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Saliva of bloodsucking arthropods contains dozens or hundreds of proteins that affect their hosts’ mechanisms against blood
loss (hemostasis) and inflammation. Because acquisition of the hematophagous habit evolved independently in several arthropod
orders and at least twice within the true bugs, there is a convergent evolutionary scenario that creates a different salivary potion for
each organism evolving independently to hematophagy. Additionally, the immune pressure posed by their hosts creates additional
evolutionary pressure on the genes coding for salivary proteins, including gene obsolescence, which opens the niche for coopting
new genes (exaptation). In the past 10 years, several salivary transcriptomes from bloodsucking Heteroptera and one from a seed-
feeding Pentatomorpha were produced, allowing insight into the salivary potion of these organisms and the evolutionary pathway
to the blood-feeding mode.

1. Introduction

The order Hemiptera (bugs) comprises hemimetabolous
insects having in common tubular mouthparts specialized
for sucking liquid diets. The diet of Hemiptera is varied,
the majority feeding on plants by either tapping the vessels
conducting sap or by lacerating and flushing tissues such as
leaves or seeds. Within the suborder Heteroptera (true bugs),
predatory feeding (with killing of the victim) also occurs,
mostly targeting other insects but also including small
vertebrates such as giant water bugs and toad bugs, as well
as blood or hemolymph feeding (without killing the victim)
from vertebrate and invertebrate animals. The mouthparts
are not only important for channeling the liquid meal but
are extremely important mechanically in finding the proper
spot for meal suction [1].

Saliva is produced, sometimes copiously, during the
probing phase (the time between mouthpart contact with
the food substrate and the commencement of the meal) and
throughout the meal [31, 32]. This saliva is ejected at the
tip of the maxillae by the salivary channel, which is built in
between the interdigitations of the two plates that form the
maxillae [33]. Saliva helps probing and feeding physically by

liquefying insoluble or viscous tissues or by helping to seal
the feeding site in sap suckers, were the phloem is under
very high pressure [34]. Saliva has a biochemical role in
aiding digestion of the meal, just as we have amylase in our
own saliva; most remarkably, predacious bugs inject a highly
hydrolytic cocktail into their victims that is digested while
the prey is held by the predator, which can then later suck
the liquefied victim and discard it as an empty shell. Saliva
can also work pharmacologically by preventing the hosts’
defense mechanisms against tissue loss, as occurs with the
saliva of blood-feeding insects in preventing blood clotting,
for example [35].

Among the Heteroptera, the blood-feeding habit evolved
at least twice in the Cimicomorpha families, once in the
Cimicidae (containing the bed bug) including the small
sister group Polyctenidae (bat bugs), and in the Reduviidae
(kissing bugs) from possible predacious or hemolymph-
sucking ancestors [1]. Within the Reduviidae, it is possible
that the genus Rhodnius (tribe Rhodnini) is monophyletic,
having evolved independently of the remaining triatomines
(tribe Triatomini) [47–49]. The ancestral Cimicomorpha
dates back to the Triassic/Jurassic border, over 250 MYA [1];
accordingly, the habit of blood or hemolymph feeding started
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in this group well before mammals irradiated. Within these
hematophagous bugs, blood is the only diet for all immature
and adult stages.

To obtain blood in a fluid state, these bugs have to
counteract their host’s hemostasis, the physiologic process
that prevents blood loss, which includes the triad of platelet
aggregation, blood clotting, and vasoconstriction. Blood-
circulating platelets may be triggered to aggregate by var-
ious signals, including ADP from broken cells and also
released by activated platelets, collagen from subendothelial
surfaces, thrombin (produced during blood clotting), and
thromboxane A2 (TXA2—produced by activated platelets).
Blood clotting may be initiated by activation of the intrinsic
pathway via activation of Factor XII or by activation of the
tissue factor pathway, both converging to the activation of
Factor X to Xa, which activates prothrombin to thrombin
which in turn cleaves fibrinogen into fibrin, forming the
blood clot. Activated platelets produce the vasoconstrictor
TXA2 and also release stored serotonin and epinephrine,
both powerful vasoconstrictors. A single magic bullet cannot
properly destroy a redundant and complex obstacle such as
this; rather, a magic potion of several antagonists is required.

Saliva of hematophagous arthropods also contains activ-
ities that interfere with the host’s immune and inflammatory
system in the form of immunomodulatory substances, par-
ticularly in ticks, which stay attached to their hosts for days or
weeks, in contrast to minutes of host contact by bloodsucking
bugs. Saliva also contains antimicrobial compounds that
might help to control bacterial growth in the meal, because
ejected saliva is reingested with the blood meal during blood
feeding. For more detailed reviews on host hemostasis and
immunity, see Francischetti et al. [56, 57].

Salivary anticlotting compounds from bloodsucking
insects have been known to occur for nearly 100 years [58],
while antiplatelet activity was first detected in the 1980s
[59, 60] and vasodilators have only been described since the
early 1990s [61]. In blood-feeding bugs, anticlotting agents
from the saliva and crop of Rhodnius were described first
by Hellman and Hawkins in 1965 [62], the first antiplatelet
activity was reported in 1981 [59, 63], and Rhodnius salivary
vasodilator was reported in 1990 [64]. Anticomplement
activities have also been found [65], as well as antihistamine,
antiserotonin [66], and antithromboxane [67] activities
from Rhodnius saliva. An anesthetic was found in Triatoma
infestans saliva in 1999 [68]. None of these earlier reports
characterized the molecular nature of the compounds, most
of these have been achieved in the past 20 years during the
so-called “grind and find” period of discovery. Table 1 lists
the molecularly characterized salivary components of blood-
feeding Hemiptera.

2. On Sialomes

In the past 10 years, a new method to unveil the salivary
potion of hematophagous insects has been practiced in the
form of decoding their sialotranscriptomes (from the Greek,
sialo = saliva), achieved by random sequencing of 500–2,000
cDNA clones originating from polyA-enriched RNA from
the salivary glands of these animals. After assembly of these

sequences into contigs (which represent full or near full-
length mRNA), these can be compared by bioinformatic
tools such as BLAST and rpsblast [69] to other proteins in
public databases (such as Swissprot, Gene Ontology [70], and
GenBank [71] protein data banks, and CDD, PFAM, SMART
and KOG [72], which are motif databases to be explored with
the rpsblast tool) to identify closely related sequences and
functional motifs. Additional searches for signal sequences
indicative of secretion [73], for transmembrane helices
[74], and for glycosylation sites [75] are also helpful to
attempt functional classification of the protein. We are now
on the eve of another revolution, with the increase by
thousands of fold on the number of sequences that can
be economically sequenced from these libraries, which will
allow identification of the lesser expressed (and possibly most
potent) proteins.

So far, 12 sialotranscriptomes—all done with less than
3,000 sequenced clones per organism—have been reported
from Heteroptera, 11 of which are from blood-feeding
Cimicomorpha and one from the seed-feeding Oncopeltus
fasciatus. Oncopeltus belongs to the Pentatomomorpha, the
closest group to Cimicomorpha [76] (Table 2). Among the
Cimicomorpha sialotranscriptomes, only one derives from
Cimicidae (the bed bug Cimex lectularius); the remaining
are from Triatominae, encompassing four genera (Rhodnius,
Triatoma, Dipetalogaster, and Panstrongylus), although some
of these transcriptomes have no proteins deposited in
public databases and too few expressed sequence tags (ESTs)
publicly available. A few isolated protein sequences are also
available from GenBank, deriving mostly from predatory
bugs. The publicly available proteins are displayed together
in Additional File 1, which is a hyperlinked Excel spread-
sheet where the putative secreted proteins are organized in
one worksheet and the putative housekeeping proteins are
displayed in another worksheet.

The secreted proteins can be classified in two major
groups, those belonging to ubiquitous protein families and
those of unique status among the Hemiptera family, genus,
or even species level (Table 3). We will proceed to describe
the protein families in the order shown on Table 3.

3. Ubiquitous Protein Families

3.1. Enzymes

3.1.1. Apyrase, 5′-Nucleotidase, and NUDIX Hydrolase.
Apyrases are enzymes that can hydrolyze ATP and ADP to
AMP [77–79]. Initially the existence of true apyrases was
doubted, because they could originate from a mixture of
enzymes such as adenylate kinase and ATPases; however,
their real intracellular existence in the potato was shown later
[79, 80] and its function in carbohydrate anabolism and in
the promotion of glycosyltransferases was only much later
discovered, as indicated [81, 82]. The role of extracellular
apyrases on preventing platelet aggregation was demon-
strated for the first time in Rhodnius saliva [63, 83, 84]
and later shown in the saliva of mosquitoes [85–87] and in
the vascular endothelium [88–90]. The activity from Cimex
lectularius was purified and cloned, revealing a new type of
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Table 1: Molecularly and functionally characterized salivary components of bloodfeeding Hemiptera.

Name Family Insect Activity Notes Reference

Prolixin Nitrophorin Rhodnius prolixus Anticlotting FXa inhibitor [2]

RPAI Lipocalin R. prolixus Antiplatelet Binds ADP [3, 4]

Nitrophorins Nitrophorin R. prolixus Antihistamine
Binds histamine, carrier

of NO
[5, 6]

BABP Nitrophorin R. prolixus Antiserotonin Binds serotonin [7]

Inositol phosphatase Inositol phosphatase R. prolixus Inositol phosphatase Unknown function [8]

Lysophosphatidylcholine Lipid R. prolixus Antihemostatic [9]

NO Inorganic gas
R. prolixus, Cimex

lectularius
Vasodilatory,
antiplatelet

Activates guanylate cyclase [10, 11]

Apyrase 5′-nucleotidase Triatoma infestans Antiplatelet Destroys ADP [12, 13]

Triplatin Lipocalin T. infestans
Antiplatelet,
vasodilator

TXA2 binder [14, 15]

Triafestin Lipocalin T. infestans Anticlotting, antipain Inhibits FXII activation [16]

Trialysin Trialysin T. infestans Antimicrobial Pore forming [17, 18]

Pallidipin Lipocalin T. pallidipennis Antiplatelet
Collagen inhibitor

(possible TXA2 binder)
[19, 20]

Triabin Lipocalin T. pallidipennis Anticlotting Anti-thrombin [21–23]

Procalin Lipocalin T. protracta Allergen Function unknown [24]

Dipetalodipin Lipocalin Dipetalogaster maxima
Antiplatelet,
vasodilator

TXA2 binder [25]

Apyrase Cimex apyrase Cimex lectularius Antiplatelet Destroys ADP [26]

Nitrophorin Inositol phosphatase C. lectularius
Antiplatelet,
vasodilator

Carrier of NO [27–29]

Fibrinolytic enzyme Serine proteinase Panstrongylus megistus Anticlotting [30]

Table 2: Salivary transcriptomes of Hemiptera/Heteroptera.

Organism Number of ESTs on DBEST Number of derived proteins in GenBank Reference

Rhodnius prolixus 1,439 56 [36]

R. brethesi 55 0 [37]

R. robustus 121 0 [37]

Triatoma infestans 1,738 167 [38]

Triatoma brasiliensis 2,109 28 [39]

Triatoma matogrossensis 2,230 196 [40]

Triatoma rubida 1,850 93 [41]

Triatoma dimidiata 53 53 [42]

Dipetalogaster maxima 2,671 66 [43]

Panstrongylus megistus 45 0 [44]

Cimex lectularius 1,969 102 [45]

Oncopeltus fasciatus 1,115 37 [46]

enzyme that is ubiquitous in nature [26, 91, 92]. That for
T. infestans, though, was found to belong to a completely
different family, that of the 5′-nucleotidase family of enzymes
[12]. Interestingly, sand flies [93] express salivary apyrases
of the Cimex type, while mosquito salivary apyrases belong
to the 5′-nucleotidase family [87, 94], clear examples of
convergent evolution.

Nudix hydrolases or bis(5′-nucleosidyl)-tetraphosphata-
ses (EC: 3.6.1.17) are enzymes that hydrolyze nucleotides
joined by their phosphate groups such as AP4A or AP5A

in the case of diadenosine nucleotides, which are known
agonists of platelet aggregation and inflammation [95–98].
C. lectularius sialotranscriptomes presents clear evidence of
such enzymes, but the activity in salivary homogenates was
never studied.

Lacking in these Heteroptera sialotranscriptomes are
additional nucleotide-acting enzymes, such as endonucle-
ases, found in mosquitoes and sand flies [99–101], and
adenosine deaminase, found also in mosquito and some, but
not all, sand flies [102–104].
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Table 3: Classification of the protein families relevant to secreted products in the Hemiptera/Heteroptera.

Classification No. of proteins Genera found1 Function characterized?2 References

Ubiquitous protein families

Enzymes

Cimex apyrase 1 C, R(?) Y [26, 50]

5′-nucleotidase 6 T Y [12, 13, 51]

Cimex NUDIX hydrolase 3 C

Secreted esterase 5 C, T

Inositol phosphate phosphatases including
Cimex nitrophorins

24 C, T, R Y/N [8, 27, 28]

Serine proteases 17 C, T Y/N [30]

Chitinase 1 O

Other enzymes 4 T, O

Protease inhibitor domains

Kazal domain containing proteins 13 T

Serpin 1 C

Pacifastin-related peptide 1 O

Cystatin 5 O

Lipocalins 331 T, R Y/N
[2, 4–7, 11, 14, 15, 19–

21, 23, 43, 52–55]

Salivary OBP 19 C, T, R

Salivary antigen 5 family 22 C, T, R

Triatoma dimidiata lectin 2 T

Immunity related

Lysozyme 4 C

Defensin 1 T

Histidine-rich peptide 1 T

Immune-related conserved insect protein 1 T

Arthropod or insect specific families

Cuticle-like proteins and conserved mucins 5 T

Conserved insect secreted protein family 6 C, T, O

Mys2 family 3 R, T

Cimex-Triatoma family 3 C, T

Other individual proteins of conserved insect
families

4 T

Hemiptera specific families

Mys3/hemolysin-like family 16 T, R, O

Triatoma-specific families

Trialysin 8 T Y [17, 18]

Short trialysin 6 T

Triatoma matogrossensis family 2 T

Triatoma matogrossensis family 2 2 T

Orphan Triatoma proteins 19 T

Rhodnius-specific families

Orphan Rhodnius proteins, include
low-complexity proteins

3 R

Cimex-specific proteins

Cimex mucin family 2 C

Orphan Cimex proteins 1 C
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Table 3: Continued.

Classification No. of proteins Genera found1 Function characterized?2 References

Oncopeltus-specific families

Oncopeltus family 3 O

Oncopeltus family 2 2 O

Orphan Oncopeltus protein 12 O

Total 559
1
C: Cimex; T: Triatoma/Dipetalogaster/Panstrongylus; R: Rhodnius; O: Oncopeltus.

2Y: yes; Y/N: characterization of a few or a single member of the family.

3.1.2. Acetylcholinesterases. Four well-expressed and closely
related isoforms of a typical acetylcholinesterase enzyme
were found in the sialotranscriptome of C. lectularius [45]. A
single transcript from the same family was also found in Tri-
atoma matogrossensis. Although most acetylcholinesterases
are extracellular membrane-bound enzymes by virtue of
a glycophosphatidyl-inositol membrane anchor in their
carboxy termini, these Cimicomorpha enzymes lack this
terminal region, and thus these enzymes are secreted. The
role of these enzymes in blood feeding is not yet apparent.

3.1.3. Inositol Triphosphate Phosphatases (IPPase) Includ-
ing Cimex Nitrophorin. This family of proteins has been
found ubiquitously in the sialomes of bloodsucking Cim-
icomorpha, including the well-characterized enzyme from
R. prolixus [8] and the C. lectularius nitrophorin [27–29], a
protein found associated with a heme moiety and a carrier
and stabilizer of nitric oxide (NO), a very reactive gaseous
substance that is also a potent vasodilator and platelet aggre-
gation inhibitor. While the function of Cimex nitrophorin
is without question, the function of an extracellular inositol
phosphatase is puzzling, because these inositol phosphates
are intracellular and not available to an extracellular enzyme.
Indeed, it appears fitting that inositol polyphosphates should
be hydrolyzed, because they perform a proplatelet aggre-
gation function as well as proinflammatory and immune-
enhancing roles in leukocytes [105, 106]. Perhaps the enzyme
may reach the intracellular pool by some not yet understood
mechanism. On the other hand, association of heme with
inositol phosphatases seen in the case of Cimex nitrophorins
is not at all common, being unique to these proteins; inves-
tigation of the amino acids that are associated with heme
binding does not reveal similarities to other IPPases from
either vertebrates or invertebrates (Ribeiro, unpublished).

The phylogram of the IPPase sequences found in Addi-
tional File 1 (Figure 1) shows the Cimex nitrophorins con-
tained within a strong clade with 100% bootstrap support
and constituted by at least three subclades representing at
least three genes expressing these NO transporters, plus
alleles or other genes. Cimex has two additional sequences
outside the nitrophorin clade and near the IPPase clade of the
remaining triatomines. It is thus interesting that both Cimex
and triatomines have a common IPPase in their sialome, even
though we have no idea of their function. IPPases have not
been found in any other transcriptome so far done, including
those of mosquitoes, sand flies, biting midges, black flies,

and ticks, being thus uniquely from Cimicomorpha blood
feeders.

3.1.4. Serine Proteases. Serine proteases are commonly found
in the sialotranscriptomes of insects and ticks, as well as in
those of Heteroptera. An unusual serine protease activity in
the saliva of T. infestans has been noted before, but only a par-
tial enzyme purification of the enzyme, named triapsin, was
achieved [107]. Within the bloodsucking Heteroptera, only
one Panstrongylus megistus sequence has been molecularly
characterized as a fibrinolytic enzyme [30]. Additional File
1 shows such proteins from Cimicomorpha, including plant-
feeding bugs such as Lygus lineolaris, Lygus hesperus, and Cre-
ontiades dilutus [108–110]. The phylogram of these enzymes
(Figure 2) shows two well-defined clades, one containing
most of the Lygus sequences, but also two T. matogrossensis
and one T. brasiliensis sequence, within a clade of 86%
bootstrap support, suggesting a common ancestral salivary
serine protease for plant- and blood-feeding Cimicomorpha.
The fibrinolytic enzyme of Panstrongylus shares a strongly
supported clade with two other T. matogrossensis sequences,
which are probable orthologs of the Panstrongylus gene. The
Cimex sequence appears as an outlier to the group. Rhodnius
sialotranscriptomes have not revealed proteases, and its saliva
does not hydrolyze the substrates used in the characterization
of the T. infestans triapsin (Ribeiro, unpublished).

3.1.5. Other Enzymes. A chitinase and a lipase were found in
Oncopeltus, while T. matogrossensis displayed a salivary phos-
pholipase and a metalloprotease. The precise role of these
enzymes is unknown. Salivary metalloproteases in ticks
have been associated with fibrinolytic and antiangiogenic
activities [111, 112], while the Oncopeltus enzyme may be
associated with digestive or antifungal functions.

3.2. Protease Inhibitor Domains

3.2.1. Kazal Domain-Containing Peptides. The Kazal domain
occurs in many protease inhibitors, and its structure was
first determined for the proteinase inhibitor IIA from bull
seminal plasma [113]. The sialotranscriptome of members
of South American Triatoma (T. infestans, T. matogrossensis,
and T. brasiliensis) but not North American T. dimidiata or T.
rubida, nor any other sialotranscriptome of Cimicomorpha,
abounds with transcripts coding for proteins containing this
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Figure 1: Phylogram of the inositol triphosphate phosphatase family of Cimicomorpha. The sequences are named with the first 3 letters
of the genus name, followed by the first 3 letters of the species name, followed by their GenBank GI accession number. The sequences
were aligned by Clustal, and the neighbor-joining bootstrapped phylogram was obtained with the MEGA package with 10,000 iterations,
Poisson model of amino acid substitution and pairwise amino acid comparisons using the gamma rate of amino acid substitution
(gamma parameter = 1). The numbers at the nodes are the percent bootstrap support. The line at the base indicates the rate of amino
acid substitution per site.
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Figure 2: Phylogram of the salivary serine proteases of Cimicomorpha. See the legend of Figure 1 for more details.

domain; however, none have been so far characterized func-
tionally. In Rhodnius, Triatoma, and Dipetalogaster, the crop
antithrombin has been characterized as a protein containing
two such domains [114–117], but salivary anticlotting of
Rhodnius and Triatoma has been shown to be different

lipocalins named prolixin S and triabin [2, 21, 118]. Kazal-
type peptides can function as antimicrobials by inhibiting
microbial exoproteases essential for their survival [119, 120]
and can also work as vasodilators, as in the case of a tabanid
salivary protein named vasotab, which is suspected to modify
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ion channels [121]. These functions should be taken into
consideration in functional assays of the recombinant Kazal
peptides.

3.2.2. Serpin. The serine protease inhibitor (serpin) family is
ubiquitous in nature, functioning mostly as endogenous reg-
ulators of proteolytic cascades such as inhibiting thrombin in
vertebrates (plasmatic antithrombin 3) or regulating phenol
oxidase activation cascades in invertebrates [122, 123]. The
salivary anticlotting proteins of Aedes mosquitoes (but not
those of anopheline mosquitoes) are members of this family
[124, 125]. A single sequence of this family, derived from four
ESTs, was found in the sialotranscriptome of C. lectularius.
Its target is still unknown.

3.2.3. Pacifastin and Cystatin. Proteins containing these
domains were only found in the sialotranscriptome of
Oncopeltus. Pacifastins are typical serine protease inhibitors
of insects and crustaceans [126], while cystatins are ubiq-
uitous proteins typically inhibiting cysteine proteases [127].
Although a single EST was found coding for the pacifastin
peptide, five well-expressed cystatins were identified in
Oncopeltus. The targets of these peptides are unknown, but
it was suggested that the salivary cystatins may prevent plant
apoptosis induced by cysteine proteases [46, 128, 129]. Tick
sialomes have revealed cystatins that were shown to inhibit
inflammation and maturation of dendritic cells in their hosts
[130].

3.3. Lipocalins. The term lipocalin literally means a cup of
lipid, as these proteins form a barrel with a hydrophobic
interior cavity that is suitable to transport lipids and other
hydrophobic compounds in an aqueous milieu [131–133].
There is virtually no sequence conservation in the family,
which is recognized by its typical 3D structure composed of
a repeated +1 topology β-barrel. This protein family is by
far the most abundant in sialotranscriptomes of triatomine
bugs (see review [132]) but remarkably absent in Cimex
and Oncopeltus; however, it was also abundantly recruited
in tick sialomes [56], another case of convergent evolution.
Additional File 1 provides for 331 lipocalins, which is more
than half of all putative secreted proteins listed in this
work. Several of these proteins may be alleles of the same
gene. The sheer size of the family in individual species is
indicative of gene duplication events that might have had
an impact during the evolution of blood-feeding [134–
136]. Following gene duplication—by retrotransposition
or more commonly by forming tandem repeats due to
transposable element recombination—the new genes can
lead to an increased transcript load in a particular organ or
tissue. If this augmented expression increases fitness (e.g.,
helps the bug to feed), the gene will persist; otherwise,
it will evolve to be a pseudogene [137]. Once genes are
duplicated and fitness is increased by the duplication, these
are free to evolve independently and to diverge from each
other by acquisition of novel functions. Salivary genes of
bloodsucking arthropods are under selection by two different
processes. First, the gene can evolve in the direction of fine

tuning its function in relationship to its target. For example,
a bug feeding on a bird may have “ideal” anticlotting, but
if ecologic changes appear and the bug shifts to another
host, this anticlotting may still work but have some room for
improvement (e.g., by increasing its affinity to the specific
thrombin). Second, any protein injected into the skin of a
vertebrate is capable of eliciting an immune reaction, which
may lead to defensive host behavior following mast cell
degranulation or complement-mediated local inflammation,
leading to interruption of the meal or killing of the insect.
This may lead to a scenario of balanced polymorphism, with
the least common epitope being the best one to have, thus
multiplying the number of different alleles in a population
that are selected to have the same optimal function but the
least common antigenicity. Host immune pressure can also
lead to gene obsolescence, creating a niche for cooption
(exaptation) of new genes, including horizontal transfer
[138], which may substitute for the lost function and thus
may explain the appearance of novel salivary genes in related
organisms [139].

Lipocalin functions in triatomines are multiple and
linked to their unique barrel when working as kratagonists
(from the Greek kratos = seize) [140], which are binders
of relatively small agonists such as biogenic amines, TXA2,
leukotrienes, or ADP, or carrying the heme that carries NO
in Rhodnius nitrophorins, or functions linked to their side
chains when they work as anticlotting agents such as triabin
(for references for these functions, see Table 1). Uniquely, the
protein nitrophorin 2 from R. prolixus has three functions: (i)
it carries NO, (ii) it binds histamine, and (iii) it is an inhibitor
of the activation of Factor X [5, 141]. Notice that contrary to
their names as “lipid cups,” many of these lipocalin ligands
are well charged and not hydrophobic, such as biogenic
amines and ADP. The functions of the salivary lipocalins in
ticks are similarly associated with their kratagonist activity
toward biogenic amines or arachidonic acid derivatives, or as
inhibitors of complement activation [142–148].

A phylogram of the triatomine lipocalins, although a bit
overwhelming in size, presents a bird’s-eye view of the several
distinct families arranged mostly in robust clades (Figure 3
and Additional File 2). Most clades have not a single member
that has been analyzed functionally (marked with Roman
numerals in Figure 3), including the clade containing the
Triatoma protracta antigen procalin; accordingly there are
eight clades that have no known function. Additional File 2 is
provided for high-resolution display of the sequences, which
have their NCBI accession numbers for sequence retrieval.
A few details deserve some comments with respect to the
phylogram. (i) The clade named Pal-Tri-Dip contains the
Triatoma proteins pallidipin, triplatin, and the Dipetalogaster
protein dipetalodipin, which are platelet inhibitors possibly
all due to being TXA2 kratagonists as demonstrated for
triplatin and dipetalodipin [25], thus indicating the conser-
vation of this function among two different genera. (ii) Most
Rhodnius lipocalins cluster in two clades, one containing
all the known NO carriers, named nitrophorins (NP) and
the other containing the adenosine nucleotide kratago-
nists named RPAI (Rhodnius platelet aggregation inhibitor).
(iii) The Rhodnius biogenic amine-binding protein (BABP)
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Figure 3: Phylogram of the salivary lipocalin family of triatomines. Clades containing members that have been functionally characterized
are named according to these proteins. Other clades are named with Roman numerals. Except for the triafestin clade, other clades have >70%
bootstrap support. The sequences are named with the first 3 letters of the genus name, followed by the first 3 letters of the species name,
followed by their GenBank gi| accession number. When the protein has been functionally characterized, its name is also included after the
NCBI number. Abundantly expressed proteins are also marked to indicate this fact. The numbers in the bar indicate the rate of amino acid
substitution per site. For other details, see Figure 1 legend.

somewhat surprisingly clusters with the nitrophorins, but
BABP does not have a heme group and has higher affinity for
serotonin and norepinephrine, constituting a good example
of gene duplication and divergence of function [7]. (iv)
Exceptionally, one T. matogrossensis and one T. dimidiata
protein sequence group with the NP-BABP clade with 99%
bootstrap support. The function of these proteins could lead
to the original function of the Rhodnius nitrophorins, which

are exclusive of the genus Rhodnius. Indeed the abundance of
these heme proteins in Rhodnius salivary glands makes these
glands distinctively bright cherry red in color, as first pointed
out by Wigglesworth nearly 70 years ago [149]. Triatoma
and Dipetalogaster glands are clear or of a very pale yellow
color [150]. (v) Rhodnius lipocalins not belonging to the
NP-BABP and RPAI clades are scattered in the phylogram,
including one sequence between the procalin and triabin
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clades, one between the triabin and VI clades, and a group
of four proteins between clades IV and V. None of these
Rhodnius proteins group within strong bootstrap support
to any of the Dipetalogaster- or Triatoma-containing clades.
(vi) Finally, the procalin clade is very extensive and contains
many robust subclades, many of which are of single species,
indicating possible recent events of gene duplication or
extensive polymorphism.

3.4. Odorant/Pheromone-Binding Family (OBP). The OBP
family, like the lipocalins, is specialized in carrying small
hydrophobic ligands in aqueous media [151, 152]. A mod-
ified version of the odorant-binding family of proteins is
very abundant in the sialotranscriptomes of hematophagous
Nematocera [138] and named as the D7 protein family. A few
mosquito proteins have been crystallized and functionally
characterized, showing kratagonist activity toward biogenic
amines, TXA2, and leukotrienes, in addition to anticlotting
activity [153–156].

In hematophagous Cimicomorpha, members of the OBP
family are found in Rhodnius, Triatoma, and Cimex but
are particularly abundant in Cimex, with two OBP proteins
having over 250 ESTs in a total of∼2,000 ESTs, suggesting the
OBP family has been recruited by Cimex to function as the
lipocalins in triatomines. No salivary member of this family
in Cimicomorpha has been so far functionally characterized.

3.5. Antigen-5 Family. This is a ubiquitous protein family
found in plants and animals, including expression in the
venom glands of vespids, where it was recognized as an
antigen, thus the name antigen 5 for this family. They are
members of the CAP superfamily, most with unknown func-
tion [157]. In snakes and lizards, they have been associated
with venom toxins [158–160]. In stable flies, one salivary
antigen 5 protein binds immunoglobulins and may function
as an inhibitor of the classical pathway of complement
activation [161]. In horse flies, one protein has acquired
a disintegrin motif and is a strong inhibitor of platelet
aggregation [162–164]. All triatomine sialotranscriptomes
have revealed this class of proteins, which is particularly
abundant in Dipetalogaster. The function of these proteins
in triatomine blood feeding is still unknown.

3.6. Lectin. Triatoma dimidiata exclusively presents two par-
tial sequences containing a galactose-binding domain. While
lectins—mainly C-type lectins—have been described in
the sialotranscriptome of mosquitoes (none with known
function), this is so far a unique finding in triatomine sialo-
transcriptomes.

3.7. Immunity-Related, Ubiquitous Families. Immunity-
related proteins and peptides are commonly found in the
saliva of bloodsucking arthropods and may help to control
microbial growth in the ingested meal and perhaps also
avoid microbial infection of the bite site. Lysozyme, while
common in mosquito sialomes, is found exclusively so far
in Cimex sialomes, with four quite different proteins being
reported. D. maxima presents a histidine-rich peptide that

could function as an antimicrobial peptide, and a defensin is
reported from T. infestans. The absence of commonly found
salivary antimicrobial peptides in triatomines suggests that
if this salivary function is present within these organisms,
it may be encoded by lineage-specific gene families, one of
which (trialysin) will be reported further below.

4. Arthropod-Specific Families

Several insect-specific families are further identified, none
functionally characterized, and most without domains pro-
viding a clue for their function. These include proteins with
chitin-binding domains and cuticle-like homologs, which
may be associated with salivary ducts rather than a function
in the injected saliva. One conserved secreted insect protein
family of basic peptides having ∼100 amino acids after
signal peptide cleavage occurs in Cimex, Oncopeltus, and
Triatoma sialotranscriptomes. Homologs are found by blastp
to the nonredundant (NR) protein database including a
venom protein from the wasp parasitoid Nasonia vitripennis
identified in a proteomic study [165]. Exceptionally, there are
also homologs to proteins from the soil bacteria Streptomyces
clavuligerus, having 52% identity to the insect proteins.
Similarly, the protein originally described in R. prolixus
as MYS2 has homologs found in the sialotranscriptomes
of T. brasiliensis and T. matogrossensis and is similar to
many other insect proteins in the NR, including protein
sequences deducted from the sialotranscriptome of the tsetse
Glossina morsitans [166]. Three sequences, one each from
C. lectularius, T. infestans, and T. matogrossensis, have 25%
amino acid sequence identity but 52% similarity and little
similarity to other proteins on the NR database. These
sequences are grouped in Additional File 1 as the Cimex-
Triatoma family. PSI-blast initiated by the T. matogrossensis
sequence against the NR database initially retrieves only
the two other sequences, but on first iteration it retrieves
dozens of insect proteins (Additional File 3), and in the third
iteration it retrieves Daphnia and tick proteins, suggesting
this is an arthropod family of high divergence. Finally,
the sialotranscriptome of T. matogrossensis identified four
additional nonrelated proteins that have insect homologs
but were not found in other reported sialotranscriptomes
of Hemiptera but are similar to proteins reported from G.
morsitans and from Aedes aegypti sialotranscriptomes. It
is possible that these families function as antimicrobial
peptides, but so far none has been characterized.

5. Hemiptera-Specific Families

5.1. Mys3/Hemolysin Family. When the R. prolixus sialotran-
scriptome was reported [36], an additional mysterious pro-
tein was named Mys3. Later, with additional sialotranscrip-
tome reports, another protein family emerged, named as
hemolysin-like because some members had weak similarity
to bacterial proteins annotated as hemolysins. PSI-blast later
revealed that these proteins all belong to a single family that
is quite divergent, including a truncated protein from the
sialome of Oncopeltus, suggesting a non-blood-feeding role,
perhaps antimicrobial, for its members.



10 Psyche

5.2. Triatoma-Specific Families. Sialotranscriptomes of sev-
eral species of the Triatoma genus reveal several unique
protein families, among which are the trialysin and short
trialysin families. The trialysins are basic proteins of mature
MW near 26 kDa that can be further processed to peptides
that have lytic properties [17, 18] and may function as
antimicrobials. Short trialysins have mature MW of ∼6.1
and acidic pI and are so named because they match the
amino terminal region of the mature trialysins. Both forms
are abundantly expressed but only found in T. infestans and
T. matogrossensis, which are from southern South America,
and are not found in the sialotranscriptomes of T. brasiliensis,
found in northeastern Brazil, or on those of the North
American T. dimidiata or T. rubida. Additional File 1 reports
19 protein sequences from Triatoma that are not similar to
anything deposited in the NR database and two pairs of
sequences from T. matogrossensis that only match its pair
members. None has been functionally characterized. It is
interesting that of these 23 sequences only one derives from
T. rubida and the remaining derive from T. infestans and T.
matogrossensis, although the number of clones sequenced for
the T. brasiliensis, T. dimidiata, and T. rubida was similar
to those of T. infestans and T. matogrossensis, suggesting a
greater sialome diversity in these bugs from southern South
America.

5.3. Rhodnius-, Cimex-, and Oncopeltus-Specific Families.
Additional File 1 presents 16 proteins from the bugs named
above that have no significant matches to the NR database
except in some cases for some proteins of low complexity.
None of these proteins has been functionally characterized.
This includes Rhodnius MY1 protein, one of three mysterious
proteins revealed in the first bug sialotranscriptome [36]. As
seen above, MYS2 and MYS3 were later found to be members
of larger families. It is expected that, with a larger number
of genomes and transcriptomes sequenced, MYS1—as well
as the other orphan proteins in this group—will also be
deorphanized.

6. Housekeeping Proteins

Mostly from the sialotranscriptomes shown in Table 2,
many housekeeping protein sequences were also deduced,
including many associated with energy metabolism, protein
synthesis, modification, and export, among other classes
(see worksheet named “Housekeeping” of Additional File 1).
Interestingly, the sialotranscriptome of Triatoma rubida
shows abundant expression of members of the cytochrome
P450 as well as of the 15-hydroxyprostaglandin dehydroge-
nase, suggesting either that the salivary gland may have an
active endogenous prostaglandin signaling or that prostagl-
andins may be secreted in the saliva of these bugs. Cyt P450
transcripts were also detected in Rhodnius and T. mato-
grossensis, and the prostaglandin dehydrogenase was also
found in T. infestans. Increased depth of sequencing of these
sialotranscriptomes may certainly reveal these two classes of
proteins to be expressed in all triatomines.

7. Concluding Remarks

Blood-feeding Cimicomorpha have developed a sophisti-
cated and divergent array of salivary pharmacologically
active compounds that disarm their hosts’ reaction against
blood loss. In a few transcriptomes encompassing members
of the Reduviidae and Cimicidae, the convergent evolution
scenario in the sialomes of these two families is apparent.
Both have apyrase activity, but from different gene families;
Cimex and Rhodnius (but not any Triatomini member)
use NO as a vasodilator but co-opted completely different
heme proteins to carry this unstable gas. The anticlotting
compounds are different at the Reduviidae tribe level and
so on. The lipocalin expansion is remarkable among the
triatomines and nonexistent in Cimex. These proteins can
play many different functions as binders of small agonists
(kratagonists), NO carriers, or protease inhibitors. In Cimex,
the expanded odorant binding family may have taken this
role, but none thus far has been characterized.

Notice that the sialome of Oncopeltus, a member of the
Pentatomomorpha—the most closely related suborder to the
Cimicomorpha (see http://tolweb.org/Heteroptera/10805)
[76, 167]—revealed virtually nothing in common with the
Cimicomorpha, and the Cimicidae sialome also revealed
little in common with the Reduviidae, perhaps as expected by
the divergence of these families (see http://tolweb.org/Cim-
icomorpha/10817). Zooming-in on the Triatomine group, it
will be interesting in the future to describe the sialomes of
additional tribes of the Triatomine, such as the Bolboderini,
which includes bugs that feed on insect hemolymph, the
Cavernicolini that are associated with bats, and members
of the Linshcosteus genus that are found in India [168]
and could be divergent members. Zooming a little out
and as indicated by Schofield and Galvão [49], facultative
blood feeding is found in non-Triatominae members of
the Reduviidae, including the Emesinae, Harpactorinae,
Peiratinae, Physoderinae, and Reduviinae. Sialomes of these
subfamilies could be more indicative of the prevalent “pre-
adaptations” available as stepping stones and promoted by
the blood-feeding habit. On the other hand, the Cimi-
cidae are closely related to the bat bugs (Polyctenidae),
which is a sister group, and to the Anthocoridae (flower
bugs; http://tolweb.org/Cimicomorpha/10817), which feed
on small insects. These non-blood-feeding closer relatives
may reveal insights into the Cimicidae evolution to hema-
tophagy.
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[119] H. J. Mägert, L. Ständker, P. Kreutzmann et al., “LEKTI, a
novel 15-domain type of human serine proteinase inhibitor,”
The Journal of Biological Chemistry, vol. 274, no. 31, pp.
21499–21502, 1999.

[120] R. Augustin, S. Siebert, and T. C. G. Bosch, “Identification
of a kazal-type serine protease inhibitor with potent anti-
staphylococcal activity as part of Hydra’s innate immune
system,” Developmental and Comparative Immunology, vol.
33, no. 7, pp. 830–837, 2009.
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