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)e entangled “measurement state” (MS), predicted by von Neumann to arise during quantum measurement, seems to display
paradoxical properties such as multiple macroscopic outcomes. But analysis of interferometry experiments using entangled
photon pairs shows that entangled states differ surprisingly from simple superposition states. Based on standard quantum theory,
this paper shows that the MS (i) does not represent multiple detector readings but instead represents nonparadoxical multiple
statistical correlations between system states and detector readings, (ii) implies that exactly one outcome actually occurs, and (iii)
implies that when one outcome occurs, the other possible outcomes simultaneously collapse nonlocally. Point (iii) resolves an
issue first raised in 1927 by Einstein who demonstrated that quantum theory requires instantaneous state collapse. )is co-
nundrum’s resolution requires nonlocal correlations, which from today’s perspective suggests the MS should be an entangled
state. )us, contrary to previous presumed proofs of the measurement problem’s insolubility, we find the MS to be the collapsed
state and just what we expect upon measurement.

1. Introduction

Physicists agree that Schrodinger’s equation describes the
evolution of nonrelativistic quantum states between mea-
surements, but there is no agreement on how states change
during measurements. In fact, an apparent problem arises
when one applies standard quantum theory (minus the
collapse postulate) to measurements. John von Neumann
analyzed the problem [1], and we follow his argument here.
“Measurement” is the experimental determination and
macroscopic recording of the value of a physical observable
associated with a quantum system. von Neumann showed
that, unless the system happens to be in an eigenstate of the
measured observable, measurement leads to a “measure-
ment state” (MS) whose mathematical representation is an
entangled state that seems to predict the detector to be in a
macroscopic superposition of exhibiting all of the possible
outcomes, a paradox known as the “problem of outcomes.”

)is paper shows, based on standard quantum theory
without a collapse postulate, that this is a pseudoproblem
and that, far from predicting superposed outcomes, von
Neumann’s MS predicts an instantaneous collapse to a single
eigenstate. It refines and extends an earlier paper [2].

Specifically, we demonstrate the following, with no as-
sumptions other than standard quantum physics (minus the
collapse postulate): (i) )e MS has been misinterpreted and
does not in fact predict paradoxical multiple macroscopic
outcomes; it instead correctly predicts nonparadoxical
multiple statistical correlations between system and detector
outcomes. (ii) Exactly one outcome actually occurs. (iii) )e
entanglement entails that when one outcome occurs, the
other outcomes simultaneously and nonlocally remain
“dark” (i.e., do not occur). )is resolves an objection to
quantum physics first raised by Einstein in 1927.

)at is, we show von Neumann’s enigmatic MS to be in
fact the collapsed state expected upon measurement. )e
collapse is derived (i.e., demonstrated) with no assumptions
beyond the other standard principles of quantum physics.

We show the problem of outcomes arises from a mis-
taken understanding of entangled superpositions, not only
in measurements but also in purely microscopic processes.
)e MS is obviously a superposition of subsystem product
states. But the MS is poorly understood because no previous
work has analyzed its complete phase dependence. Do the
states of individual subsystems vary with phase, as they do in
simple superpositions? If not, then what does vary with
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phase, i.e., precisely which entities occupy indefinite states
when two or more subsystems are entangled? Such questions
show that we do not fully understand the MS’s phase de-
pendence; i.e., we do not fully understand the MS.

We investigate these questions by studying earlier Bell-
test quantum optics experiments that measure momentum-
entangled two-photon states. )ese experiments study a
purely microscopic entangled superposition (mathemati-
cally identical with the MS) across all phases. )e results
show that entangled superpositions differ sharply from
simple superpositions; i.e., the implication of the “plus” sign
differs surprisingly. )e MS does not represent multiple
detector readings but instead represents multiple statistical
correlations between system states and detector readings.
)ese correlations are not paradoxical: a macroscopic de-
tector that simultaneously exhibited two states would be
paradoxical, but a detector that simultaneously participates
in two correlations is not paradoxical. Furthermore, the MS
directly implies that exactly one of these correlations is
realized as the measurement outcome. )is resolves the so-
called “Schrodinger’s cat paradox,” which in turn resolves
the quantum measurement problem [3].

)e measurement problem has a long and rich history
[3, 4] that we will not try to comprehensively cover here.)e
present analysis shares certain features with the modal in-
terpretations of quantum physics [5–8]. Like the present
paper, modal interpretations are based on standard quantum
mechanics but without the projection postulate (von Neu-
mann’s “Process 1”) [1]; they are realistic in the sense that
they presume quantum systems possess real physical
properties and they provide an objective (independent of
humans) description of a single physical reality; they pre-
sume the dynamical state tells us the possible properties of
the system and their corresponding probabilities; they
presume the dynamics (for nonrelativistic systems) is gov-
erned by the unitary Schrodinger evolution and by the
entanglement process presented in Section 2. However, the
present analysis differs importantly from the modal inter-
pretations’ conclusion that “the dynamical state never col-
lapses during its evolution” [5]. On the contrary, this paper
deduces from quantum theory and from experimental ev-
idence that an instantaneous nonlocal collapse takes place,
resulting in one outcome occurring while the other out-
comes simultaneously do not occur. )us, while the present
paper does not postulate collapse, it derives an instantaneous
collapse as a consequence of entanglement.

Other formulations also avoid postulating collapse. Hugh
Everett’s many-worlds interpretation assumes “that there are
manyworlds which exist in parallel” and that a different branch
is realized in each different world [9, 10]. Bohm’s hidden
variables theory [11] assumes that a field (represented by the
wave function) and particles are both present, with the field
guiding the particles. Bunge’s realistic formulation [12] as-
sumes a representative system/detector interaction and derives
the Schrodinger evolution of the composite system, allowing
one to deduce each observable’s value from the detector
reading. Gottfried and Yan [13, 14] argue that, for all practical
purposes, the off-diagonal terms of the exact density operator
arising from the MS can be ignored and that this solves the

measurement problem. A recent information-based analysis
[15] regards the MS as the result of quantum measurement (as
does this paper) and introduces, in addition to the measured
quantum system and its measurement apparatus, a “pro-
gramming system” that interacts with the quantum system and
apparatus to encode the basis information for the system and
apparatus, thus avoiding any classical concepts within an in-
formation-complete quantum formalism.

At least six papers—Landau [16], Lüders [17], Jauch [18],
Omnès [19], Rinner and Werner [20], and Perez-Berrliaffa
et al. [21]—express the effect of measurement as a trace on
the composite-system density operator representing the MS.
)is trace operation, which predicts definite outcomes at the
subsystems, seems to yield just what we want, namely, that
measurement transforms the subsystem states into mixtures
over the possible eigenstates. However, several objections are
commonly raised against this proposal [22]. )e present
paper, in contrast, argues that the MS directly represents the
collapsed state of the composite system, that the collapse is a
consequence of entanglement, and that the entanglement is
required in order to ensure a simultaneous (hence instan-
taneous) collapse over the separated branches.

Section 2 presents von Neumann’s derivation of the MS,
poses the measurement problem, reviews eight presumed
measurement problem insolubility proofs, and shows that
the premise of these proofs is incorrect. )is invalidates the
proofs and re-opens the question of the solubility (i.e.,
solvability) of the measurement problem.

Section 3 presents a crucial clue. In 1927, Einstein noted
that quantum theory implies that measurements entail in-
stantaneous collapse and suggested this would violate special
relativity. However, today (unlike 1927) we know that in-
stantaneous nonlocal changes of correlations violating Bell’s
inequalities really occur [23–25], that they do not violate special
relativity [26], and that they occur when disparate systems are
entangled [27, 28]. )us from today’s perspective, Einstein’s
argument implies that nonlocal correlations are required during
measurements, entailing that entanglement is also required.

Is von Neumann’s MS in fact precisely what we want?
)e answer can only come from fully understanding the MS,
particularly its full phase dependence which has not, to this
author’s knowledge, been previously discussed in connec-
tion with the measurement problem. To this end, Section 4
reviews two 1990 quantum optics experiments exploring an
entangled two-photon microscopic state that is mathe-
matically identical to the MS.

)e correct understanding of the microscopic version of
the MS is then worked out in Section 5. We find that both
entangled subsystems are in definite (i.e., nonsuperposed)
states, but that the degree of correlation between these states is
in an indefinite state. )is key new finding is summarized in
a table that appears in Section 5.

Section 6 applies this new insight to the MS.We find that
the MS is not a macroscopic superposition of different
detector states. It instead represents different correlations
between detector states and system states. )is is not par-
adoxical. Furthermore, quantum theory directly implies that
precisely one outcome is realized. )is resolves Schro-
dinger’s cat paradox.
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Section 7 concludes the analysis by studying a partic-
ularly simple measurement example that also typifies the
essentials of quantum measurements.

Section 8 summarizes the results and considers why it
has taken so long to straighten out this simple misunder-
standing of von Neumann’s MS.

2. Entanglement and Measurement

)e superposition postulate entails that if |A1〉 and |A2〉 are
Hilbert space vectors (“kets”) representing possible states of
a quantum system A, then all normalized linear superpo-
sitions of |A1〉 and |A2〉 also represent possible states of A.
For example,

ψA

 〉 �
|A1〉 +|A2〉

�
2

√ . (1)

(|A1〉 and |A2〉 orthonormal) represents a possible state
of A. )e superposition postulate is a prerequisite to the
Hilbert space representation of quantum states, and the basis
for conceptualizing quantum states as physically real waves
in a quantum field that fills the universe [26, 29–31]. |ψA〉

represents a situation in which A is represented neither by
|A1〉 nor by |A2〉 but incorporates aspects of both, including
“overlap” effects such as interference. As Dirac [32] put it, A
goes “partly into each of the two components” and “then
interferes only with itself.”

If quantum system A interacts with another quantum
system B, it frequently happens that the situations of A and
B are then represented by an entangled superposition such
as

ψAB

 〉 �
|A1〉|B1〉 +|A2〉|B2〉

�
2

√ , (2)

where |Ai〉 and |Bi〉 (i� 1, 2) are orthonormal kets repre-
senting the “subsystems” A and B, respectively. Although the
physical interpretation of simple superpositions such as |ψA〉

is clear, the physical interpretation of entangled superpo-
sitions such as |ψAB〉 is not comparably clear. |ψAB〉 is a
superposition of two products |Ai〉 |Bi〉 (i� 1, 2). |A1〉|B1〉

is commonly interpreted to represent a state of the com-
posite system AB in which A has the properties associated
with |A1〉 and B has the properties associated with |B1〉 and
similarly for |A2〉|B2〉. But if this is the case, then the
physical interpretation of the state |ψAB〉 would seem to be
that AB simultaneously exhibits properties associated with
|A1〉 and |B1〉 AND properties associated with |A2〉 and
|B2〉, where “AND” represents the superposition. In the
case of Schrodinger’s iconic cat [33], this would imply
that the nucleus is both decayed and undecayed and,
more disturbingly, the cat is both alive and dead. )is
paper will demonstrate that both quantum experiment
and quantum theory show that this is actually not the
case. Instead, the state |ψAB〉 entails merely that |A1〉 and
|B1〉 are coherently (in a phase-dependent manner)
correlated with each other AND |A2〉 and |B2〉 are co-
herently correlated with each other (see Sections 4 and
5). )is is not paradoxical.

Quantum measurements are important examples of
entanglement. As first discussed by John von Neumann
[1, 22], a “measurement” is the determination of the value of
an observable associated with a quantum system A. If A
happens to be represented by an eigenvector of the measured
observable, then a good measurement will detect the asso-
ciated eigenvalue. But what if A is represented by a su-
perposition of eigenvectors of the measured observable? It
will suffice for this paper’s purpose to assume that A’s
Hilbert space has only two dimensions and that A is rep-
resented by the superposition equation (1). )e kets |Ai〉

(i� 1, 2) define the eigenvectors of the measured observable.
We assume the existence of a detector B designed to dis-
tinguish between the |Ai〉.

For example, |A1〉 and |A2〉 could represent the paths of
an electron passing through the slits of a double-slit apparatus,
and B could be an electron detector for the “which-slit” ob-
servable whose eigenvectors are the |Ai〉. To make the which-
slit measurement, B must distinguish between the states rep-
resented by |A1〉 and |A2〉, so B must contain a specific
quantum detection component having quantum states rep-
resented by kets |Bi〉 such that ifA is in the state represented by
|Ai〉, then detection yields the state represented by |Bi〉 (i=1,
2). Assuming a minimally disturbing measurement that leaves
eigenstates unaltered, and letting |Bready〉 represent the state of
B’s quantum component prior to measurement, the process

|Ai〉 Bready

 〉 ��>|Ai〉|Bi〉, i � 1, 2, (3)

describes a measurement of the which-slit observable when
A’s state is represented by an eigenstate. When A is in the
state represented by |ψA〉 and B measures the which-slit
observable, simple linearity of the time evolution implies

(|A1〉 + |A2〉)
�
2

√ Bready

 〉 ��>
|A1〉|B1〉 + |A2〉|B2〉

�
2

√

� ψAB

 〉.

(4)

)us, von Neumann’s straightforward argument shows
the measurement creates the entangled superposition |ψAB〉

of equation (2), where “B” now refers to the quantum de-
tection component of the detector.

But von Neumann’s measurement postulate [1] implies
that when the which-slit observable is measured, A collapses
into one of its eigenstates while B collapses into the cor-
responding detector state [3, 32]. It is by no means clear that
|ψAB〉 (equation (4)) represents such a measurement out-
come. As Myrvold [3] puts it, “)e problem of what to make
of this is called the 'measurement problem.'” )is paper will
show that |ψAB〉 does in fact represent the collapsed state and
the single definite outcome expected from von Neumann’s
measurement postulate.

We have used the same notation, |ψAB〉, for the arbitrary
entangled state represented by equation (2) (whereA and B are
arbitrary quantum systems) and for the specific case of the
entangled state that develops when a detector measures a
quantum system, represented by equation (4) (whereB is now a
detector). We will refer to this state in the context of equation
(4) as the “measurement state” (MS). We will also, however,
need to refer to the arbitrary entangled state equation (2),
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especially in Sections 4 and 5 where we analyze an experiment
involving two microscopically entangled photons.

)us, the question of how to interpret entangled states
looms large in the foundations of quantum physics. As noted
above, the interpretation of general entangled states such as
the one represented by equation (2) is already murky as
compared with the interpretation of simple superposition
states such as the one represented by equation (1). )e
problem of interpreting the MS is especially important
because macroscopically distinct states now lie on each side
of the “plus” sign on the right-hand side of equation (4). As
already discussed, the superposition |ψAB〉 can be inter-
preted to represent a situation in which A exhibits properties
represented by both |A1〉 and |A2〉. And a product state such
as |A1〉 |B1〉 represents a state of the composite systemAB in
which A is represented by |A1〉 and B is represented by |B1〉.
)us, |ψAB〉 appears to describe a detector that simulta-
neously “points” to two macroscopically different outcomes
|B1〉 and |B2〉! )e detector seems to display no definite
outcome, a conundrum known as the “problem of out-
comes” [3, 22, 33–47].

Such a superposition state would be paradoxical.
Schrodinger, who imagined a cat attached to the detector in
such a way that |B1〉 included a live cat and |B2〉 included a
dead cat, described |ψAB〉 as representing a “living and dead
cat ... smeared out in equal parts” [33]. One quantum
foundations expert writes the following:

“)e crucial difficulty is now that it is not at all obvious
how one is to regard the dynamical evolution described by
[equation (4)] as representing measurement in the usual
sense. )is is so because [equation (4)] is . . . not sufficient
to directly conclude that the measurement has actually
been completed [22].”

In fact, while measurement should lead to a specific
eigenstate of the measured observable, equation (4) appears
to entail that “the system has been sucked into a vortex of
entanglement and no longer has its own quantum state. On
top of that, the entangled state fails to indicate any particular
measurement outcome” [48].

As noted, it seems paradoxical that quantum measure-
ments lead to a state represented by the MS. Measurement
should lead to a situation in which A is represented by one of
its eigenvectors |Ai〉 and B is represented by the corre-
sponding |Bi〉. Since quantum uncertainty typically implies
unpredictable measurement outcomes, it is reasonable to
conclude that measurement should lead to a state repre-
sented by an ignorance-interpretable mixture [22] of the
products |A1〉|B1〉 and |A2〉|B2〉. Assuming the initial state
is represented by |ψA〉, such a postmeasurement mixture
would be represented by the density operator

ρmixed �
(|A1〉|B1〉〈B1|〈A1| + |A2〉|B2〉〈B2|〈A2|)

2
. (5)

)is mixture can be interpreted as “the system is rep-
resented by a single component |Ai〉|Bi〉, but we cannot
know whether i� 1 or 2 until we look at the outcome.”

Beginning with von Neumann’s analysis, at least eight
“measurement problem insolubility proofs” [1, 49–55]
have assumed that, in order to obtain definite outcomes,
the measurement process should transform the composite
system AB into a mixture analogous to equation (5). )e
initial state of A is assumed to be pure and to be repre-
sented by a superposition such as equation (1). )e
analysis then investigates whether a suitable composite-
system postmeasurement mixture can be reached via a
unitary process. To achieve this, the detector must be
represented by a mixture initially, because unitary pro-
cesses cannot turn a pure state into a mixture. Since B is
macroscopic, such an initial mixture seems appropriate.
)us, von Neumann and seven succeeding analysts asked:
Is there an initial mixed-state density operator ρready of B
and a unitary process U acting on AB such that U
transforms the initial composite density operator
|ψA〉〈ψA| ⊗ρready into the desired composite mixture? )e
eight insolubility proofs showed, with varying assump-
tions, the answer is “no,” presumably demonstrating the
measurement problem to be insoluble.

Section 3 will show, however, that the premise of these
insolubility proofs, namely, that equation (5) represents the
appropriate postmeasurement state, was doomed from the
start, precisely because it is not entangled and does not have
the nonlocal properties required if quantum theory is to
describe the measurement process. To put this another way,
we will show that the postmeasurement state must be an
entangled state, which implies that it cannot be a mixture
such as equation (5). Sections 4–7 then show that the MS
does have all the desired properties.

3. A Crucial Clue from Einstein

At the 1927 Solvay Conference, five years prior to von
Neumann’s analysis [1] of quantum measurement, Einstein
asked the audience to consider an experiment in which
electrons pass through a tiny hole in an opaque screen and
then impact a large hemispherical detection screen centered
at the hole (Figure 1).

According to the Schrodinger equation, each electron’s
state diffracts widely, spreading and reaching the entire
screen simultaneously. Yet, each electron registers at only a
single point. How, Einstein asked, do the other points in-
stantaneously remain “dark,” i.e., not show an impact? As
Einstein put it in his notes, this “entirely peculiar mechanism
of action-at-a-distance, which prevents the wave continu-
ously distributed in space from producing an effect in two
places on the screen,” presents a fundamental problem. It
appears to imply instant signaling, violating special relativity
[56–58].

Einstein’s argument shows that, under a realistic and
objective (independent of humans) interpretation of
quantum physics, the Schrodinger equation is at odds
with experimental facts unless the electron’s state col-
lapses instantaneously and nonlocally upon measurement
[26, 29]. )us, realistic quantum physics implies instan-
taneously established nonlocal correlations are essential to
the measurement process. Indeed, Fuwa et al. [59]
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experimentally verified the nonlocal character of the
measurement transition. Since nonlocality is essential to
measurement, the presumed postmeasurement mixed
state was doomed from the start precisely because it does
not exhibit the required nonlocality. But entangled su-
perpositions do exhibit the required nonlocality [27, 28].
So, from our modern point of view, Einstein’s argument
shows that entanglement, far from being an unwelcome
paradox, is required in measurements. )is is a crucial
clue and good news for quantum foundations because von
Neumann’s predicted MS is just such an entangled
superposition!

Gottfried and Yan’s argument [13, 14] should be
mentioned. )eir resolution of the measurement problem
“diagonalizes the density operator.” )ey form the exact
density operator ρ � |ψAB〉〈ψAB|, which can be written

ψAB

 〉〈ψAB

 � ρdiagonal + ρoff−diagonal, (6)

where ρdiagonal = ρmixed (equation (5)) and

ρoff−diagonal �
(|A1〉|B1〉〈B2|〈A2| + |A2〉|B2〉〈B1|〈A1|)

2
. (7)

Recall that the exact expectation value of any observable
F is

〈F〉 � Tr(ρF) � 
j


k

ρjkFkj, (8)

where ρjk and Fkj are matrix elements of ρ and F.
Gottfried and Yan argue that off-diagonal terms in
equation (8) can be ignored because they involve matrix
elements such as 〈B1|〈A1|F|A2〉|B2〉 that are nonzero
only for a “fantastic” observable F because |B1〉 and |B2〉

represent the states of widely separated detectors. In
Gottfried and Yan’s opinion, matrix elements for such
fantastic observables can, for all practical purposes, be
neglected so that we can replace ρ by ρmixed. But we have
seen that this premise is doomed because ρmixed lacks the
required nonlocal properties, so Gottfried and Yan’s
proposal fails.

4. Experimental Studies of States Having
Entangled Spatial Paths

Sections 2 and 3 presented the measurement problem and
some previous research on the problem. Sections 4–7 will
present a suggested resolution. )is section reviews in-
terferometry experiments and theory that investigate the
microscopic entangled superposition |ψAB〉 in equation (2)
over its full 180-degrees range of phases, for a system of two
momentum-entangled (i.e., path-entangled) photons. )e
results provide a key insight into solving the measurement
puzzle.

As preparation, we first study the simple superposition
equation (1). Consider the interferometer experiment of
Figure 2. On each experimental trial, a photon enters a 50–50
beam splitter BS1 which transforms the photon’s state into
the superposition equation (1) where |A1〉 and |A2〉, re-
spectively, represent paths 1 and 2. A series of single-photon

trials probes this state using mirrors M that bring the two
branches together, phase shifters ϕ1 and ϕ2 that lengthen the
two paths by phases ϕ1 and ϕ2, and a second beam splitter
BS2 that mixes the branches together. Measurement occurs
at photon detectors B1 and B2.

Figure 3 shows the results. Varying ϕ1 through 180
degrees causes the photon’s state to shift from 100%
probability of detection at B1, through diminishing prob-
abilities at B1 and increasing probabilities at B2, finally
reaching 100% probability of detection at B2. )e photon
exhibits similar interference upon varying ϕ2. Note that A’s
state depends only on the phase difference ϕ2 − ϕ1.

Since single-trial results vary regardless of which phase
shifter varies, it is hard to avoid the conclusion that each
photon follows both paths. In fact, let us assume the
contrary, namely, that each photon follows only one path.
Suppose the phase shifters are set to ensure a 100%
probability of detection at B1. Under our assumption, this
setting guarantees that every photon following path 1, and
every photon following path 2, is detected at B1. Suppose
path 2 is now blocked without changing the phase settings,
so that (still under our one-path assumption) every de-
tected photon must now follow path 1 and be detected at
B1. But the experiment shows that, to the contrary, 50% of
the detected photons now go to B2. Conclusion: each
photon follows both paths. For a full discussion, see
[26, 29]. As Paul Dirac put it, “)e new theory, which
connects the wave function with probabilities for one
photon, gets over the difficulty by making each photon go
partly into each of the two components. Each photon then
interferes only with itself” [32]. )is illustrates why the
“plus” sign in a superposition such as equation (1) is
interpreted by the word “and.”

We turn now to the entangled state equation (2). Many
Bell inequality tests beginning with Clauser and Freedman’s
[60] and Aspect et al.’s [61] used polarization-entangled
photon pairs to study the full phase dependence of this state.
More useful for this paper are interferometer experiments by
Rarity and Tapster [62] and Ou et al. [63–65] conducted
nearly simultaneously in 1990. Both of these “RTO exper-
iments” (for Rarity, Tapster, and Ou et al.) usedmomentum-
entangled photon pairs to conduct Bell inequality tests of the
entangled superposition equation (2).

Oopaque screen
with a small
opening O electrons

hemispherical
photographic
screen

Figure 1: Einstein’s thought experiment. Each electron diffracts
widely, reaching the entire screen simultaneously, yet only one
point shows an impact. How do the other points instantaneously
remain dark? Does this violate special relativity?
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Figure 4 shows the layout. )e source creates entangled
pairs of photons A (moving leftward) and B (moving
rightward) by laser down-conversion in a nonlinear crystal.
)e down-converted photons are prepared in an entirely
microscopic state represented by |ψAB〉 (equation (2)) by
selecting four single-photon beams, each a plane wave
having a distinct momentum (i.e., wave vector), from the
output of the crystal. Figure 4 resembles two back-to-back
Mach-Zehnder interferometer experiments (Figure 2) with
BS1 located effectively inside the source.

For simplicity and clarity, Figure 4 differs from the
layout shown in RTO’s reports. In Figure 4, paired photons
are directed oppositely. )is arrangement would result if the
entanglement were prepared by the cascade decay of an atom
as in [66]. In RTO’s experiments, however, down-converted

photon pairs are emitted into two angular cones, resulting in
photons that are not oppositely directed. Figure 4’s simpler
geometry is pedagogically useful and has no effect on our
arguments.

Although Figure 4 represents each photon as a wave
packet spreading along two paths directed leftward or
rightward, the composite system AB should be regarded as
a single object, a “biphoton.” In each trial, a biphoton
spreads outward from the source along two superposed
branches. One branch, represented by the first term
|A1〉|B1〉 in equation (2), spreads along the solid path and
the other branch, |A2〉|B2〉, spreads along the dashed path.
As the biphoton ABmoves outward along the solid path, A
encounters a mirror M, then a beam splitter BS where it
transmits and reflects to detectors A1 and A2; photon B
encounters a mirror M, a phase shifter ϕB, and a beam
splitter BS where it transmits and reflects to detectors B1/
B2.)e other half of the entanglement, namely, the dashed
path, has a similar description. )e experiments record
outcomes at four photon detectors equipped with coin-
cidence timers.

Horne et al. [67, 68] predict RTO’s results theoretically,
and we follow their optical-path analysis here. )ey begin by
calculating the two-point nonlocal quantum field amplitudes
ψ (Ai, Bj) at the four coincidence detectors (Ai, Bj), and from
these results, they predict single-photon results. For ex-
ample, ψ (A1, B2) has two contributions, one from phase
shifts in the beam following the solid path (the first term in
|ψAB〉) and the other from the dashed path (the second
term). From equation (2), assuming distinct plane waves
exp(i k•x) for each single-photon beam,

ψ(A1, B2) �
exp iϕw( exp i ϕx + ϕB(   + exp i ϕy + ϕA  exp iϕz(  

2
�
2

√ , (9)

where ϕw, ϕx, ϕy, and ϕz are fixed phase shifts resulting from
mirrors and beam splitters, and the additional factor of 1/2
comes from the superpositions created at the two beam
splitters. Using the Born rule, equation (9) implies the co-
incidence probability

P(A1, B2) � |ψ(A1, B2)|
2

�
1 + cos ϕB − ϕA + ϕv(  

4
,

(10)

where ϕv is a fixed phase arising from ϕw, ϕx, ϕy, and ϕz.
Similarly,

BS1

BS2

B2

B1
M

Mpath 2

path 1

φ2

φ1

Figure 2: Mach-Zehnder interferometer experiment. A photon
traverses a beam splitter, travels on two phase-shifted paths to
another beam splitter, and is detected.

0
π 2π

phase shift
difference
φ2–φ1

50

100
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probability
of B1

Figure 3: Single-photon interference, pointing to Dirac’s con-
clusion that “each photon ...interferes only with itself,” i.e., each
photon follows both paths.
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entangled
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B1
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Figure 4: )e RTO experiments. In each trial, each of two
entangled photons travels two phase-shifted paths (one solid, the
other dashed) to beam splitters and coincidence detectors. )ink of
one biphoton spreading from the source along both the solid and
the dashed paths.

6 Quantum Engineering



P(A1, B1) �
1 + cos ϕB − ϕA + ϕu(  

4
, (11)

where ϕu is another fixed phase. Remarkably, the sinusoidal
terms predict coherent (phase-dependent) nonlocal inter-
ference between A and B, regardless of their separation.
)ere are similar expressions for P(A2, B1) and P(A2, B2).

Single-photon predictions then follow. For example,
from simple probability theory,

P(A1) � P(A1, B1) + P(A1, B2)

�
1 + cos ϕB − ϕA + ϕu(  

4
+

1 + cos ϕB − ϕA + ϕv(  

4
.

(12)

Horne et al. then show the two fixed phase factors ϕu and
ϕv differ by π:

ϕv � ϕu + π(mod 2π). (13)

)us, the sinusoidal terms in equation (12) interfere
destructively, and P(A1) = 1/2 regardless of phase. Equations
(12) and (13) show this remarkable result to arise from
destructive interference of two phase-dependent nonlocal
contributions from the distant other photon B! )e result at
all four single-photon detectors is the same:

P(A1) � P(A2) � P(B1) � P(B2) �
1
2
. (14)

Unlike the nonentangled single-photon superposition
|ψA〉, where the superposed photon is coherent (phase-
dependent) as shown by Figure 3, each entangled photon

“decoheres” [22] the other photon so that neither photon
can interfere with itself. But coherence has not vanished.
Coincidence probabilities such as Equations (10) and (11)
show that coherence has been transferred to the biphoton.
)us the biphoton now interferes with itself across an ar-
bitrary distance, i.e., nonlocally [22]. )us, no single-photon
interference fringes are associated with the state represented
by |ψAB〉.

Special relativity entails that this must be the case. Since
single-photon phase dependence could be used to establish
an instantaneous communication channel between A and B,
entanglement must deprive individual photons of their
phase. )e result is nonlocal coherence of the biphoton and
decoherence of individual photons. Decoherence is required
by special relativity.

Equation (14) can also be derived by tracing the pure
state density operator |ψAB〉〈ψAB| over one subsystem to
obtain the density operator for the other subsystem [22].
)is yields two density operators that appear to be mixtures
but are not really “ignorance mixtures” as the word “mix-
ture” is usually understood because the biphoton is in fact
not in a mixed state but rather in a pure state represented by
|ψAB〉. )e optical-path analysis, above, derives equation
(14) while avoiding this controversy [22].

A few definitions can put these predictions into a more
comprehensible form. If one photon is detected in state 1
and the other in state 2, the two outcomes are said to be
“different.” Otherwise, the outcomes are the “same.” )en,
from equations (10) and (11), and similar expressions for
P(A2, B1) and P(A2, B2),

P(same) � P(A1, B1) + P(A2, B2) �
1
2

1 + cos ϕB − ϕA(  , (15)

P(different) � P(A1, B2) + P(A2, B1) �
1
2

1 − cos ϕB − ϕA(  . (16)

)eir difference, graphed in Figure 5, is called the
“degree of correlation”:

C � P(same) − P(different) � cos ϕB − ϕA( . (17)

Section 5 explores its physical significance.

5. Interpretation of Entangled
Microscopic States

)e original purpose of the RTO experiments was to
demonstrate violations of Bell’s inequality by comparing
theoretical predictions, Figure 5, with experimental mea-
surements. )e experimental results agreed with Figure 5
and violated Bell’s inequality by 10 standard deviations,
confirming the nonlocal nature of |ψAB〉.

What does Figure 5 mean conceptually? At zero phase
difference, where the two phase shifters are set at equal
phases, P(same)� 1 and C� P(same)− P(different)�+1.
)us, both stations always agree, despite the presence of
beam splitters that randomize each photon prior to detection
(see Figure 4). It is as though coins were flipped at each
station and they always came out either both heads or both
tails! Zero is the “measurement” phase angle where B’s state
is perfectly (and instantaneously [23–25]) correlated with
A’s state. )e nonlocality is intuitively obvious: each photon
acts like a detector of the state of the other photon regardless
of separation! Simply based on this conclusion, we can make
an important observation about the entangled MS equation
(4): Nonlocality is a central feature of quantum
measurements.

For small nonzero phase differences, there is a small
probability P(different) that results at the two stations will
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differ, i.e., observation of B no longer provides reliable in-
formation about A. With increasing phase difference, this
unreliability increases until, at π/2, the two detector pairs are
entirely uncorrelated, and C= 0. As the phase further in-
creases from π/2 to π, P(different) increases while P(same)
decreases, makingCmore andmore negative. Finally,C=−1
at phase difference π, implying perfect anticorrelation. )us,
C is aptly called the “degree of correlation.”

)is description gives us a clear sense of the physical
meaning of the fully entangled state, equation (2), indicating
precisely which entities are superposed. )e biphoton’s
phase controls the degree to which the fixed phase-inde-
pendent 50–50 states of its two spatially separated subsys-
tems are statistically correlated. Compare this with the phase
of the simple superposition |ψA〉 (equation (1)), which
controls the degree to which the single system A is repre-
sented by one or the other state. )e entities before and after
the plus signs in equations (1) and (2) are conceptually quite
different: equation (1) sums two states while equation (2)
sums two correlations between states.

)is distinction is crucial. A state is a situation (or
configuration or path) of a single quantum object, but a
correlation is a statistical relationship between two (or more)
quantum objects. A superposition is the simultaneous ex-
istence of two or more states of a single quantum object. An
entanglement is the simultaneous existence of two or more
relationships (specifically, correlations) between the states of
two or more quantum objects. Creating an entanglement is
quite a different matter from creating a superposition.

To elaborate, Table 1 compares the superposition state
represented by |ψA〉 (columns 1–2) with the entangled state
represented by |ψAB〉 (columns 3–5) at five different phases.
Column 2 demonstrates interference between the states
represented by |A1〉 and |A2〉, implying the photon is in a
superposition of following both paths and that the state of A
varies with phase. )e phase dependence in column 2 shows
that A interferes with itself.

In contrast, column 4 shows that when the subsystems
are represented by the pure state |ψAB〉, neither photon has a
phase. )us, neither photon can interfere with itself, so

neither photon can be represented by a superposition state.
)ey are decohered. Both photons are represented by fixed,
phase-independent, 50–50 states at all phase angles, just as
though they were in ignorance mixtures (which they are
not). But phase dependence has not vanished, it has only
been transferred to the composite system. As column 5
reveals, the degree of correlation between the fixed states of A
and B now varies with phase.

A photon represented by |ψA〉 is in a coherent (phase-
dependent) superposition of being in two states (i.e., of
following two paths). |ψAB〉, on the other hand, represents
the coherent superposition of two correlations between fixed
states. Instead of two coherent states existing simultaneously,
two coherent relationships between states exist simulta-
neously. Neither subsystem is “smeared” (as Schrodinger
apparently believed); instead, only the relationship between
subsystems is smeared. Briefly, |ψA〉 is a superposition of
states while |ψAB〉 is a superposition of correlations.

)us, |ψAB〉 is qualitatively different from |ψA〉. |ψA〉

exhibits properties of |A1〉 AND |A2〉, where “AND” in-
dicates the superposition. If you amplify A to macroscopic
dimensions, you will get a macroscopic superposition. |ψAB〉

exhibits properties of correlations between |A1〉 and |B1〉

AND correlations between |A2〉 and |B2〉. If you amplify A
and B to macroscopic dimensions, you will not get a
macroscopic superposition; you will simply get correlations
between macroscopic objects. )e entanglement process
transfers the coherence (phase dependence) of each photon
to correlations between the two photons, leaving individual
photons in mixtures that are incoherent but that are not
ignorance mixtures. |ψAB〉 is a “superposition of correlations
between properties,” in contrast to |ψA〉 which is a “su-
perposition of properties.”

)ere is a better way to think about all this. Regard AB as
a single object, a biphoton. )en, equation (2) describes a
superposition of this object. In the RTO experiment (Fig-
ure 4), the two superposed states are represented by the solid
line and the dashed line. In this context, it makes no sense to
speak of the superposition of a single subsystem, but it does
make sense to speak of the superposition of the biphoton. It
is the biphoton that goes through the phases graphed in
Figure 5 and indicated in Table 1 column 5. Both branches
(solid and dashed) of the biphoton exist simultaneously.

6. Interpretation of the Measurement State

Section 4 analyzed the microscopic state represented by
equation (2) mathematically, and Section 5 interpreted this
state physically. We now apply these insights to the
entangled MS of a quantum system A and its detector B as
derived in equation (4).

In order for B to be a reliable detector, its states must be
perfectly correlated with A’s states—it must exhibit |Bi〉

when and only when A is represented by |Ai〉 (i= 1, 2).)us,
Figure 5 implies that the MS must be established at zero
nonlocal phase: ϕB − ϕA = 0. At this phase, two nonlocal
perfect statistical correlations between a phase-independent
50–50 state of A and the corresponding phase-independent
50–50 state of B exist simultaneously. As shown in Section 5,

–1

π 2π
nonlocal phase
shift difference
φB–φA

0

uncorrelated

perfect
anti-correlation

+1

degree of
correlation perfect correlation

(as in a measurement)

Figure 5: Results of the RTO experiment, demonstrating non-
locality (violation of Bell’s inequality). )e two photons interfere
with each other across an arbitrary distance, i.e., each biphoton
interferes with itself.
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contrary to Schrodinger’s description [33], neither subsystem
state can be “smeared out” (superposed) because neither
subsystem has a phase. Instead, correlations between fixed
states of A and B are smeared as shown in Table 1, while the
detector indicates a single definite outcome.

Applying Table 1 to Schrodinger’s example [33], the cat
is predicted to be alive in 50% of trials, dead in the other 50%,
and never in both states simultaneously. Phase alterations
would not smear the cat; they would smear only the cor-
relations between the cat and the nucleus leading not to a
smeared cat but only to imperfect detection. )ere is no
paradoxical macroscopic superposition.

But if neither A nor B is superposed, what is superposed?
What does the MS’s “plus” sign really mean? )e answer,
from Table 1 at zero phase: |A1〉 is perfectly correlated with
|B1〉 AND |A2〉 is perfectly correlated with |B2〉, where
“AND” represents the superposition. )is simply says both
correlations exist simultaneously:|A1〉 if and only if |B1〉

AND |A2〉 if and only if |B2〉. Again, there is no paradoxical
macroscopic superposition. It is only the correlations (re-
lationships) between states, not the states themselves, that are
superposed.

Entanglement transforms a coherent superposition of 2
states into a coherent superposition of two correlations be-
tween states. )is makes quantum measurements possible
because subsystem states can then be amplified to macro-
scopic dimensions without requiring the creation of a
macroscopic superposition. Neither subsystem is in a
macroscopic superposition.

Since neither subsystem is superposed, only a single
outcome occurs—a conclusion that also follows from
equation (14). )is single definite outcome occurs instantly
upon entanglement, as facilitated by the nonlocal properties
of the entangled MS [23–25]. )us, we have derived the
collapse as an inevitable consequence of entanglement and
have no need to postulate such a process. )e MS is the
collapsed state. Our conclusion follows merely from stan-
dard principles of quantum theory with no other
assumptions.

)us von Neumann’s enigmatic measurement state,
equation (4), is just what we want. )is entangled pure state
provides the desired correlations, a single outcome, and the
nonlocality required by Einstein’s argument. Note that the
collapse is established at the microscopic level, prior to
macroscopic amplification. )e next section provides an
example of the sequence of events.

7. Example

)e following simple example typifies quantum measure-
ments and illustrates the preceding insights in terms of a
specific measurement process.

Consider the set-up in Figure 6. A single photon tra-
verses a beam splitter, creating the superposition repre-
sented by equation (1) whose branches correspond to
separate paths toward widely separated photon detectors.
Analogously to Figure 1, we assume the two detectors are
equidistant from the beam splitter. Each detector contains a
photo-sensitive plate that, upon absorbing a photon, releases
an electron.

Von Neumann’s argument implies that, as the two
branches of the superposition approach the detectors, at
some point the branches overlap the detectors sufficiently
that the entanglement process represented by equation (4)
occurs, where |Bready〉 denotes the microscopic state of the
detectors prior to entanglement while |B1〉 and |B2〉 denote
their states following entanglement but prior to amplifica-
tion and macroscopic recording.

At the instant of interaction, the state jumps from a
superposition of two paths of A (equation (1)) to a su-
perposition of two correlations between A and B (right-
hand side of the process in equation (4)). )is entangled
state is not paradoxical. )e right-hand side of equation (4)
entails precisely the proper correlations: |A1〉 if and only if
|B1〉, AND |A2〉 if and only if |B2〉. )e excitation is
transferred to only one detector while the other detector
remains unexcited. More correctly, either the solid branch
or the dashed branch of the superposed biphoton (Figure 4)
is randomly selected. In fact, Fuwa et al. [59] show ex-
perimentally and theoretically that the set-up shown in
Figure 6 leads to entanglement and that the predicted
nonlocal collapse occurs; the nonlocality of the collapse is
verified quantitatively by the experimental violation of an
EPR-steering inequality.

)us collapse, a nonlinear process, occurs at the mi-
croscopic level. Once one photoelectron is released, the
process is thermodynamically irreversible because the
electron is released into a vast number—a continuum—of
free electron states and cannot feasibly be reversed. )is
electron triggers an avalanche of other electrons leading to a
macroscopic mark at one detector.

Other measurement set-ups follow the same general
principles. For example, in the measurement described by

Table 1: Comparison between a simple superposition (Figure 2) and an entangled superposition (Figure 4). In Figure 2, single-photon states
vary with phase. In Figure 4, only the correlation between single-photon states varies with phase while single-photon states have no phase.
)us, each biphoton is coherent but its subsystems are incoherent.)at is, entanglement decoheres each photon while transferring coherence
to the biphoton.

Simple superposition of 1 photon Entangled superposition of 2 photons
ϕ2 − ϕ1 State of photon ϕB − ϕA State of each photon Correlation between photons

0 100% 1, 0% 2 0 50–50 1 or 2 100% corr, 0% anticorr
π/4 71% 1, 29% 2 π/4 50–50 1 or 2 71% corr, 29% anticorr
π/2 50% 1, 50%2 π/2 50–50 1 or 2 50% corr, 50% anticorr
3π/4 29% 1, 71% 2 3π/4 50–50 1 or 2 29% corr, 71% anticorr
π 0% 1, 100% 2 π 50-50 1 or 2 0% corr, 100% anticorr
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Einstein (Section 3), each small region of the detection
screen acts as a single detector, and the diffracted electron’s
quantum state entangles with all these many regions. )us,
the argument above, involving only two detectors, must be
extended to N detectors.

8. Summary and Conclusion

Using only the standard principles of quantum physics, but
minus the collapse postulate, we have shown that quantum
state collapse occurs as a consequence of the entanglement
that occurs upon measurement as described in 1932 by von
Neumann (equation (4)). )e entangled “measurement
state” of a quantum system and its detector is the collapsed
state: it incorporates the required perfect correlations be-
tween the system and its detector, it predicts precisely one
definite outcome, and it incorporates the nonlocal proper-
ties—the instantaneous collapse across all branches of the
superposition—that Einstein showed to be required in
quantum measurements.

)e measurement state equation (4) does not describe a
detector in a paradoxical superposition of displaying mul-
tiple outcomes, as had been supposed by Schrodinger and
others. Instead, quantum theory concludes that this state
entails just what we expect following a measurement: the
states represented by |A1〉 and |B1〉 are perfectly correlated,
AND the states represented by |A2〉 and |B2〉 are perfectly
correlated, where “AND” represents the plus sign in the
mathematical representation of the state. Entanglement
entails merely the simultaneous occurrence of two corre-
lations between subsystems, not the simultaneous occur-
rence of two individual states of either subsystem. )ere can
be no paradoxical superposition of different detector states
or of different system states because the entanglement has
shorn both the detector and the quantum system of their
quantum phases. )e phase has been transferred from the
individual subsystems to the degree of correlation between
subsystems.

To put all of this more directly, the single quantum object
AB (the biphoton) collapses from a superposition to one of
its members.

)e measurement state’s entanglement and its nonlocal
properties, far from being paradoxical, are needed in order
to guarantee that the collapse occurs simultaneously across
all branches of the superposition. Eight previous insolubility
proofs failed because they did not incorporate nonlocal
properties. Nonlocality is a central feature of quantum
measurement.

)ere is no need for a special collapse postulate because
the entangled state is the collapsed state. Collapse occurs
instantly upon entanglement.

)is analysis should not be regarded as one more in-
terpretation of quantum physics. It is instead a correction of
the previous misunderstanding of vonNeumann’s entangled
measurement state. It is not surprising that this misun-
derstanding has persisted for nearly 90 years. After all, en-
tanglement and nonlocality are deeply involved in the
measurement problem’s proper resolution but they only
began to be understood in 1964 [69], leading to a long period
of gradual acceptance with confirmation only in 2015
[23–25]. )e delay in understanding measurement stemmed
from this delay in understanding nonlocality.
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