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Fungus-growing ants have interacted and partly coevolved with specialised microfungal parasites of the genus Escovopsis since
the origin of ant fungiculture about 50 million years ago. Here, we review the recent progress in understanding the patterns of
specificity of this ant-parasite association, covering both the colony/population level and comparisons between phylogenetic clades.
We use a modified version of Tinbergen’s four categories of evolutionary questions to structure our review in complementary
approaches addressing both proximate questions of development and mechanism, and ultimate questions of (co)adaptation and
evolutionary history. Using the same scheme, we identify future research questions that are likely to be particularly illuminating
for understanding the ecology and evolution of Escovopsis parasitism of the cultivar maintained by fungus-growing ants.

1. Introduction

1.1. The Attine Fungus-Growing Ants. Fungus-growing ants
(Hymenoptera: Formicidae: Attini) form a monophyletic
tribe of primarily tropical ants that obligately depend on
fungal cultivars (Agaricales: mostly Lepiotacea: Leucoco-
prineae). The ants provide the fungus with optimal growth
conditions, and in return, the fungus serves as the main
food source for the ants [1, 2]. The symbiosis between
fungus-growing ants and their fungi originated about 50
million years ago [3-6] from a single ancestor that was
most likely a generalist forager [3]. Subsequently, the Attini
have diversified to encompass approximately 230 described
species, distributed across 14 ant genera [4, 7]. Colonies
of fungus-growing ants are typically founded by a single
queen, who carries a piece of the fungus cultivar from
her natal colony in the infrabuccal pocket [8] during her
nuptial flight [9-11]. The Attini are divided into the “higher
attine” and the phylogenetically basal “lower attine” genera
based on their cultivars [5]. Lower attine cultivars are largely
unmodified and resemble free-living Leucocoprini, whereas
higher attine cultivars (including those of leaf-cutting ants)
are highly derived [12].

The clonal propagation of cultivars through vertical
transmission [2, 13] predicts ancient association and con-
gruence between the ant and fungal cultivar phylogenies.
High degrees of congruence have indeed been found at
the deep phylogenetic levels in both higher [14, 15] and
lower attines [12, 14]. However, the phylogenetic inter-
action specificity breaks down within, and occasionally
between, ant genera and their cultivar strains, indicating that
switches and/or reacquisitions of new garden cultivars have
occurred (e.g., [12, 16-19]). While the higher-attine fungi
no longer persist outside the symbiosis, lower attine fungi
have free-living close relatives, which is likely to facilitate
gene flow and reacquisitions of symbionts [12]. Cultivar
switches can be induced in the laboratory, including the
formation of chimeric gardens [20-22]. However, consistent
with predictions from host-symbiont conflict theory [23],
mature individual colonies appear to consistently maintain
a single fungus clone, at least in leaf-cutting ants (Atta and
Acromyrmex) where this has been best studied [24, 25].

Clonally propagated monoculture crops are expected
to be particularly prone to infection with parasites and
pathogens [26], because they represent an attractive resource
that should be easy to exploit. This “Red Queen” logic



[27, 28] assumes that parasites and hosts are involved in
evolutionary arms races, in which unpredictable genetic
heterogeneity, due to sexual recombination, is the most
powerful defence against parasites that have short generation
times relative to their hosts [28-30]. Single asexual cultivar
clones thus seem to represent a liability for the farming
symbiosis [25] that needs to be overcome by active protection
by the host ants (see below). Colony-level monoculture does
not imply population-wide monoculture, as is often the case
in modern human crops that are vulnerable to disease. With
the possible exception of some species, there is likely to be
considerable strain diversity across neighbouring colonies
[16, 18] that should discourage the spread of infections
between colonies.

1.2. Specialised Coevolved Parasites. Microfungal parasites in
the genus Escovopsis (anamorphic Hypocreales) have been
known for more than a century to overgrow fungus gardens
of laboratory colonies [1, 13, 31], but the formal status of
Escovopsis as a disease was confirmed only just over a decade
ago when Currie et al. [32] showed that Escovopsis fulfils
Koch’s four defining postulates [33] for causative disease
agents. This included evidence that Escovopsis (i) is found in
abundance in diseased but infrequently in apparently healthy
colonies, (ii) can be isolated from diseased colonies, (iii)
can cause disease when colonies are artificially infected, and
(iv) can be reisolated from diseased experimental colonies
[32]. It was also shown that Escovopsis has a directly negative
impact on the ant cultivar [32, 34, 35] through the secretion
of compounds that break down the cultivar mycelium [36].
As fungus-growing ants rely on healthy fungus gardens for
growth and reproduction, this implies that Escovopsis is a
potentially serious threat to ant fitness [35].

Deep-level phylogenetic congruence has been found
between the fungus-growing ants, their cultivars, and Escov-
opsis parasites, suggesting a long history of codivergence
within the attine agricultural systems [37]. However, cophy-
logenies at lower levels appear to be punctuated with occa-
sional host switching of the parasites [38], consistent with
ongoing arms races [37], although null hypotheses of genetic
drift in isolated parasite populations can usually not be
dismissed.

Even within ant genera, there is some evidence for ant-
cultivar-Escovopsis pairing specificity. Four morphologically
and genetically distinct Escovopsis types parasitize the cul-
tivars maintained by Apterostigma, a basal fungus-growing
ant genus [39]. These have so far been categorised as
“brown,” “yellow,” “pink,” and “white,” but are genetically
distinct and likely different subspecies or species (cf. [39]).
Even within these groupings, there is evidence for speci-
ficity: “pink” Escovopsis appears to infect only G3 cultivars
and (rare) “white” Escovopsis only G2 cultivars, whereas
“brown” and “yellow” Escovopsis commonly coinfect G2
cultivars (cf. Table 1 in [39]). Current evidence suggests
that these pathogen lineages display patterns of phyloge-
netic congruence with their fungal host [39], maintained
by chemotaxis and host resistance in nonnative (i.e., not
naturally occurring) combinations [40]. A similar scenario
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of association specificity is apparent for the lower attine
genus Cyphomyrmex, where subclades of a single Escovopsis
morphotype (pink) are phylogenetic congruent with corre-
sponding clades of cultivar host genotypes [41]. In the higher
attine ants, Trachymyrmex and Sericomyrmex are infected by
specific Escovopsis parasites that are phylogenetically distinct
from the two clades that parasitize Atta and Acromyrmex
leaf-cutting ants [37, 38]. Within the leaf-cutting ant genera,
Escovopsis infections are nonspecific [38], confirming the
high degree of ant-cultivar specificity of all extant leaf-cut-
ting ants to a single species of Attamyces symbiont [42].

1.3. Defence Strategies against Escovopsis . Fungus-growing
ants, especially the leaf-cutting ants, have elaborate pro-
phylactic fungus grooming and weeding behaviours to keep
their cultivar free from parasites [44, 45]. In Acromyrmex,
minor workers are particularly efficient at restricting spore
germination [45], and major workers appear to recruit minor
workers to infected sites, thereby potentially increasing the
efficiency of disease suppression [46]. If spores manage
to escape the attention of minor workers and germinate,
major workers appear to perform the task of removing
infected garden pieces (weeding) [45]. Task specialization
between castes thus appears to make hygienic policing more
efficient in general, which has been proposed to be normally
sufficient for eliminating generalist fungal parasites, but not
for completely eradicating Escovopsis infections [44].

To control Escovopsis infections, fungus-growing ants
may also use metapleural gland secretions, which contain
an array of compounds with antibiotic properties [48, 69].
In a seminal study, Ferndndez-Marin et al. [47] described
highly coordinated and challenge-specific foreleg movements
along the metapleural gland opening (metapleural gland
grooming), which allowed Atta and Acromyrmex ants to
precisely target the application of antibiotic secretion to their
gardens. In combination with metapleural gland grooming,
fungus-growing ants utilize their infrabuccal pocket (located
in the oral cavity) as a further filtering and sterilising device.
After grooming, the ants collect Escovopsis spores in this
pocket, where they are sterilised by an as-of-yet unknown
mechanism (potentially metapleural gland compounds),
after which the infrabuccal pellet is expelled on the colony
refuse pile [47, 49, 70].

The cuticle of major garden workers is often covered
with a thick white growth of Actinobacteria [50, 51], which
produce antimicrobial compounds that aid in the protection
of the fungal cultivar from Escovopsis [49-51, 64, 71] and
possibly other parasites [65]. These beneficial Actinobacteria
are reared by the ants and housed in cuticular crypts, tuber-
cles, or other modifications associated with subcuticular
exocrine glands [52]. Most work on the Actinobacteria has
focused on specifically associated lineages of Pseudonocardia
[51, 55]. Pseudonocardia appears to be vertically transmitted
by default [50], but phylogenetic evidence indicates that
events of horizontal transfer and incorporation of free-living
Pseudonocardia to the symbiosis have occurred [55-57].
Recent studies have further shown that other Actinobacteria
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genera (mainly Strepfomyces) are often also present [57—
61], but their degree of specificity with the symbiosis is
less clear. There is little doubt that cuticular Actinobacteria
cultures serve active defence functions in the symbiosis, but
clarifying the relative importance of predominantly vertically
transmitted Pseudonocardia and horizontally transmitted
other defensive microbes will need much further work.

Ant cultivars, the hosts of Escovopsis parasitism, are
able to launch defences themselves by secreting chemical
compounds that suppress Escovopsis growth. This has been
tested in the Apterostigima and Cyphomyrmex [41, 43], where
antifungal compounds secreted by the cultivar appeared to
be more effective in suppressing the growth of Escovopsis
strains that are unknown to infect them in nature, but less
effective against their native Escovopsis strains [41, 43]. Such
cultivar responses towards novel Escovopsis strains might
result in limitations for Escovopsis host switching outside
the agricultural system that they are adapted to. Overall,
therefore, the defences of the ants, the Actinobacteria, and
the cultivar appear to reinforce each other in suppressing
Escovopsis infection and proliferation within attine ant
fungus gardens (see e.g., Figure 10.1 in [22]).

1.4. Trade-Offs between Alternative Defence Functions. Over
the course of millions of years of selection on the interaction
between fungus-growing ants and Escovopsis, different ant
genera have diversified in their specific utilization and
combination of alternative defence mechanism to reduce the
impact of Escovopsis. This has been best studied in species of
the leaf-cutting ant genera Atta and Acromyrmex. Escovopsis
infections appear to be more prevalent in Acromyrmex
than Atta colonies [35], possibly due to differences in the
efficiency of alternative defensive strategies. First, the chem-
ical compounds in the metapleural glands differ between
Acromyrmex than Atta, reviewed in [53], making it inevitable
that compounds with different antimicrobial properties are
produced (cf. [48]). Second, Actinobacteria are abundant in
Acromyrmex and essentially absent in Atta [54]. Third, the
rate of metapleural gland grooming differs in a contrasting
manner, with Atta increasing grooming rates after Escovopsis
infection and Acromyrmex maintaining a constantly low rate
of metapleural gland grooming [54].

Differences in metapleural gland chemistry, grooming
rate, and Actinobacteria coverage indicate that trade-offs
between these alternative defensive strategies are likely,
conceivably because these defences are known to be costly
[72, 73]. Different defences may target the same parasite, but
with different modes of action. For example, in Acromyrmex,
metapleural gland secretions kill Escovopsis spores but show
limited effect on hyphae [48], while Actinobacteria secretions
suppress hyphal growth but do not kill spores [64]. A similar
scenario has been proposed for two other genera of higher
attine ants, Trachymyrmex and Sericomyrmex, as certain
species from the former genus have abundant Actinobacteria
cover and low frequencies of metapleural gland grooming,
while Sericomyrmex has very few Actinobacteria and a higher
frequency of metapleural gland grooming [72].

2. Using Tinbergen’s Four Quadrats to Structure
Attine-Escovopsis Research

Nikolaas Tinbergen was a Dutch ethologist and ornithologist
who received a Nobel Prize in Physiology or Medicine in
1973 together with Karl von Frisch and Konrad Lorenz
for their joint work on the organization and elicitation of
individual and social behaviour in animals [74]. Tinbergen’s
four categories of evolutionary questions were originally
developed to obtain an integrated explanation for animal
behaviour, based on complementary understanding of prox-
imate mechanisms (1) and ontogenetic developments (2),
as well as ultimate selection forces resulting in adaptive
evolution of individuals (3) and long-term evolutionary
change of populations or higher-level clades (phylogenetic
history) (4) [75]. Tinbergen’s framework has since been
used in many research programs throughout the life sciences
[76-78] but has, to our knowledge, not been applied to
host-parasite interactions. For the purpose of the present
paper, we modify Tinbergen’s framework to encompass
a classification of questions that have been (Table 1), or
could be (Figure 1), addressed to better understand the
evolutionary ecology of attine ant-Escovopsis interactions.
Table 1 summarizes how studies available so far can
be grouped into Tinbergen four quadrats framework. This
was relatively straightforward for the ultimate questions of
adaptive evolution and phylogenetic history, but not always
for the proximate ontogeny and mechanism categories, be-
cause available research tools have so far not allowed much
understanding of the (epi)genetics behind developmental
pathways and phenotypic plasticity. It is, therefore, also ar-
guable that the questions addressed in our ontogeny and
mechanism categories are rather ambiguous, in being both
technologically challenging and relatively imprecise in their
fit to a single Tinbergen quadrat. We nonetheless felt that
making a first attempt to structure a research agenda was
worthwhile and have chosen to group questions of Escovopsis
specialization in the ontogeny quadrat and questions of
cultivar utilization and defences by the ants and fungal sym-
bionts in the mechanism quadrat. In the sections below, we
utilise these groupings to formulate how new experimental
work, combined with the increasing availability of genome
sequences, may allow novel insights in Escovopsis parasitism.

3. Tinbergen’s Ontogeny Quadrat

3.1. Escovopsis Recognition of Cultivars. In vitro assays have
shown that Escovopsis can recognize native cultivar hosts
through chemotaxis, followed by directed growth of the par-
asite towards the cultivar, the secretion of parasite enzymes
breaking down cultivar cells, and absorption of cultivar cell
contents [36]. In contrast, Escovopsis is not able to utilize
nonnative cultivar strains and can even be inhibited by them
[41, 43]. The mechanisms and genes underlying parasite
differentiation between native and nonnative host cultivars
remain unknown, that is, we neither know the identity or the
evolution of the chemicals (what does Escovopsis recognize?)
nor the genes coding for the chemicals produced and their
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TaBLE 1: Overview of available studies on Escovopsis virulence in gardens of fungus-growing ants, and our assortment of these studies into

the four Tinbergen quadrats.

Quadrat Study focus References
Ontogeny Pathology, impact, and prevalence [32, 34, 35]
Genetic and chemical basis of Escovopsis recognition of cultivars [36,38-41, 43]
Mechanism Ant behavioural defences [44-47]
Chemical defences [47, 48]
Actinobacteria defences [49-52]
Cultivar defences [40, 41, 43]
Phylogeny Population-level specificity [38-41, 43]
Cross-phylogeny specificity [38,51]
Adaptation Susceptibility/resistance to metapleural gland compounds ([48], reviewed in [53, 54])
Degree of Actinobacteria specificity [55-63]
Susceptibility/resistance to Actinobacteria secretions [50, 58, 60, 61, 64, 65]
Host cultivar use [38—41, 43]
Objects of explanation
Development/Historical Single form
L What organisms need to function and
Progression in current form .
why those functions arose
Ontogeny Mechanism
(i) Escovopsis recognition of cultivars
Proximate (ii) Genetic basis for Escovopsis (1) Escovopsis transmission between
How organisms work by describing their recognition by the ants colonies
. developmental and functional traits (iii) Trade-offs between alternative (ii) Colony-level virulence
s defences
g Phylogeny Adaptation
S . (i) Or1g1r} apd diversification of the (i) Evolutionary potential of
Evolutionary association : .
. ; " . Escovopsis as a parasite
How evolution has shaped organisms to | (ii) Phylo-geographic patterns, .. .
. . . . . (i) Evolutionary consequences of
acquire their extant forms coevolutionary interactions, and L .
dispersal host-parasite interactions

FiGure 1: Tinbergen’s four quadrat framework applied to evolutionary questions about Escovopsis parasitism of fungus-farming ant crops.
Ontogeny refers to the description of development, from DNA to progressive phenotype, mechanism refers to the physiological and cellular
processes that organisms have available, phylogeny refers to the idiosyncratic evolutionary history of a lineage, and adaptation refers to traits
that acquired their extant function because of specific selective advantages, modified from [66-68].

evolutionary history. Ongoing genome sequencing of culti-
vars and Escovopsis, as well as efforts to isolate the chemicals
involved, will thus allow considerable progress to be made.
Two evolutionary explanations for the maintenance of
Escovopsis-cultivar utilization patterns seem possible. The
nonadaptive explanation would hold that Escovopsis strains
(or species) would be subject to consistent genetic drift in
isolated populations, so that they would lose adaptations to
allopatric hosts by chance. The alternative adaptive expla-
nation would hold that populations are mostly panmictic,
so that genes coding for innovative pathogen traits and
defensive recognition and resistance traits of cultivars would
tend to coevolve. If so, Escovopsis would track cultivar
evolution in continuous, but variable, arms races reminiscent
of a geographic mosaic of coevolution [79]. If the latter is the
case, expectations are that positive selection on specific gene
complexes (e.g., recognition or resistance genes) will likely

have left signatures of enhanced dN/dS ratios compared to
housekeeping and neutral genes, while nonsignificant dN/dS
ratios would make the nonadaptive null hypothesis more
likely. In general, it seems unlikely that Escovopsis popu-
lations are highly structured (see also below), but solid
empirical evidence on this is lacking.

3.2. Genetic Basis for Escovopsis Recognition by the Ants. Ants
are able to discriminate between Escovopsis and other fungi
and behave accordingly [44, 45]. Natural selection in the ant
host is expected to select for genes involved in the recognition
and removal of Escovopsis from the fungus garden, as this is
predicted to provide a selective advantage. Further, Escovopsis
has the potential to be much more virulent than any general
fungal weeds of attine ant colonies, at least in the higher
attine system where virulence has been studied, implying
stronger selection on Escovopsis recognition pathways in the
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ants compared to pathways mediating the recognition of
weed fungi. The genetic basis of Escovopsis recognition has
not been explored, but genomic tools will make this possible
in the years to come [80, 81]. For example, two leaf-cutting
ant genomes are now published [82, 83] and a sequenced
Escovopsis genome will soon follow (anonymous reviewer,
personal communication), providing the tools necessary for
such new approaches to studying behavioural recognition
mechanisms. Recognition of, and concomitant behavioural
responses to, Escovopsis infection are faster and last longer
than the response to general fungal pathogens [44, 47],
leading to the prediction of higher levels of recognition
gene expression in the presence of Escovopsis. However, it is
conceivable that the mechanism of recognition of Escovopsis
and other fungi by the ants does not differ but that responses
do, so that it is rather genes underlying behavioural removal
responses that are differentially expressed.

3.3. Trade-Offs between Alternative Defences. Defences
against Escovopsis include behavioural removal (including
self- and allo-grooming), glandular secretions, cultivar de-
fensive compounds against nonnative Escovopsis, and com-
pounds with antibiotic properties derived from Actinobacte-
ria. These defences all involve interactions on the ant cuticle
and are expected to require coordinated interactions to
avoid negative interference. In Acromyrmex octospinosus,
the metapleural gland secretions do not appear to harm the
Actinobacteria, so that both defences can be freely expressed
[54]. Further, complementarity is expected to maximize cost-
benefit ratios of defences as well as to avoid redundancies.
It is conceivable that differences in Actinobacteria cover
between closely related ant species, such as A. octospinosus
and A. echinatior [72], reflect more recent adjustments
(trade-offs) in the relative importance of defences between
the species.

Explorations of defence trade-offs have only been done
in some higher attines, leaving questions of this kind
unexplored in most of the fourteen extant fungus-growing
ant genera. We propose that utilizing the phylogenetic
framework of structural modifications over the course of the
association between fungus-growing ants and Actinobacteria
[52] would offer a good basis for future work to understand
the dynamics of defence components across the attine
tribe. The relative usage of metapleural gland grooming
and the chemistry of glandular and bacterial secretions
in Acromyrmex/Trachymyrmex versus Atta/Sericomyrmex
exemplify how such comparative approaches can be insight-
ful [54]. However, considering the vast diversity of cultivar
usage, Actinobacteria communities, substrate choice, and ant
life-history traits, it is conceivable that defence strategies and
trade-offs in unstudied attine ants might be different from
those found in the higher attines.

4. Tinbergen’s Mechanism Quadrat

4.1. Escovopsis Transmission between Colonies. The success
of parasitism is tightly linked to the transmission frequency
between host colonies [84]. The most common transmission
for fungal spores is passive dispersal through the air, but this

is unlikely to be the case for Escovopsis because it sporulates
inside colonies and has wet spores [35]. The mechanism of
Escovopsis transmission, therefore, continues to be enigmatic,
with untested hypotheses of commensal garden arthropods
vectoring spores between colonies, or foraging ants picking
up spores via encounters outside the nest as reasonable
leads [41, 84]. Both mechanisms could be further facilitated
by attine colonies nesting in each others close proximity.
Culture-based attempts to isolate Escovopsis from potential
vectors are, therefore, needed for a better understanding of
transmission modes. Expectations are that Escovopsis is more
likely to be transmitted between colonies by commensal
arthropods. This is so, because foragers presumably rarely, if
ever, enter other colonies, and are therefore unlikely to pick
up Escovopsis spores from nonnative infected colonies, and
because workers are efficient at recognizing and removing
Escovopsis spores from their cuticle (e.g., [85, 86]). In
contrast, commensal arthropods moving between colonies
are not expected to have evolved such avoidance behaviours
towards Escovopsis.

4.2. Colony-Level Virulence. The within-nest dynamics of
Escovopsis infections remain a frontier awaiting exploration.
Escovopsis can coexist with other nonmutualistic filamentous
fungi within colonies without colonies displaying signs of
infection [62, 87—89]. However, it is not known if infection
sets out shortly after Escovopsis introduction, or if Escovopsis
spores remain dormant in the colonies until an outbreak
of mycelial growth is triggered by external factors. To begin
to understand these dynamics, two essential questions need
to be addressed. Firstly, we need a better understanding
of the level of metabolically active spores and hyphae of
Escovopsis in normally functioning and apparently healthy
colonies. This could be obtained through quantitative PCR
approaches, so that amounts of Escovopsis biomass and
levels of metabolic activity, measured as gene expression,
can be estimated. Ideally, this should be explored over time
to also determine temporal variation. Only when we have
a better idea of such dynamics, we can begin to explore
the role of the ants in mediating these threats. Secondly,
if spore-dormancy is the rule, work should address what
factors trigger within-colony outbreaks. One approach that
could potentially address this is long-term field surveys of
natural colonies to better understand the interplay between
ecological fluctuations, (e.g., temperature, rainfall, and food
availability), intrinsic factors (e.g., loss of queen, imbalance
of worker to garden ratio, and emergence of reproductives),
and infection dynamics.

5. Tinbergen’s Phylogeny Quadrat

5.1. Origin and Diversification of the Association. The appar-
ent presence of Escovopsis throughout the fungus-growing
ants suggests that an ancestral Escovopsis was present as a
parasite in the first ant cultivars that were domesticated ca.
50 million years ago (cf. [37, 90]). However, an alternative
scenario is that Escovopsis parasitism originated shortly after
the early attine ants had become irreversibly committed to
farming. The latter would indicate that Escovopsis parasitism



was not merely a passive carry-over process, but that the
highly peculiar garden phenotype of domesticated fungi
created a novel niche to parasites like Escovopsis. Finding that
Escovopsis parasitism would also occur in free-living relatives
of lower attine garden symbionts would make an origin
predating ant fungiculture more likely, but several lines of
indirect evidence suggest that the “new garden niche” model
is more likely to apply. First, Actinobacteria cultures on the
cuticle of attine ants arose also shortly after these ants became
farmers [52], and it would be hard to imagine that the origin
of this costly biocontrol habit was not somehow related to
Escovopsis infections. Second, the impact of Escovopsis on
fungus-growing ant cultivars is likely to be particularly high
because colonies keep a high density of cultivar mycelium
without sufficient own defences. Third, it is striking that the
only clade of attine ants that secondary developed a radically
different and much less conspicuous garden phenotype, the
yeast-rearing Cyphomyrmex, have secondary lost Escovopsis
as a parasite [4].

To date, there are two described species of Escovopsis,
with E. weberi from a Brazilian Atta species thought to be the
monotypic species of the genus [91]. Later, a morphological-
ly distinct E. aspergilloides was isolated from Trachymyrmex
ruthae in Trinidad [92]. Both large scale (cf. [37, 38])
and lower-level lineage diversity [39—41] are considerable,
suggesting that there are more Escovopsis species associated
with fungus-growing ants. Molecular species delineation
based on conserved genes such as EF-1a and 18S rRNA is
unlikely to distinguish lineages that diverged recently, so that
more sensitive marker studies are needed. Recent multilocus
sequence analyses (MLSAs) have provided the opportunity to
estimate divergence dates for crucial nodes in phylogenetic
trees [4, 19] and would thus also offer novel insights when
applied to an Escovopsis phylogeny [37]. Approaches of this
kind will ultimately allow conclusions about the origin of
Escovopsis parasitism (before or after attine ants became
farmers) and the rates of Escovopsis evolution in different
host clades.

5.2. Phylo-Geographic Patterns, Coevolutionary Interactions,
and Dispersal. Coevolutionary theory predicts that geno-
typic and phenotypic variation across the geographic range
of a host-parasite association can lead to parasite adapta-
tions to locally available host genotypes, while becoming
maladapted to nonnative genotypes [93]. A prerequisite for
such coevolutionary interactions is that host populations are
genetically structured, so that gene flow between populations
remains limited [93]. In fungus-growing ants, only a single
study has attempted to explore such coevolutionary dynam-
ics (in the ant species Apterostigma dentigerum [43]). This
showed the presence of six distinct host genotype clusters
across Central America, while structuring was essentially
absent in the parasite, indicating that Escovopsis genotypes
are not tightly tracking those of the host [43].

We would expect that other fungus-growing ant-
cultivar-Escovopsis interactions will mirror the findings in
Apterostigma, since cultivars are vertically transmitted by
default while Escovopsis is horizontally transmitted. There-
fore, the population structure in Escovopsis could be
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explainable if their sticky spores would use vectors for long
distance dispersal that are not available to dispersing ants. It
would be tempting to speculate that other arthropods living
in attine nests might have this vector function, but examples
of such long distance flyers vectoring spores are presently
lacking. Alternatively, wind dispersal of small leaf fragments
with Escovopsis spores would also seem a realistic mechanism
for parasite populations to become less viscous than host
populations. Future studies addressing relative dispersal
efficiencies of partners in the attine ant symbiosis would
seem most informative if they could span geographic areas
that would be large enough to include natural barriers that
would differentially affect Escovopsis spores and dispersing
ant queens transmitting fungus-garden symbionts.

6. Tinbergen’s Adaptation Quadrat

6.1. Evolutionary Potential of Escovopsis as a Parasite. As
already mentioned, Escovopsis has probably persisted as a
parasite of fungus-growing ant gardens since the origin of
ant fungiculture 50 million years ago [4, 37]. If that is so,
“Red Queen” like arms races with the ant and fungal hosts
may have at least periodically occurred, so that genetic
diversity of the parasite is likely to be substantial [26-29].
However, the sexual “teleomorph” of Escovopsis has never
been observed so that Escovopsis may not have sexual re-
production, similar to many other Ascomycetes [94]. Lack
of sex would not necessarily preclude the integration and
exchange of genetic material between different anamorphous
mycelia within nests, provided that coinfections occur with
some frequency. This is because asexual Ascomycetes can
undergo genetic exchange between strains after hyphal
merging (anastomosis) and parasexual heterokaryosis (the
exchange of cell nuclei) [95]. If such exchanges lead to
mitotic crossovers, then there is potential for recombination
between genetically different strains [95]. It will be very
interesting to investigate whether the Escovopsis genome still
shows signs of such genetic recombination.

The presence of coinfections within individual nests is
a prerequisite for such genetic exchanges. Both Afta and
Acromyrmex leaf-cutting ants appear to frequently harbour
genetically distinct Escovopsis strains, including ones appear-
ing in two separate phylogenetic clades [63]. Similarly, in the
paleoattine genus Apterostigma, fungus gardens are infected
by four distinct Escovopsis morphotypes “brown,” “yellow,”
“pink,” and “white” [39]. This implies the potential for ex-
change of genetic material between coinfecting strains within
colonies. By explicitly addressing this question, we could gain
insight both in the dynamics of coinfections (e.g., facilitation,
inhibition, the role of the order of infection precedence)
within colonies and in the putative species status of different
Escovopsis morphotypes.

6.2. Evolutionary Consequences of Host-Parasite Interactions.
A common question in the evolutionary study of host-patho-
gen interactions is whether coevolutionary arms races are al-
most continuous or relatively rare. This is partly because of
the difficulty of testing such dynamics when exploring
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biological systems in real time. Fungus-growing ants have
evolved extensive complementary defences to deal with Esco-
vopsis, but the parasite nevertheless prevails at relatively high
population-level frequencies, ranging from 27-75%, de-
pending on the ant genus and geographic location (e.g., [32,
88]). This finding suggests that Escovopsis continues to exert
selection pressure on the ant hosts, potentially leading to
concomitant changes in ant defences. All this is suggestive of,
but not decisive evidence for, antagonistic coevolution (cf.
[96]).

The efficiency of behavioural defences (grooming/weed-
ing) in attine ants is known to have an impact on the
virulence of Escovopsis [44, 45]. Under a coevolutionary sce-
nario, expectations are that Escovopsis has exerted selection
pressures on the ants to optimize their behavioural response
towards native parasite strains. Such a scenario would predict
that infections with (avirulent) nonnative strains of the
parasite would not elicit the same efficient response from the
ants. Similarly, if metapleural gland grooming behaviour and
chemistry have been shaped by coevolutionary interactions
with Escovopsis, then we would expect that the grooming
rate and the chemical secretion cocktail would be adapted to
inhibit native parasite strains more than nonnative strains.

The coevolutionary patterns arising from interactions
between Escovopsis and the Actinobacteria are inevitably
different from those between Escovopsis and direct defences
by the ants. Two, perhaps nonmutually exclusive, scenarios
derived from Red-Queen dynamics in relation to Acti-
nobacteria defence have been proposed. The first scenario
suggests that Actinobacteria in the genus Pseudonocardia
evolve in response to antibiotic resistance evolving in Esco-
vopsis. Evidence supporting the potential for this to be the
case comes mainly from observations of variation in the
propensities of different Pseudonocardia-derived antibiotics,
including the presence of Escovopsis strains that are resistant
[55, 64]. Phenotypic variation is a prerequisite for such
dynamics to be maintained, as this is what natural selection
can act on. However, no studies have as yet shown that
changes in Pseudonocardia genes for antibiotic production
do indeed change in response to Escovopsis susceptibility.
A second possible scenario is that attine ants frequently
acquire strains of bacteria from the environment that have
novel antibiotic properties against Escovopsis, be it either
Pseudonocardia [55] or other Actinobacteria [57, 61, 65].
Evidence for such acquisitions comes from survey data
showing that free-living Pseudonocardia are phylogeneti-
cally interspersed with ant-associated clades [55], and that
additional Actinobacteria with antibiotic properties (mainly
Streptomyces) can be obtained from the ant cuticles or
gardens of colonies. We expect that characterizations of the
antibiotic profiles produced by the major clades of Pseudono-
cardia that associate with fungus-growing ants will clarify
the role that these alternative acquisition mechanisms have
played in maintaining a successful Pseudonocardia-defence
against Escovopsis. Further studies will also benefit from a
more explicit emphasis on exploring how and to what extent
such horizontal acquisitions of novel Actinobacteria occur,
and whether they have a selective advantage for ant colony
fitness.

7. Conclusions

Since the discovery of Escovopsis parasitism of fungus-
growing ants less than 15 years ago, we have obtained a
broad understanding of prevalence, impact, role, and coevo-
lution of the parasite with the attine ant-fungus symbiosis.
Nevertheless, many fundamental questions remain unan-
swered, including the origin of the host-parasite association,
its presence and potential role outside attine ant nests,
parasite transmission between colonies, and within-colony
disease dynamics. We know that Escovopsis is attracted to
specific ant cultivars in some cases, but the generality of
this phenomenon and the underlying recognition mech-
anisms are unknown. Several defences against Escovopsis
are known, including prophylactic behaviours, metapleural
gland grooming and compounds, and Actinobacteria sym-
bionts, which all contribute to reducing the impact of Escov-
opsis. However, we know little about the context-specific
efficiency of these alternative and complementary defences,
and only in some cases do we have a crude understanding of
the potential trade-offs involved. More detailed phylogenetic
studies of the association specificity of ants, fungal cultivars,
Escovopsis, and Actinobacteria are needed to improve our
interpretations of reciprocal interactions observed. Although
the Tinbergen framework did not allow us to do full justice to
the complexity of this host-parasite interaction, we feel that
it does provide a useful structuring device for the research
agenda that will be required to make further progress in
understanding this unique genus of crop-pests of fungus-
growing ants.
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