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Quantum computation based on a gate model is described. )is model initially creates a superposition |ψ0〉 consisting of N � 2n

states, and these states are labeled by an n qubit index value j. Two working qubits |0〉wk0 and |0〉wk1 are added for a measurement.
Moreover, one marking qubit |0〉mk is added to discriminate between states in a superposition. )us,
|ψ1〉 � (1/

��
N

√
)(

N−1
j�0 |j〉)⊗ |0〉wk0 ⊗ |0〉wk1 ⊗ |0〉mk. )e Hadamard transformation is applied to |0〉wk0 and |0〉wk1.

|ψ2〉 � (1/
��
N

√
)(1/

�
2

√
)2(

N−1
j�0 |j〉)⊗ (|0〉wk0 + |1〉wk0)⊗ (|0〉wk1 + |1〉wk1)⊗ |0〉mk. After a computation, a set of states is divided

into two subsets; one is a subset bad (B) and the other is a subset good (G). |ψ3〉 � (1/
��
N

√
)(1/

�
2

√
)2 (j∈B|j〉)⊗

(|0〉wk0 + |1〉wk0)⊗ (|0〉wk1 + |1〉wk1)⊗ |0〉mk + (j∈G|j〉)⊗ (|0〉wk0 + |1〉wk0)⊗ (|0〉wk1 + |1〉wk1)⊗ |1〉mk}. After a marking, a su-
perposition is measured by POVM. )e measurement is described by a collection of four measurement operators. )e measurement
transforms |ψ3〉 into |ψ4〉 � (1/

��
N

√
) (j∈B|j〉)⊗ |0〉wk0 ⊗ |0〉wk1 ⊗ (p0 sin θ)|0〉mk+

(j∈G|j〉)⊗ |0〉wk0 ⊗ |0〉wk1 ⊗ (p1 cos θ)|1〉mk}/D; here, D �

��������������������������������

card(B)p∗0p0sin2θ + card(G)p∗1p1cos2θ


, and
p∗0p0sin2θ + p∗1p1cos2θ � 2 which is derived from the completeness equation.)e state |0〉mk and the state |1〉mk before themeasurement
are transformed into p0sinθ|0〉mk and p1cosθ|1〉mk, respectively. )is paper describes these measurement operators.

1. Introduction

Quantum computation based on a gate model initially
creates a superposition |ψ0〉 that comprises of N � 2n states
from n qubits. )ese states are labeled by an n qubit index
value j.

|ψ0〉 �
1
��
N

√  

N−1

j�0
|j〉. (1)

For the measurement, two working qubits |0〉wk0 and
|0〉wk1 are added to |ψ0〉. Moreover, to discriminate between
states in a superposition, a marking qubit |0〉mk is added.

|ψ1〉 �
1
��
N

√  

N−1

j�0
|j〉⎛⎝ ⎞⎠⊗ |0〉wk0 ⊗ |0〉wk1 ⊗ |0〉mk. (2)

)e Hadamard transformation H,

H �

1
�
2

√
1
�
2

√

1
�
2

√ −
1
�
2

√





, (3)

is applied to two working qubits. )en,
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|ψ2〉 �
1
��
N

√ 
1
�
2

√ 

2



N−1

j�0
|j〉⎛⎝ ⎞⎠⊗ |0〉wk0 + |1〉wk0( 

⊗ |0〉wk1 + |1〉wk1( ⊗ |0〉mk.

(4)

Starting with a state |ψ2〉, a computation proceeds. After
this computation, a superposition is divided into two sub-
sets; one is a subset bad (B), and the other is a subset good
(G) [1, 2].

To map bad or good states to a qubit |0〉mk, a mapping
function f is introduced as follows:

f(j) � |0〉mk, j ∈ B, (5)

f(j) � |1〉mk, j ∈ G, (6)

where B∩G � ∅ and card(B) + card(G) � N.
Using amapping function f, |ψ2〉 is transformed into [3]

|ψ3〉 �
1
��
N

√ 
1
�
2

√ 

2


j∈B

|j〉⎛⎝ ⎞⎠⊗ |0〉wk0 + |1〉wk0( ⊗ |0〉wk1 + |1〉wk1( ⊗ |0〉mk + 
j∈G

|j〉⎛⎝ ⎞⎠⊗ |0〉wk0 + |1〉wk0( 

⎧⎪⎨

⎪⎩

⊗ |0〉wk1 + |1〉wk1( ⊗ |1〉mk.

(7)

)erefore, a discrimination between bad and good states
is equivalent to an amplitude transformation of |0〉mk and
|1〉mk.

Next, a superposition |ψ3〉 is measured by POVM. )e
measurement M is described in a collection of four

measurement operators M � P, Q, R, S{ }. In Section 2,
P, Q, R, and S are defined.

After the measurement, a superposition |ψ3〉 is trans-
formed into

|ψ4〉 �
(1/

��
N

√
) j∈B|j〉 ⊗ |0〉wk0 ⊗ |0〉wk1 ⊗ p0 sin θ( |0〉mk + j∈G|j〉 ⊗ |0〉wk0 ⊗ |1〉wk1 ⊗ p1 cos θ( |1〉mk 

D
, (8)

D �

����������������������������������

card(B)p
∗
0p0 sin

2 θ + card(G)p
∗
1p1 cos

2 θ


. (9)

)e relation

p
∗
0p0sin

2 θ + p
∗
1p1cos

2 θ � 2, (10)

is derived from the completeness equation [4] which is
described in Section 3. )e states |0〉mk and |1〉mk before the
measurement are transformed into p0sinθ|0〉mk and
p1cosθ|1〉mk, respectively.

On the amplitude transformation of superposed quan-
tum states, Grover’s algorithm [5] is well known, which
makes use of unitary transformations. However, quantum
measurements play an important role in a one-way com-
putation model [6] and a quantum teleportation model [7,
8]. )ese models have a wide applicability to solve NP-hard
problems [9].

2. Measurement Operators

In this section, the measurement operators P, Q, R, and S are
described. P, Q, R, and S are defined as follows:

P �

1
�
2

√
1
�
2

√

0 0





⊗

1
�
2

√
1
�
2

√

0 0





⊗
p0sin θ 0

0 p1cos θ




, (11)

Q �

1
�
2

√
1
�
2

√

0 0





⊗

1
�
2

√ −
1
�
2

√

0 0





⊗
q0cos θ 0

0 q1sin θ




, (12)
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R �

1
�
2

√ −
1
�
2

√

0 0





⊗

1
�
2

√
1
�
2

√

0 0





⊗
r0sinϕ 0

0 r1cosϕ




, (13)

S �

1
�
2

√ −
1
�
2

√

0 0





⊗

1
�
2

√ −
1
�
2

√

0 0





⊗
s0cosϕ 0

0 s1sinϕ




. (14)

Each operator is a tensor product of three components.
From the left, two components control an occurrence of an
operator by acting on two qubits wk0 and wk1, and the
remainder transforms an amplitude of a qubit mk. When the
state |ψ3〉 is given, the occurrence is limited to P.

3. POVM

Let the adjoint operators of P, Q, R, and S be equal to
P†, Q†, R†, and S†, respectively. POVM requires the fol-
lowing two conditions [4]:

(1) P†P, Q†Q, R†R, and S†S are positive operators

(2) P†P + Q†Q + R†R + S†S � I, where I is an identity
operator

Condition 1 is easily proved. Condition 2 is the com-
pleteness equation and proved in the following. P, Q, R, and
S belong to Kraus operators [10] because of Condition 2.

We search for the conditions where C � P†P + Q†Q +

R†R + S†S is equal to an identity operator. Let C be equal to

c11 c12 c13 c14 c15 c16 c17 c18

c21 c22 c23 c24 c25 c26 c27 c28

c31 c32 c33 c34 c35 c36 c37 c38

c41 c42 c43 c44 c45 c46 c47 c48

c51 c52 c53 c54 c55 c56 c57 c58

c61 c62 c63 c64 c65 c66 c67 c68

c71 c72 c73 c74 c75 c76 c77 c78

c81 c82 c83 c84 c85 c86 c87 c88





. (15)

)en,

c11 � c33 � c55 � c77 �
p
∗
0p0sin

2θ + q
∗
0q0cos

2θ + r
∗
0r0sin

2ϕ + s
∗
0 s0cos

2ϕ 

4
� 1, (16)

c13 � c31 � c57 � c75 �
p
∗
0p0sin

2θ − q
∗
0q0cos

2θ + r
∗
0r0sin

2ϕ − s
∗
0 s0cos

2ϕ 

4
� 0, (17)

c15 � c37 � c51 � c73 �
p
∗
0p0sin

2θ + q
∗
0q0cos

2θ − r
∗
0r0sin

2ϕ − s
∗
0 s0cos

2ϕ 

4
� 0, (18)

c17 � c35 � c53 � c71 �
p
∗
0p0sin

2θ − q
∗
0q0cos

2θ − r
∗
0r0sin

2ϕ + s
∗
0 s0cos

2ϕ 

4
� 0, (19)

c22 � c44 � c66 � c88 �
p
∗
1p1cos

2θ + q
∗
1q1sin

2θ + r
∗
1r1cos

2ϕ + s
∗
1 s1sin

2ϕ 

4
� 1, (20)

c24 � c42 � c68 � c86 �
p
∗
1p1cos

2θ − q
∗
1q1sin

2θ + r
∗
1r1cos

2ϕ − s
∗
1 s1sin

2ϕ 

4
� 0, (21)

c26 � c48 � c62 � c84 �
p
∗
1p1cos

2θ + q
∗
1q1sin

2θ − r
∗
1r1cos

2ϕ − s
∗
1 s1sin

2ϕ 

4
� 0, (22)

c28 � c46 � c64 � c82 �
p
∗
1p1cos

2θ − q
∗
1q1sin

2θ − r
∗
1r1cos

2ϕ + s
∗
1 s1sin

2ϕ 

4
� 0. (23)

)e value of the matrix element that does not appear in the
above expressions is unconditionally equal to 0.

Expression (16) plus Expression (20) is equal to the
following expression:

p
∗
0p0 + q

∗
1q1( sin2 θ + r

∗
0r0 + s

∗
1 s1( sin2ϕ + p

∗
1p1 + q

∗
0q0( cos2θ + r

∗
1r1 + s

∗
0 s0( cos2ϕ � 8. (24)
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Expression (17) plus Expression (21) is equal to the following
expression:

p
∗
0p0 − q

∗
1q1( sin2θ + r

∗
0r0 − s

∗
1 s1( sin2 ϕ + p

∗
1p1 − q

∗
0q0( cos2θ + r

∗
1r1 − s

∗
0 s0( cos2ϕ � 0. (25)

Expression (18) plus Expression (22) is equal to the following
expression:

p
∗
0p0 + q

∗
1q1( sin2θ − r

∗
0r0 + s

∗
1 s0( sin2ϕ + p

∗
1p1 + q

∗
0q0( cos2θ − r

∗
1r1 + s

∗
0 s0( cos2ϕ � 0. (26)

Expression (19) plus Expression (23) is equal to the following
expression:

p
∗
0p0 − q

∗
1q1( sin2θ − r

∗
0r0 − s

∗
1 s1( sin2ϕ + p

∗
1p1 − q

∗
0q0( cos2θ − r

∗
1r1 − s

∗
0 s0( cos2ϕ � 0. (27)

We assume that

p
∗
0p0 � q

∗
1q1, p

∗
1p1 � q

∗
0q0, r
∗
0r0 � s

∗
1 s1 and r

∗
1r1 � s

∗
0 s0.

(28)

)en, Expressions (25) and (27) are always satisfied.
Expression (24) plus Expression (26) is equal to the

following expression:

p
∗
0p0 + q

∗
1q1( sin2θ + p

∗
1p1 + q

∗
0q0( cos2θ � 4. (29)

Expression (24) minus Expression (26) is equal to the
following expression:

r
∗
0r0 + s

∗
1 s1( sin2ϕ + r

∗
1r1 + s

∗
0 s0( cos2ϕ � 4. (30)

By using Expression (28), Expressions (29) and (30)
change as follows:

p
∗
0p0sin

2θ + p
∗
1p1cos

2θ � 2, (31)

r
∗
0r0sin

2ϕ + r
∗
1r1cos

2ϕ � 2. (32)

Expressions (28), (31), and (32) are the conditions that
the measurement operators P, Q, R, and S satisfy the com-
pleteness equation.

4. Conclusion

In quantum computation, computation begins with a su-
perposition which consists of 2n states. Usually, an equal
amplitude is given between states. After computation, a set
of states is divided into two subsets; one is a subset bad (B),
and the other is a subset good (G). )e discrimination

between bad and good states is enhanced by the measure-
ment which is POVM. )en, amplitudes representing bad
and good states correspond to p0sinθ and p1cosθ, respec-
tively. )e relation p∗0p0sin2θ + p∗1p1cos2θ � 2 is derived
from the completeness equation. )us, the measurement
well discriminate between bad and good states.
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