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Quantum machine learning is emerging as a strategy to solve real-world problems. As a quantum computing model, param-
eterized quantum circuits provide an approach for constructing quantum machine learning algorithms, which may either realize
computational acceleration or achieve better algorithm performance than classical algorithms. Based on the parameterized
quantum circuit, we propose a hybrid quantum-classical convolutional neural network (HQCCNN)model for image classification
that comprises both quantum and classical components. ,e quantum convolutional layer is designed using a parameterized
quantum circuit. It is used to perform linear unitary transformation on the quantum state to extract hidden information. In
addition, the quantum pooling unit is used to perform pooling operations. After the evolution of the quantum system, wemeasure
the quantum state and input the measurement results into a classical fully connected layer for further processing. We demonstrate
its potential by applying HQCCNN to the MNISTdataset. Compared to a convolutional neural network in a similar architecture,
the results reveal that HQCCNN has a faster training speed and higher testing set accuracy than a convolutional neural network.

1. Introduction

Quantum mechanics is a set of rules constructed by math-
ematical framework or physical theory. As a new compu-
tational framework for integrating the concepts of quantum
mechanics, quantum computing [1,2] utilizes the properties
of quantummechanics to process both quantum and classical
information [3,4], which may cause an insurmountable gap
between quantum and classical computers. As quantum
technology is developing, noisy intermediate-scale quantum
computers (NISQ) have begun to deal with some relatively
complex computing tasks, and their computing power has
surpassed classical computers in some tasks [5]. At this stage,
quantum algorithms are dedicated to implementation on
NISQ devices, which gives a new direction to some real
classical computational problems.

In parallel to the recent advances in classical machine
learning, interest in quantum machine learning has grown
significantly in academia [6–9]. As a quantum computing

model, parameterized quantum circuits (PQCs) have
powerful parallel computing and expressive capabilities.
Many researchers have constructed quantum machine
learning algorithms using PQC. In 2014, Peruzzo et al. [10]
proposed a variational quantum eigensolver (VQE) and
realized it with a photon quantum processor and a classical
computer. In 2016, McClean et al. [11] improved the vari-
ational quantum algorithm’s optimization scheme. In 2020,
Schuld et al. [12] used PQC to construct a circuit-centric
quantum classifier. ,e simulation on the dataset showed
that the quantum classifier had high performance. In 2022,
Zeng et al. [13] proposed a hybrid quantum neural network
model based on a ladder circuit structure and introduced a
full measurement strategy. ,e model achieved stable and
high accuracy in both binary and multiclassification tasks.
Since PQC was first proposed, many quantum machine
learning algorithms based on PQC have been proposed
[14–20], and it has been proved that the quantum machine
learning algorithm based on PQC has better expressive

Hindawi
Quantum Engineering
Volume 2022, Article ID 5701479, 9 pages
https://doi.org/10.1155/2022/5701479

mailto:qiutianhui@qut.edu.cn
mailto:wangshumei@qut.edu.cn
https://orcid.org/0000-0002-8132-0326
https://orcid.org/0000-0002-1899-5945
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5701479


performance and computing ability than the classical al-
gorithm [21,22].

Convolutional neural networks (CNNs) have demon-
strated their strong performance in deep learning tasks.
Weight sharing and local receptive fields enable CNN to
perform most tasks nowadays [23–28]. Furthermore, with
the development of quantum information, quantum con-
volutional neural networks (QCNNs) have begun to interest
researchers [29,30]. In 2019, inspired by classical CNN,
Cong et al. [31] proposed a QCNN for phase classification
and optimization of quantum error correction codes. ,e
QCNN had a similar network architecture to CNN. In 2020,
Li et al. [32] proposed a quantum deep convolutional neural
network (QDCNN), which was a quantum version of
classical convolution and achieved exponential computa-
tional acceleration. ,e model demonstrated the advantages
of a quantum system over a classical system. In 2021,
Parthasarathy et al. [33] proposed a quantum optical con-
volutional neural network that integrated quantum con-
volution and quantum optics. First, salient information was
extracted using the linear unitary transformation of the
quantum convolution part; subsequently, the quantum
convolution results were input into the quantum optical
neural network for further processing. ,e network
exhibited good stability in terms of image recognition.

Combining PQC with the classical neural network, we
propose a hybrid quantum-classical model for image clas-
sification. ,e hybrid model not only utilizes the powerful
performance of PQC but also inherits the characteristics of
the classical neural network. ,e quantum convolutional
layer is composed of quantum convolution kernels con-
structed by PQC. We transform the classic image into a
quantum state and input it into the quantum convolutional
layer.,e quantum convolutional layer performs the unitary
transformation on the qubits corresponding to the convo-
lution window. ,en, the quantum pooling layer composed
of quantum pooling units performs pooling operations. ,e
qubits are measured at specific locations to obtain the results
of the evolution of the quantum system, and the results are
input to a fully connected layer for further processing. In this
study, we refer to this model as a hybrid quantum-classical
convolutional neural network (HQCCNN); the simulation
experiments show that HQCCNN exhibits strong learning
ability and high image classification accuracy.

,eorganization of the paper is as follows:CNNandPQC
models are introduced in Section 2 briefly. ,e HQCCNN
architectures and the algorithm execution process are de-
scribed in Section 3. Section 4 describes simulation and
analysis. Finally, the conclusion is drawn in Section 5.

2. Background

2.1. Convolutional Neural Network. A CNN consists of
convolutional layers, pooling layers, and a fully connected
layer that outputs the image’s class. ,e convolution process
is to convolve the convolution kernel with the image and
then move the convolution kernel according to the step size
(usually set to 1); the convolution kernel does the same
operation.

,e convolution operation can be defined as follows:
suppose the input image A is the size of m × n, the con-
volution kernel P is the size of w × w, and the convolution
operation can be completed through the equation

f � σ Ai:i+w,j: j+wP􏼐 􏼑. (1)

Here, σ is the nonlinear function. In order to set the feature
map’s size to be the same as the input image, padding is
usually used in the convolutional layer.

After convolution, the feature map is input into the next
convolutional layer or pooling layer for high-dimensional
feature extraction or feature dimensionality reduction. ,e
dimensionality reduction methods of the pooling layer in-
clude max pooling and average pooling. Finally, the image’s
class is obtained at the fully connected layer.,e architecture
of CNN is illustrated in Figure 1.

2.2. Parameterized Quantum Circuits. PQC is a quantum
computing model, and it can be run on quantum computers.
PQC usually consists of parametric unitary gates and
nonparametric unitary gates. ,e parametric gate includes
single-qubit rotation gate, and the three single-qubit rota-
tion gates are defined as follows:
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According to the quantum circuit U(w), the parame-
terized circuit performs the unitary transformation of
quantum state |x〉 to produce the output quantum state |y〉,
that is,

|y〉 � U(w)|x〉, (3)

where w is the parameter in the circuit, such as the angle of
the qubit rotation gate. PQC allows great freedom to design
quantum algorithms, and it can realize different quantum
algorithms by combining different quantum gates. ,e
parameters of PQC are updated using the quantum-classical
training method, as illustrated in Figure 2.

,e quantum computer performs unitary transforma-
tion on the input quantum state according to the quantum
circuits and then measures the output quantum state. ,e
measurement results are input into a classical computer to
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calculate the loss value. ,e quantum circuit parameters are
optimized through multiple iterations of the classical
computer until the expectation value is satisfied or the
maximum number of iterations is reached.

3. HQCCNN

3.1. Preparing the Quantum State. When the number of
qubits in a quantum system is limited and the quantum
system is used to tackle classical problems, the dimensionality
reduction processing of classical data is usually required first.
,is paper downsamples the image to m × m size, scales the
pixel value to [0, 1], and then flattens the image.

We get a 1 × m2 vector x � [x1, x2 . . . xm2] after these
operations and convert the vector to angle information α,
that is,

α � πx, (4)

where α � [α1, α2 . . . αm2]. ,e angle information α is taken
as the rotation angle of the rotation gateRy, and the rotation
gate Ry is applied to the initial quantum state for encoding,
for a m2-input quantum system:

φimg

􏼌􏼌􏼌􏼌􏼌 〉 � ⊗m2

i�1Ry αi( 􏼁|0〉1 . . . |0〉m2 . (5)

Hence, m × m qubits are required to encode a downsampled
image of size m × m, and the quantum state |φimg〉 is ob-
tained by encoding all pixels of the downsampled image.

3.2. Quantum Convolutional Layer. After obtaining the
quantum state |φimg〉, the quantum convolution kernel u(θ)

designed by PQC is used to perform unitary transformation
on |φimg〉. ,e convolution kernel has 5 training parameters
(θ � θ1, θ2, θ3, θ4, θ5), as shown in the circuit structure in the
purple window in Figure 3.

,e circuit in Figure 3 shows a convolutional layer
circuit with an image size of 2 × 3. We use the convolution
kernel to perform unitary transformation on the qubits
corresponding to the convolution window. It should be
noted that the quantum convolution window is consistent
with the classical convolution window, but it corresponds to
4 qubits. ,e purpose of the convolution window repeatedly
acting on the 4 qubits is to preserve the characteristics of the
convolution as much as possible and extract the hidden
information from the quantum state.

3.3. Quantum Pooling Layer. In this study, the quantum
pooling unitary gate V composed of 3 CNOTgates is used to
reduce the dimension of the convolution results, as shown in
the brown square in Figure 4.,e pooling window acts in the
same position as the convolution window, and after pooling,
the convolution result of a convolution window is mapped to
a qubit. ,erefore, we only measure the specific qubit to
obtain the expected value.

Classical CNN introduces nonlinearity through the
nonlinear functions. In a quantum system, we introduce
nonlinearity through measurement. After the evolution of
the quantum system to the quantum state, the final quantum
state |φout〉 is obtained. We perform Z-based measurement
on the state |φout〉 to obtain the expectation value, that is,

E �〈φimg

􏼌􏼌􏼌􏼌􏼌U
†
(θ)V

†
Z1, . . . , ZN( 􏼁VU(θ) φimg

􏼌􏼌􏼌􏼌􏼌 〉, (6)

where (Z1, . . . , ZN) is a vector of Z operators acting on
different qubits, V is the parameter-free unitary gate in the
pooling layer, U(θ) � u1(θ)u2(θ) . . . ul(θ), l is the number
of convolutions in a convolutional layer, where for an image
of m × m, l � (m − 1)2, and the pooling unit also performs
(m − 1)2 times in a pooling layer. If we directly measure the
output of the quantum convolutional layer, we get a
quantum output E with dimension 1 × m2; if we measure the
output of the quantum pooling layer, we get a vector E with
dimension 1 × (m − 1)2. E is a vector composed of Z ex-
pectation values of different qubits, which is not directly
related to the image label, so the E should be input into the
classical fully connected layer for further processing.

convolution pooling convolution fully connected layer

ClassificationExtract features

flatten

0

1

8

9

Figure 1: ,e architecture of CNN.

U (w)

optimization

parameterized quantum circuit classical computer

Figure 2: Schematic diagram of the parameterized quantum
circuit.
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3.4. Generating Hybrid Network. HQCCNN consists of a
quantum convolutional layer, a quantum pooling layer, and
a classical fully connected layer. As shown in Figure 5, the
quantum convolutional layer consists of multiple convo-
lution kernels, which complete the quantum convolution to
obtain the feature map.,e convolution kernel in Figure 5 is
the convolution structure introduced in Section 3.2, but the
parameters of different convolution kernels are different.
,e convolution results are reduced by the quantum pooling
layer, and the quantum pooling unit is the quantum pooling
structure introduced in Section 3.3. ,en, measuring the
specific qubits, the measurement results are input into the
fully connected layer to obtain the image’s class.

3.5. Algorithm Execution Process. One of the reasons for the
success of the classical neural network is that it has a de-
veloped backpropagation algorithm.We rely on the quantum
computing framework TensorFlow Quantum [34] to com-
plete the numerical simulation on a classical computer.
TensorFlow Quantum implements a backpropagation algo-
rithmthat canbeused inhybridquantum-classical structures.
Weuse the adjoint differentiationmethod to obtain gradients
of the quantum system,which is described in detail in [34,35].
,rough the abovementioned definition of the HQCCNN,
the image classification algorithm is shown in Algorithm 1.

4. Simulation and Analysis

In this section, we use the MNISTdataset for simulation and
analysis of HQCCNN. First, for each class in the MNIST
dataset, 200 training images and 50 testing images are

randomly selected. ,erefore, in this paper, a total of 2000
images in the training set and 500 images in the testing set
are used. However, the size of each image in the MNIST
dataset is 28 × 28, which is not realistic for the current
quantum experimental simulation, so we downsample each
image to the size of 4 × 4.

,e experimental setup in this section is as follows: first,
we test all binary classification subsets in the MNISTdataset,
then analyze the HQCCNN’s structural changes on classi-
fication performance, and finally compare them with CNNs
of the same architecture. And, all experiment details are set
as follows: we use a classical hidden layer when performing
binary classification tasks, and two hidden layers are used
when performing multiple classification tasks. ,e hidden
layers use ReLu nonlinear function, and the classic optimizer
Adam [36] is used to optimize the parameters, the batch size
is set to 32, the learning rate is 0.01, and 100 epochs are set.

4.1. Evaluation Indicators. To more intuitively evaluate the
performance of HQCCNN, this study uses training set loss
and testing set accuracy as evaluation indicators. Using the
cross-entropy function as the loss function, the cross-en-
tropy function is defined as follows:

H � −
1

M
􏽘

M

i

yilog pi( 􏼁, (7)

where M is the size of the training set, yi is the one-hot
vector of the i-th sample in the training set, and pi is the
predicted probability vector by the model. Accuracy is de-
fined as
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Figure 3: Convolutional circuit diagram.
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Figure 4: Pooling circuit diagram.
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where N is the size of the testing set, yi is the true class of the
i-th sample, and the argmax function outputs the maximum
value’s position in a vector.

4.2. Binary Classification. In this section, we classify all
binary subsets of MNISTandHQCCNN sets 1 convolutional
layer, with 1 convolution kernel, and no pooling layer. ,e
classical output layer uses a sigmoid nonlinear activation
function. ,e binary classification results are shown in
Figure 6.

Among all 45 binary classification tasks, HQCCNN
shows high classification accuracy.,emaximum appears in
the classification task of digits 4 and 5, reaching 99.80%. ,e
minimum value of 91.51% appears in the classification task
of digits 3 and 8. It shows that HQCCNN is perfectly

qualified for the binary classification task. However, it can
also be seen in the classification results that when other digits
are classified with 5 or 8, the probability of lower accuracy is
higher.,e reason for this difference may be that after image
downsampling, some image features are lost, which in-
creases the similarity between images.

Reference [37] proposes a quantum tensor network
model. We compare some binary classification tasks with
reference [37]. Reference [37] uses a model with 1008 pa-
rameters to test all binary classification tasks, while we use
150 parameters. ,e result is shown in Figure 7; it can be
clearly seen from the figure that in the binary classification
subsets \{0, 9\}, \{1, 7\}, \{2, 9\}, \{4, 6\}, \{6, 7\}, and \{8, 9\},
the accuracy of our model is better than in reference [37].

4.3. 5e Influence of Convolution Kernel on HQCCNN.
Next, we discuss the influence of the convolution kernel’s
number on HQCCNN. 2 HQCCNNs with 1 quantum
convolutional layer are set, and the number of convolution

downsampling,
normalization

flatten

Ry (α1)

Ry (αp)

Ry (αq)

Ry (αm2)

convolution
kernel 1

convolution
kernel n

Preparating
quantum state

Quantum
convolutional layer

Quantum
pooling layer

Fully
connected layer

Figure 5: Hybrid quantum-classical convolutional neural network architecture.

Input: classical image dataset
1 preparing quantum state, the training set |φ〉train and the testing set |φ〉test are obtained.
2 constructing hybrid quantum-classical convolutional neural network
3 setting the values for batchsize, epoch, and learning rate
4 for each epoch do
5 for each batchsize do
6 quantum system perform unitary transformation U(θ)V|φimg〉,
7 measuring, inputting E into the classical fully connected layer for further processing,
8 calculating the loss value and gradient, updating the parameters based on the gradient and learning rate.
9 end for
10 validating testing set |φ〉test
11 end for

Output: each image’s class

ALGORITHM 1: HQCCNN classification algorithm.
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kernels is 2 and 4, respectively.,e fully connected layers are
the same, and the output layer uses the softmax nonlinear
activation function. We set a multiclassification task of digits
0–4. ,e results are plotted in Figure 8.

According to Figure 8, the HQCCNN with 4 convolution
kernels achieves a smaller training loss value, and at the be-
ginning of the epoch, it achieves a higher classification accuracy
than the HQCCNNwith 2 convolution kernels. However, with
the increase in the epoch, the accuracy of the 2 architectures is
almost the same, indicating that the HQCCNN with 2 con-
volution kernels already has high learning ability and image
classification ability for the 5-class classification task.

4.4. 5e Influence of Pooling Layer on HQCCNN. To explore
the influence of adding a pooling layer on the performance
of HQCCNN, we construct a HQCCNN with a pooling

layer. HQCCNN sets 1 convolutional layer with 2 convo-
lution kernels. After adding a pooling layer, the convolution
results are pooled and then input into the same classical fully
connected layer.We set a classification task of digits 0–4.,e
training set loss and testing set accuracy of HQCCNN are
plotted in Figure 9.

When adding a pooling layer, compared to HQCCNN
without adding a pooling layer, the classification perfor-
mance of HQCCNN is degraded. However, it still maintains
high performance, indicating that the pooling unit used in
this paper can keep the model with high learning ability and
image classification ability.

4.5. Comparative Experiment of HQCCNN and CNN. We
explore the difference in classification performance between
HQCCNN and CNN. We take the 5-class (0–4) task as an
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Figure 9: ,e results of HQCCNN with pooling. (a) ,e training set loss value and (b) the testing set accuracy. ,e black solid line is the
result without adding pooling layer, and the blue solid line is the results with adding pooling layers.
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Figure 10: ,e comparison results of HQCCNN and CNN. (a, c) ,e numerical results of HQCCNN and CNN without adding a pooling
layer, where the black solid line is the result of HQCCNN and the yellow solid line is the result of CNN. (b, d) ,e numerical results of
HQCCNN and CNN with pooling layers, where the blue solid line is the result of HQCCNN and the green solid line is the result of CNN.
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example to illustrate the curve change in the numerical
results of HQCCNN and CNN and set up other classification
tasks to illustrate the performance differences. We set
HQCCNN and CNN with the same network architecture,
which means that the number of parameters between
HQCCNN and CNN is the same. HQCCNN sets 1 con-
volutional layer with 2 convolution kernels and sets 2 ar-
chitectures, one without pooling layer and another with a
pooling layer. ,e corresponding CNN sets 1 convolutional
layer with 2 convolution kernels, the convolutional layer
with padding 1, the convolution kernel size is 2 × 2, with step
size 1, and the activation function is ReLu. In the pooling
layer, max pooling is used, and without padding, kernel size
is 2 × 2, with step size 1. ,e classical fully connected layers
are the same. ,e training set loss and testing set accuracy
are plotted in Figure 10.

Next, we set up two complex binary classification tasks.
,e numerical results of HQCCNN and CNN are shown in
Table 1.

As can be seen from Figure 10, without pooling layer,
HQCCNN and CNN have almost the same loss value.
However, HQCCNN has higher testing set accuracy than
CNN. After adding a pooling layer, HQCCNN has a faster
convergence speed and higher testing set accuracy than
CNN. From Table 1, for complex binary classification tasks,
HQCCNN also shows strong competitiveness. Figure 10 and
Table 1 also show that the hybrid quantum-classical model
has better learning ability and classification performance
than CNN.

5. Conclusion

,e development of quantum computing mode has made it
possible to use quantum computing paradigm to solve
classical problems. However, because of the limited number
of available qubits in quantum computers at this stage,
dealing with high-dimensional data is difficult. ,us, only
the dimensionality of the data can be reduced, such as image
downsampling. Although image downsampling is a com-
promise for current quantum devices, it makes it difficult to
classify images because several images may become similar.
Image downsampling makes the features disappear or be-
come blur, thereby increasing uncertainty in the classifi-
cation process. Amplitude encoding is a more efficient data-
encoding approach, but it will result in intractable com-
plexity. With researchers’ efforts, the advent of large-scale
quantum computers will facilitate the handling of high-
dimensional data, which will additionally enable them to
handle more classical problems.

In conclusion, we propose a hybrid quantum-classical
convolutional computing model that includes two parts: a
quantum computing part and a classical computing part.
,e quantum computing part includes quantum convolu-
tional layer and quantum pooling layer. ,e quantum
convolutional layer has a parameterized quantum circuit
design to achieve the linear unitary transformation of the
quantum state. ,e potential of quantum computing can be
harnessed using parameterized quantum circuits. Classical
computing is used to map the expectation value of the
quantum system further, making it related to the image label.
In the experimental simulation, we classify all the binary
subsets of MNIST dataset and achieve better performance.
Furthermore, we discuss the impact of model architecture
changes on HQCCNN and conduct comparative experi-
ments using CNNs with the same architecture. ,e results
show that compared to CNN,HQCCNNhas a faster training
speed and higher testing set accuracy.
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