanism of action. Molecular docking analysis showed the
high binding afnities of orientin for MAPK1, MAPK8, and MAPK14. In mice, orientin inhibited the hyperalgesia in the pain
threshold tests in neonates and adult mice and cognitive impairment in adult mice. Immunofuorescence showed that phos-
phorylated MAPK1 (p-ERK) protein levels in the hippocampus and spinal dorsal horn were downregulated by orientin.
Conclusion. Te fndings suggested that orientin alleviates neonatal pain, and the MAPK signaling pathway is involved.

1. Introduction

Te vital signs of premature infants (born before 37weeks of
pregnancy) are often poor worrying, so they require
a neonatal intensive care unit stay (mean duration: 25 days)
and 10–18 painful procedures every day according to reports

in the literature [1–3]. Neonates can feel pain, and the pain
may elicit several immediate and long-term neurobehavioral
abnormalities, including changes in pain perception and
cognitive impairments in adulthood [4–6]. Treatments in
clinical practice for repeated procedural neonatal pain are
opioid and nonopioid analgesics (acetaminophen and
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nonsteroidal infammatory drugs), but all abovementioned
drugs must be carefully administered due to underdeveloped
renal function in newborn [7] and few reported further
changes in adulthood. Are there any drugs that can improve
immediate and long-term neurobehavioral abnormalities
induced by neonatal pain? Ranger et al. reported a failed
attempt at using sucrose in a mouse model of repeated
procedural neonatal pain [8]. Paracetamol only inhibited
long-term behavioral efects, but not repeated procedural
neonatal pain [9].

Orientin is a water-soluble favonoid C-glycoside [10]
that belongs to the family of favonoid glycosides [11].
Orientin widely existed in plants worldwide, for example,
bamboo [12], Celtis africana [13], and Jatropha gossypifolia
[14]. In the past decades, it has been shown to have multiple
pharmacological efects, such as anticancer [15], antiviral
and antibacterial [16], antioxidant [17], and anti-
infammatory [18] efects. Due to its anti-infammatory
and antioxidant efects, it exerts many protective efects,
including protection against myocardial infarction [19],
radioprotection [20], neuroprotection [21], attenuation of
cerebral ischemia/reperfusion injury [22], and inhibition of
high-glucose-induced apoptosis involving mitophagy [23].
We previously revealed the analgesic efect of orientin in
neuropathic pain [24]. Although it is a widely-recognized
low-toxic [10], water-soluble favonoid, whether it can treat
neonatal pain is unknown.

Unlike previous predictions of the mechanisms of action
of drugs, which relied on experiments, network pharma-
cology analysis to predict mechanisms does not require
experimentation, and this feld has been developing rapidly,
especially in the natural product feld [25]. Network phar-
macology is based on systems biology and bioinformatics
and can involve high-throughput screening and the con-
struction of multimolecular, multitarget, and multilink
“drug-compound-target” network models, which reveal
multilevel information [26]. Furthermore, molecular
docking analysis (based on artifcial intelligence software)
can be used to indicate possible interactions between
a compound and its target proteins, the possible amino acid
sequence length, and types of binding amino acids [27]. Tis
study aimed to systematically explore the efect of orientin
on repeated procedural neonatal pain using network
pharmacology analysis, molecular docking analysis, and
experimental validation. Target proteins of orientin that are
involved in neonatal pain were used in a protein-protein
interaction (PPI) network and the key proteins were then
identifed. A key signaling pathway involved in the mech-
anism of action was predicted, and the predicted mechanism
was validated in vivo.

2. Materials and Methods

2.1.PredictionofTargetProteins. Tenetwork pharmacology
analysis was performed following previous reports [28, 29].
Te target proteins of orientin were predicted by using Te
Chinese Traditional Medicine System Pharmacological
Database and Analysis Platform (TCMSP) [30],

SwissTargetPrediction database [31], and SuperPred data-
base [32] by using the term “orientin.” Te target proteins
involved in neonatal pain were obtained using the Gene-
Cards database [33], DisGeNEt database [34], and Drug-
Bank database [35] using the term “neonatal pain.”
Duplicates were removed and the canonical protein names
were determined using the UniProt database [36] and then
inputted into Venny 2.1.0 [37] to identify the overlapping
proteins and to create a Venn diagram.

2.2. Protein-Protein Interaction (PPI) Network. Te over-
lapping proteins were submitted to the STRING database
[38] to create a PPI network and to detect the links and
control hubs. Te species was limited to “Homo sapiens” and
the minimum required interaction score was set at >0.7
(high confdence) [39]. Te PPIs were downloaded into
Cytoscape software v3.8.2 [40], which is commonly used for
visualization in complex networks. Te cytoHubba plugin
[41] was used to determine the top 10 hub proteins based on
degree.

2.3. GeneOntology (GO) andKyoto Encyclopedia ofGenes and
Genomes (KEGG) Enrichment Analyses. Metascape [42], an
automatic bioinformatics tool, was used to subject the over-
lapping proteins to a GO analysis of enriched gene functions,
involving molecular functions (MFs), biological processes
(BPs), and cellular components (CCs). A KEGG analysis was
also performed; the results were downloaded and the top 20
pathways were automatically visualized using Metascape.

2.4. Molecular Docking Analysis. To further validate the
network pharmacology results, which predicted protein
targets of orientin to treat neonatal pain, a molecular
docking analysis of orientin and key target proteins was
performed. In brief, a 2D structure of orientin was down-
loaded from the PubChem database and converted to a 3D
structure using ChemBio3Dmol2 software after minimizing
the energy. Te 3D structures of the target proteins were
downloaded from the Protein Data Bank (PDB) and any
ligands were removed. AutoDock v1.5.7 was employed for
ligand preparation, water removal, nonpolar hydrogen atom
preparation, and locating the active pocket. AutoDock Vina
[43] was used to determine the fnal docking conformation.
Te binding amino acids in the proteins and the confor-
mation with the best binding afnity were visualized using
PyMOLMolecular Graphics System v2.0 (Schrödinger, LLC,
Germany) [44] in the Python environment.

2.5. Animal Grouping and Model Establishment. Ethics ap-
proval (grant no. 2022007) was obtained from the Labo-
ratory Animal Ethics Committee of the Shanghai Municipal
Hospital of Traditional Chinese Medicine of the Shanghai
University of Traditional Chinese Medicine. Institute of
Cancer Research (ICR) mice were provided by Shanghai Jie-
si-jie laboratory Animal Co. Ltd (Shanghai Lab Animal grant
no. SCXK (H) 2018-0004).
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A review concerning children born prematurely who are
subjected to neonatal repeated procedural pain is linked to
changes in cognitive, pain threshold and psychosocial
function such as vulnerability to stress disorders in adult-
hood life [45]. To mimic NICU pain in a preterm neonate
due to repeated procedures, a repetitive needle-pricking rat
model was employed in 2012 [46]. Pups in the model group
received needle prick several times while pups in the tactile
control group received gentle tactile stimulations. After that,
this model was widely used for the evaluation of the ef-
fectiveness of drugs and interventions [8, 47]. In this study,
a model of repeated procedural neonatal pain was estab-
lished by mainly following the method reported by Ranger
et al. [8]. After obtaining pregnant mice and after delivery of
the pups, 1-day-old pups (P1) were randomly assigned to six
groups (n� 6 per group): (1) control group (no stimulation
or treatment), (2) model group (a needle was used to prick
a hind paw, and sterile water was administered orally
(Figure 1(a))), (3) sham group (a cotton-tipped swab was
applied to a hind paw to create tactile pressure (Fig-
ure 1(b))), and (4–6) three orientin groups (stimulus same
with the model group, and oral orientin at 7, 14, or 21mg/kg
was administered (Figure 1(c))). Te stimuli and orientin
were administered from P1 to P6. Te stimuli were ad-
ministered 10 times per day, while orientin was administered
4 times per day (AM 8, AM 12, PM 4, and PM 8). After P6,
there were no orientin administrations.

Some studies added a reinjury at 8weeks to observe
changes in pain threshold during adulthood because neo-
natal repeated procedural pain leads not only to acute short-
term hyperalgesia but also to changes in pain threshold in
adulthood [9, 48]. In this study, a reinjury was also estab-
lished following previously described methods [9, 48]. In
brief, at week 8 (W8), for each relevant mouse, a hind paw
was pricked with a needle. No drug was administered this
time. Te fowchart is shown in Figure 1(d).

2.6. Paw Mechanical Withdrawal Treshold (PWMT) and
Termal Withdrawal Latency (TWL). PWMT was assessed
using calibrated von Frey flaments (Stoelting, Kiel, WI,
USA) at P7 and W8. Te mice were placed on a metal mesh
foor in a chamber. After accommodation, a von Frey fl-
ament (0.04, 0.07, 0.16, 0.4, 0.6, 1.0, and 1.4 g) was pressed
perpendicular to the plantar surface of the hind paw until it
bent [49]. Te minimum force required to induce three
positive withdrawal responses (withdrawal or contraction)
in fve attempts using the von Frey flament (with an interval
>1min) was recorded [50]. If the maximum stimulation
intensity (1.4 g) did not produce a withdrawal response, the
force was recorded as 1.4 g. Tests were conducted three times
(with a minimum interval of 1 h), and the mean force was
recorded as PWMT.

TWL was assessed at P7 and W8. Te mice were placed
on a hot plate at 52.5°C (IITC Life Science, Woodland Hills,
CA, USA) [50]. Te response latency to elicit a positive
withdrawal response (e.g., withdrawal, licking, retraction, or
jumping) was recorded. If a positive response was not eli-
cited, the mice stayed on the hot plate for 30 s at most (to

avoid scalding and injury) and the TWL was recorded as
30 s. Tests were conducted three times (with a minimum
interval of 1 h), and the mean value was recorded as TWL.

2.7. Morris Water Maze (MWM) Test. Te MWM test was
employed to investigate the efect of orientin on
hippocampal-dependent spatial reference memory in adult
mice at W8 [51]. Te test was performed using a video
analysis system (XR-XM-101, XinRuan Corporation,
Shanghai, China), a round gray water pool (height: 1.2m,
weight: 0.5m; divided into four quadrants according to the
four directions of northeast, southeast, southwest, and
northwest), a small underwater platform (height: 29 cm),
and a tracking camera positioned directly over the pool. To
ensure accommodation, the mice were allowed to swim
freely for 2min without the platform in the pool on the day
before the experiment. Te MWM experiment is composed
of two tests: (1) spatial learning test (lasting 5 days) in which
each mouse was put into the pool every day and the time
required for the mouse to fnd the platform was recorded as
the latency (in seconds; if the mouse could not fnd the
platform within 120 s, it was placed on the platform for 30 s)
and (2) probe test (on day 6) in which eachmouse was placed
at a specifc location in the pool (with the platform removed)
and the movement of the mouse was recorded and analyzed.

2.8. RT-PCR. Te total RNA was isolated from the brain
using Trizol, and the ratio of A260/A280 values was
employed to quantify the concentration of RNA. cDNA
synthesis and quantitative PCR were performed following
a previous report [52]. Te GAPDH was employed as
a housekeeper gene, and the relative expression levels of
MAPK1 and GAPDH genes were calculated by the 2−△△ct

method. Target primer sequences of MAPK1 were provided
by Vazyme (Vazyme, Nanjing, China) as follows (5′–3′):
MAPK1 (GCACCAACCATCGAGCAAAT and CTTGAG
GTCACGGTGCAGAA).

2.9. Immunofuorescence. Immunofuorescence experi-
ments were employed to investigate the protein level of
phosphorylated mitogen-activated protein kinase 1
(pMAPK1) in the hippocampus and spinal dorsal horn of
the mice following a previously described method [53]. After
the behavioral tests, the mice were anaesthetized with an
intraperitoneal injection of 1% sodium pentobarbital
(50mg/kg) and then perfused with saline and 4% para-
formaldehyde. After that, the brain and spine were carefully
harvested and frozen in liquid nitrogen. Hippocampus and
spinal dorsal horn samples were cut into 4-μm sections,
permeabilized with 0.2% Triton X-100 in phosphate-
bufered saline, and blocked using a blocking bufer. A
primary antibody against pMAPK1 (p-ERK) (ab201015, 1 :
200; Abcam, Cambridge, UK) was added and the sections
were incubated overnight at 4°C followed by incubation with
an Alexa Fluor® 555-conjugated secondary antibody. Im-
ages were then captured using an immunofuorescent
camera (3DHISTECH Ltd., Budapest, Hungary). Te cornu
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ammonis 1 and 3 (CA1 and CA3) regions in the hippo-
campus were determined following a previously described
method [54]. Te relative fuorescence density of the target
protein within a fxed area was determined using Image-Pro
Plus v6.0.

2.10. Statistical Analysis. Te network pharmacology and
molecular docking data were generated by software or da-
tabases as mentioned above. Te experimental data were
expressed as mean± SD if not otherwise stated. Te statis-
tical analysis was performed in SPSS v27 frst with an or-
thogonality test and homogeneity test of variance, followed
by the one-way analysis of variance (ANOVA) and the least
signifcant diference (LSD) or Tukey’s post hoc test (n� 6).
P< 0.05 was considered signifcant. Te results were visu-
alized using GraphPad Prism v6.

3. Results

3.1. Prediction of Target Proteins. After removing the du-
plicates, 417 predicted targets of orientin were obtained from
the abovementioned databases. In addition, 6322 target
proteins involved in neonatal pain were obtained from the
abovementioned databases. Te 286 overlapping targets are
shown in a Venn diagram in Figure 2(a).

3.2. PPI Network. Te STRING database was used to con-
struct a PPI network of the 286 proteins. As shown in
Figure 2(b), there were 286 nodes and 762 edges, with
a mean node degree of 5.08. Te proteins were grouped into
one cluster, with a few independent, unrelated proteins.
Tere were many interactions among the proteins in the
cluster, and the principal proteins were CDK4, MAPK14,
and MAPK1. Te cytoHubba plugin in Cytoscape was used
to determine the following top 15 hub proteins (ranked by
degree) in the PPI network: SRC (with a score of 41), fol-
lowed by HSP90AA1 (37), MAPK1 (36), RHOA (28), EGFR
(27), AKT1 (27), PTPN11 (27), ESR1 (26), RXRA (26),
HRAS (26), MAPK14 (24), MAPK8 (22), HDAC1 (22),
VEGFA (21), and JAK2 (21).

3.3. GO and KEGGEnrichment Analyses. In the GO analysis
(minimum overlap� 3, P< 0.01, and minimum
enrichment� 1.5), there were 260 BPs, 120MFs, and 98CCs.
Te top 20 BPs, MFs, and CCs (ranked by −log10 (P value))
are shown in Figures 3(a)–3(c), respectively. Te highest-
ranked BP, MF, and CC were protein phosphorylation,
protein kinase activity, and vesicle lumen, respectively.

In the KEGG analysis, 157 pathways were predicted. Te
top 20 pathways (ranked by −log10 (P value)) are shown in
Figure 3(d). Among the top 20, several apparently unrelated

(a) (b) (c)
Newborn

mice

Needle stimulus
and orientin

administration
from day 1 to day 6

PWMT and TWL tests

Adult
mice

Re needle injury at
week 8

PWMT and TWL tests

MWM and IF tests

0 7
P7

56
W8

Days

(d)

Figure 1: Te model establishment. (a) Operation in the model group. (b) Operation in the sham group. (c) Administration in orientin
groups. (d) Te fow chart of animal studies.
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pathways were disregarded (e.g., pathways in cancer), and
the mitogen-activated protein kinase (MAPK) signaling
pathway mostly attracted our interest.

3.4. Molecular Docking Analysis. As the MAPK signaling
pathway may be key, the docking of orientin with the fol-
lowing three MAPK-related proteins was investigated:
MAPK1 (PDB ID: 7E73), MAPK8 (PDB ID: 3VUM), and
MAPK14 (PDB ID: 3FLZ). As shown in Figures 4(a)–4(c),
orientin exhibited tight binding with all three target pro-
teins, with >1 hydrogen bond, suggesting that orientin can
strongly associate with these proteins. Te binding energies
were low, at −8.1, −5.1, and −8.2 for MAPK1, MAPK8, and
MAPK14, indicating stable compound-protein binding
(threshold: <−5 kcal/mol) [55].

3.5. Efect of Orientin on Mechanical and Termal Pain
Tresholds inAdultMice. As shown in Figures 5(a) and 5(b),
at P7, PWMT and TWL were signifcantly decreased in the
model group compared to the control group, indicating
immediate hyperalgesia in neonatal mice. In addition,
PMWTwas increased in two orientin groups (14 and 21mg/
kg) and TWL in all three orientin groups compared to the
model group. PMWT and TWL were not diferent in the
sham group compared to the control group, indicating that
gentle touch did not elicit neonatal pain.

As shown in Figures 5(c) and 5(d), atW8 (after reinjury),
PWMT and TWL were signifcantly decreased in the model
group compared to the control group, indicating long-term
hyperalgesia in adult mice that experienced repeated pro-
cedural neonatal pain. PMWT was increased in all three
orientin groups and TWL in two orientin groups (14 and
21mg/kg) compared to the model group.

3.6.EfectofOrientinonCognition inAdulthood. As shown in
Figure 5(e), in the spatial learning test, the escape latency was
not signifcantly diferent in the model group compared to the
other groups on day 1. However, on days 3–5, the escape
latencies were signifcantly increased in the model group
compared to the control group and signifcantly reduced in
the orientin groups compared to the model group (21mg/kg
groups on days 3–5, 14mg/kg groups on days 4–5, and 7mg/
kg group on day 5). During the probe test on day 6, platform
crossings decreased and the time spent on the target quadrant
decreased in the model group compared to the control group.
However, in the orientin groups compared to the model
group, the number of platform crossings increased (7 and
21mg/kg groups) (Figure 5(f)) and the swimming length and
time spent on the target quadrant increased (14 and 21mg/kg
groups) (Figures 5(g) and 5(h)). Tere were no signifcant
diferences between the control and sham groups. Swimming
speeds are shown in Figure 5(i) while representative traces are
shown in Figure 5(j).

Compound Disease

131
(2%)

286
(4. 4%)

6033
(93. 5%)

(a) (b)

Figure 2:Te network pharmacology analysis results. (a) Venn diagram of compound orientin and related genes. (b)Te PPI network based
on overlapped target genes.
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Figure 3: Continued.
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3.7. In Vivo Validation ofMechanism of Action. As shown in
Figure 6(a), the pMAPK1 (p-ERK) protein levels in the
hippocampus (quantifcation of CA1 region in Figure 6(b)
and CA3 region in Figure 6(c)) were increased in the model
group compared to the control group and decreased in the
orientin group compared to the model group. Te gene ex-
pression of MAPK1 showed a similar tendency in Figure 6(d).
Te pMAPK1 protein levels in the spinal dorsal horn
exhibited similar patterns, as shown in Figures 6(e) and 6(f).

4. Discussion

Although researchers have found that orientin has multiple
pharmacologic efects, this is the frst study to show that
orientin inhibited the long-term hyperalgesia and cognitive
impairment elicited by repeated procedural neonatal pain.
Network pharmacology and molecular docking analysis
predicted that the MAPK signaling pathway may be in-
volved. In particular, the pMAPK1 levels in the central
nervous system of mice play crucial roles in orientin’s efect.

Te behavioral changes in adult mice that were exposed
to repeated procedural pain as neonates have attracted many
pediatric researchers’ interest. Neonatal pain elicits a range
of immediate and long-term adverse efects in neonates and
adults. Clinical observations revealed the mechanical
hyperalgesia and conditioning of the pain response [56]. An
increase in infammatory cytokines such as interleukin-6
(IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α
(TNF-α) was found in rats with repeated procedural neo-
natal pain; these cytokines participate in central sensitization
and hyperalgesia development and maintenance [57].
MAPK is tightly linked with neuroinfammation and cy-
tokine production [58] and is involved in a positive feedback
mechanism involving excessive spinal dynorphin expression
after peripheral noxious stimulation [59, 60]. Inhibition of
MAPK in a neuropathic pain model downregulated the
excessive production of cytokines in the spinal dorsal horn
[61]. In our study, the phosphorylation of MAPK1 in the

dorsal horn likely played crucial roles in orientin’s efect on
neonatal pain immediately and in the long-term in adults.

Another important adverse efect of repeated procedural
neonatal pain is cognitive impairment. Infammatory pain in
the early life of rats elicits long-term defcits in the
hippocampal-dependent spatial memory [62]. A well-
acknowledged mechanism of neonatal pain-induced adult
changes is the activation of the hypothalamic-pituitary-
adrenal (HPA) axis and related changes in the hippocampus
[63, 64]. In premature infants in neonatal intensive care
units, the frequency of skin incision/puncturing procedures
is closely related to high cortisol in later life [65]. Another
report on rats revealed that neonatal pain elicited immune
activation involving both spinal cord neurons and the HPA
axis [66]. Te HPA axis is linked to the MAPK signaling
pathway, and this pathway is a key pathway regulated in the
hippocampus in both acute and chronic stress [67]. Intra-
cerebroventricular injection of corticotropin-releasing
hormone in mice increased pMAPK1 in hippocampal
CA1-CA3 areas [68], while it reduced pMAPK (P38 and
ERK) levels in rats which improved cognitive impairment
[69]. In the present study, inhibition of MAPK1 in the
hippocampus likely played a role in orientin’s preventative
efect regarding cognitive impairment.

Tis study has several strengths and limitations. Te
primary strength is that we reported a new application, i.e.,
pediatric pain management, of a well-known and well-tested
agent. Animal research on orientin has been conducted for
over 2 decades [70]. Multiple studies indicate that orientin is
a relatively safe compound [23, 71]. Our study suggested
another natural product for neonatal pain, although there is
a huge gap from preclinical to clinical. Another major
fnding is that the MAPK signaling pathway is not only
activated in the spinal dorsal horn after repeated procedural
pain in neonatal mice but it is also activated in the hip-
pocampus, which has not been reported in previous studies.
Te phosphorylation of MAPK1 in the hippocampus has
been suggested to be responsible for depression, cognitive

hsa05200: Pathways in cancer
hsa05417: Lipid and atherosclerosis
hsa04010: MAPK signaling pathway
hsa05205: Proteoglycans in cancer
hsa05207: Chemical carcinogenesis - receptor activation
hsa05418: Fluid shear stress and atherosclerosis
hsa04919: Tyroid hormone signaling pathway
hsa05235: PD-L1 expression and PD-1 checkpoint pathway in cancer
hsa05202: Transcriptional misregulation in cancer
hsa05230: Central carbon metabolism in cancer
hsa04935: Growth hormone synthesis, secretion and action
hsa04914: Progesterone-mediated oocyte maturation
hsa04110: Cell cycle
hsa04152: AMPK signaling pathway
hsa00980: Metabolism of xenobiotics by cytochrome P450
hsa04610: Complement and coagulation cascades
hsa04144: Endocytosis
hsa04024: cAMP signaling pathway
hsa05222: Small cell lung cancer
hsa05034: Alcoholism

10 4030200
-log10 (P)

(d)

Figure 3: Te GO and KEGG prediction results. (a) Te BP results of GO enrichment analysis. (b) Te MF results of GO enrichment
analysis. (c) Te CC results of GO enrichment analysis. (d) Te KEGG prediction results.
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decline, and other symptoms in adulthood in animal models
of repeated procedural neonatal pain [59]. In addition, we
reported the link between orientin and MAPK1 in a new
organ, i.e., the brain. Previous experiments involving ex-
tracts containing orientin revealed that orientin regulated
the MAPK signaling pathway [72, 73], and other studies
suggested that SRC and MAPK play a crucial role in ori-
entin’s antiapoptosis ability [74] and p38 MAPK was in-
volved in orientin’s antioxidative stress efect [75]. However,
most of these results came from in vitromodels [72–74]. Te
current study revealed that orientin regulated MAPK1 ac-
tivity in the brain. Supplementation with orientin-enriched
food, such as fruit, may be an alternative strategy for pain
management in premature neonates.

In contrast, the primary study limitation is the lack of an
agonist/inhibitor of MAPK signaling used in animal experi-
ments. Orientin is a highly water-soluble favone and can exert
efects on the brain [76, 77]. In contrast, most agonists for use in
the brain require intracerebroventricular injection, and although
we tried several approaches for intracerebroventricular injection
in newborn pups in preliminary experiments, all attempts failed.
Terefore, an agonist/inhibitor of MAPK signaling pathway was
not used in animal experiments so there was a lack of validation
of the role of MAPKs.

Some aspects which should be paid more attention to in
future studies are as follows. First, there are many types of
chronic pain in pediatric patients, for example, postoperative
pain, abdominal pain, repetitive operational pain, nociceptive

(a) (b)

(c) (d)

(e) (f )

Figure 4: Te molecular docking results. (a) Te locally enlarged picture of orientin bonding to 7E73 (MAPK1). (b) Te two-dimensional
picture of orientin bonding to 7E73 (MAPK1). (c) Te locally enlarged picture of orientin bonding to 3VUM (MAPK8). (d) Te
two-dimensional picture of orientin bonding to 3VUM (MAPK8). (e) Te locally enlarged picture of orientin bonding to 3FLZ (MAPK14).
(f ) Te two-dimensional picture of orientin bonding to 3FLZ (MAPK14). Amino acids are shown in red and hydrogen bond distances are
shown in yellow dashed lines (unit: Å).
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pain, and low back pain [78, 79]. However, themechanisms of
chronic pain are commonly similar, mainly caused by the
complex interaction between primary aferent nerves, dorsal
horn neurons, spinal glia, and brain [78]. Central sensitiza-
tion, several signaling pathways, and neuroinfammatory
genes contributed to the pain [80]. Among them, nuclear
factor kappa B (NF-κΒ), MAPK, and infammasome NOD-
like receptor (NLR family) pyrin domain containing 3 NLRP3
play important roles in neuroinfammation and pain [81].
Flavonoids are natural compounds, found in fruits,

vegetables, and various dietary sources. Flavonoids have been
widely used for their analgesic efect due to their anti-
infammatory and antioxidant abilities. For example, quer-
cetin modulated the MAPK, NF-κB, and NLRP3 to alleviate
the infammatory pain, neuropathic pain, and cancer pain
[82]. Orientin can modulate the MAPK and NF-κB [24],
therefore it can be used for other chronic pain treatments in
pediatric patients. Second, there is a huge gap between
preclinical and clinical experiments. Current studies on
orientin were animal studies [83, 84], therefore the pain
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alleviation efect and side efect on humans are unknown.
Fortunately, the structure of orientin is similar to luteolin
[85], while luteolin has been tested in many clinical trials.
Luteolin is efective in pain inhibition [81], with above
5,000mg/kg LD50 values in rats [86], and safe in pediatric
patients [87]. Te orientin is C-glycoside while luteolin is
aglycone [88]. Compared with aglycone, a glycoside is
commonly a more suitable drug because it can improve
stability, increase water solubility, reduce toxicity, and most
importantly, enhance the specifc targeting properties of drugs

[88]. Terefore, it can be predicted that orientin is an efective
and relatively safe drug. Moreover, to mimic the gap, strict
clinical trials on dose and the side efects are critical in the
future. Tird, orientin research studies may develop in the
following directions. For preclinical research, current research
studies on pain mediators and regulators were gradually
enriched, and research studies on new pathways and
mechanisms have increased. However, research on the
mechanism of orientin in neonatal pain was limited.
Terefore, it is necessary to expand the investigation on new
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mechanisms of orientin in neonatal pain. For clinical re-
search, research on its efectiveness, safety, and drug meta-
bolism, especially metabolism, in the central nervous system
of newborns and infants will be critical.

5. Conclusion

Based on network pharmacology, molecular docking anal-
ysis, and experimental validation, this study revealed that
orientin alleviated repeated procedural neonatal pain and
improved the long-term cognitive defcit. Te MAPK sig-
naling pathway plays a crucial role in the efect of orientin.
Molecular docking analysis predicted that orientin can bind
tightly to the target MAPK proteins. Tis study provided
new insights into the potential application of a natural
favonoid for neonatal pain treatment.
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