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Quantum error correction (QEC) is a key technique for building scalable quantum computers that can be used to mitigate the
efects of errors on physical quantum bits. Since quantum states are more or less afected by noise, errors are inevitable. Traditional
QEC codes face huge challenges. Terefore, designing an error suppression algorithm based on neural networks (NN) and
quantum topological error correction (QTEC) codes is particularly important for quantum teleportation. In this paper, QTEC
codes: semion codes—a greater than 2 dimensional (2D) error correction code based on the double semion model—are used to
suppress errors during quantum teleportation, using a NN to build a decoder based on semion codes and to simulate the quantum
information error suppression process and the suppression efect. Te proposed convolutional neural network (CNN) decoder is
suitable for small distance topological semion codes.Te aim is to optimize the NN for better decoder performance while deriving
the relationship between decoder performance and slope and pseudothreshold during training and calculate the thresholds for
diferent noise areas when the code distances are the same, Pthreshold � 0.082 for Area< 0.007 dB and Pthreshold � 0.096 for
Area< 0.01 dB. Tis paper demonstrates the ability of CNNs to suppress errors in quantum transmission information and the
great potential of NNs in the feld of quantum computing.

1. Introduction

Quantum information theory is an emerging interdisciplinary
subject that combines the principles of quantum mechanics,
classical communication technology, and classical informa-
tion theory. Quantum communication [1, 2] is a commu-
nication technology [3, 4] that transmits and processes secret
information through a quantum channel. It has provable
security in principle and is an essential supplement to the
traditional cryptographic security system [5, 6]. In addition to
quantum communication, quantum computers are another
essential application in information. Quantum computers
cannot directly measure quantum states and the noncopy
ability of quantum states, which determines that error cor-
rection methods in classical computers cannot be now
transplanted to quantum computers. Te study of quantum

error-correcting (QEC) code technology [7] makes quantum
logic gate circuits have a higher threshold for fault-tolerant
calculations, which also has important guiding signifcance
for the research in the feld of quantum computers. QEC code
technology [8, 9] is an essential means of antinoise in
quantum information processing [10, 11], and it has im-
portant guiding signifcance for the research of quantum
communication, quantum computer, quantum storage, and
other felds. Extending topological codes [12–14] in modern
error correction code theory in quantum information has
become a hot research issue in the area of QEC codes.

Machine learning is a programming method that learns
patterns from data through statistical analysis and makes
corresponding predictions [15, 16]. In traditional comput-
ing, an algorithm executes specifc program instructions to
give the correct output value for the input data. Trough the
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machine learning algorithm, the rules or patterns are
learned, the model is trained, and the optimal algorithm is
fnally obtained. Training is mainly divided into two types,
one is supervised learning, which requires a data set with
input and the corresponding output. Te machine learning
algorithm will learn from the input and output information
during training and try to make predictions based on the
analysis of the actual situation and data, such as classifcation
and regression problems [17]. Te other is unsupervised
learning, which has the same input data set as supervised
learning, but the diference is that there is no corresponding
actual situation information. Looking at machine learning
algorithms from a mathematical perspective, the core of any
machine learning algorithm is to estimate a function or
function parameters that can solve a problem given a task.

Quantum information in a quantum system is highly
fragile. In a noisy network, an information processing
system may change. Using a larger-dimensional Hilbert
space to prevent noise from a QEC is a robust approach
[18–20]. Te logical encoding of the error code can have a
better error correction efect. A topological code is equiv-
alent to a quantum memory with topological protection and
can be given additional computing power in some cases. One
of the remarkable characteristics of topological codes is that
their generators are located in the physical qubits of the
quantum system, which means that each generator only
involves neighboring qubits. Tis locality has been proved to
be very useful for performing quantum error correction
tasks with auxiliary qubits, and it is an advantage for
nonlocal standard codes. Terefore, based on previous re-
search results, to suppress the errors of logical qubits, we
study quantum topological error correction (QTEC) code.
Topological properties are robust to noise and errors and are
widely used in the ordered phase studies to protect super
qubits in conductive circuits.

Te rest of this article is organized as follows. Section 2 is
the background of this paper on semion codes. Section 3 is a
quantum information error suppression algorithm based on
quantum topological semion codes and CNNs. Section 4 is
an experimental simulation of the CNN decoder training
process, performance analysis, and quantum information
error suppression capabilities. Section 5 is the conclusion.

2. Background

Topological quantum computing uses arbitrary ones of
strange quasiparticles to store and manipulate information
[21, 22]. In basic physics [23], anyons that cover the sta-
tistical information of bosons and fermions seem to be a way
of performing quantum computing too much. Complex
methods play a critical role in QEC and should not be
underestimated. Te lattice has the characteristics of a
nontrivial topological structure. When the system is on the
lattice, it will show the degeneracy of the ground state [24].
Quantum topological error correction applies the topolog-
ical properties of quantum states to protect the safety of
quantum states in quantum teleportation. Te realization of
topological quantum adds activity and tension to quantum
computing.

Code space can be identifed using Hamiltonian ground
space popularity [25]. Te Hamiltonian [26] is the Her-
mitian function H, which is entirely solvable in a specifc
subspace. Te topological characteristics of a quantum
system are a unique resource that is robust to external in-
terference, which is better than the standard QEC code. Te
development of topological characteristics provides us with
new ideas for research in the quantum feld. QTEC codes
[27] are more robust error correction codes than ordinary
QEC codes. Error correction can be achieved by measuring
the topological charge of lattice position each time.

A semion code is a QEC code with double-semion
characteristics. Small plaquette represents stabilizer opera-
tors. Edges represent qubits and vertices. Qubits have a deep
connection with the edges of the lattice. We can regularly
detect errors in them by measuring vertices and small block
operators. Semion code are constructed by topological order
based on double Semion model [28]. Semion is defned in
the hexagonal lattice R. As shown in Figure 1(a), vertex
operator Aa is appended to the three edges of a a<R, which
is similar to that in the Kitaev toric code. Vertex operator is
the same, and vertex operator Aa satisfes

Aa � σz
i σ

z
jσ

z
k. (1)

Pauli Z operation of each edge of vertex a corresponds to
the three quantum bits in the diagram, label them as i, j, k.
As shown in Figure 1(b), plaquette operator Bb is a Her-
mitian operator applying Pauli X operation to the edge of
the hexagon, and there is

Bb � 
i∈zb

σx
i

⎛⎝ ⎞⎠ 
j∈o(b)

i
1/2 1− σz

j 
, (2)

where zb is the representation of hexagon sides, and the
aggregate of b in all plaquette operators is o(b). Te ei-
genvalues of vertex operator Aa and plaquette operator Bb

are both +1.Te properties of vertex operators and plaquette
operators provide help for the following calculations. All
normal values on Aa are all +1, and when σZ appears, the
measured value of Aa will become −1, in the same way, when
we measure the two adjacent Bb. Te value of this place
changed from +1 to −1, indicating that σX error occurred on
Bb.

3. Arithmetic

3.1. Study the Quantum State. Te preparation of an arbi-
trary quantum primitive state is the very frst step to be
implemented in all algorithms, and for the study of logical
quantum bit error suppression algorithms, the study in [29]
is drawn upon to address the preparation of the quantum
state. Assume that the quantum register has M orthogonal
quantum basis vectors, denoted by m quantum bits as m �

log2 M. Te amplitude of each basis vector is expressed as
the square root of the probability of measuring the value
obtained from the above equation, and the sum of the
measurement probabilities of the individual basis vectors is
1, denoted as 

2m−1
i�0 pi � 1, where pi is the probability.
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However, the measurement probe of each basis vector is
random, and it is desired to prepare the basis state |G0〉 with
as few elementary quantum gate operations as possible,
using a dichotomy that divides the basis vector into two
parts, so [0, (M/2) − 1] and [(M/2), M − 1]. Ten, continue
to use dichotomy to divide the above two-part basis vectors
into two parts, respectively, and the probability of the four-
part basis vectors is as follows:

p00 � 
2m−2−1

i�0
pi � cos2θ1cos

2θ2,

p01 � 
2m−1−1

i�2m−2

pi � cos2θ1sin
2θ2,

p10 � 
2m−1+2m−2−1

i�2m− 1

pi � sin2θ1cos
2θ3,

p11 � 
2m−1

i�2m−1+2m−2

pi � sin2θ1sin
2θ3,

(3)

where operation can be expressed using a quantum gate, the
Ry(θ) gate, which has the matrix form

Ryθ �
cos θ −sin θ

sin θ cos θ
 , (4)

and any quantum state is

G0〉 � 
2m−1

i�0

��
pi





i〉. (5)

3.2. Exploring Quantum Teleportation. Quantum teleporta-
tion [30, 31] is a technique that uses scattered quantum en-
tanglement and the conversion of some physical information
to transmit a quantum state to a position at any distance [32].
As we all know, the working principle of quantum telepor-
tation is that both the sender and the receiver hold a qubit in
the EPR pair, and the sender needs to send a qubit to the

receiver, but the sender does not know the state of the qubit,
and the laws of mechanics make it impossible for the sender to
copy with only one qubit. Assuming that the quantum state
that the sender needs to transmit is |G0〉 � α|0〉 + β|1〉, where
α and β are unknown amplitudes, and then, the input in
Figure 2 is |G0〉|β00〉 can be expressed as follows:

G0〉


β00〉 �
1
�
2

√ [α|0〉(|00〉 + |11〉) + β|1〉(|00〉 + |11〉)].

(6)

After the qubit is transformed by the CNOT � |0〉
〈0|⊗ I + |1〉〈1|⊗X gate in Figure 2,

G1〉 �
1
�
2

√ [α|0〉(|00〉 + |11〉) + β|1〉(|10〉 + |01〉)]


. (7)

After the sender Hadamard gates a qubit, after the
transformation of the integer, we can get

G2〉 �
1
2

[|00〉(α|0〉 + β|1〉) + |01〉(α|1〉 + β|0〉) +|10〉(α|0〉 − β|1〉),



+|11〉(α|1〉 − β|0〉)]. (8)

Terefore, the sender only needs to tell the receiver of its
measurement results, and then, the receiver can obtain
qubits through some unitary transformations. Te mea-
surement results and actions to be performed by the receiver
are shown in Table 1. To sum up, it can be concluded that if
the receiver wants to get the most primitive | G0〉 qubit, it
needs to perform the ZM1XM2 operation.

3.3. Select Semion Code. Hamiltonian is the sum of local
exchange terms, and both are projectors [33]. Hamiltonian
defned by vertex operator and plaquette operator:

H � −ΣaAa + ΣbBb
′,

Bb
′ � Σj∈zbσ

x
i Σj∈zb(−1) 

n−
j− 1n−

j Σa∈bβa,
(9)

where Bb
′ is not the same as Bb in our previous (2). And

n± � 1/2(1 ± Zi) is the project or on the state |0〉(n+) or

path b

vertex Aa

(a)

plaquette Bb

(b)

Figure 1: We deploy the semion code on the three-dimensional lattice. (a) Circled in green is the vertex operator of the semion code,
denoted Aa. It contains three quantum bits. Circled in yellow is the path, denoted b, where the Pauli-X operators are applied. Te support of
S+

b , Conn(b) is indicated with continuous lines. (b) Circled in blue is the plaquette operator of the semion code, denoted Bb. It contains 12
quantum bits. Note that only part of the lattice is drawn here and does not mean that the six lattices have boundary constraints.
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|1〉(n− ) [14] of qubit i. βa is a phase operator, which can be
obtained by the twelve sides of the plaquette Bb

′, and the form
of βa depends on the specifc position of the plaquette. Bb

′
meets the following conditions:

B′2b � 1, B′†b � Bb, Bb
′, Bb
′  � 0, Aa, Bb  � 0, (10)

for ∀a, b ∈ R all hold.
Terefore, this is the desired property required for a

stabilizer form of QTEC to satisfy the entire Hilbert space. It
can also be said that a qubit on Bb has an error, and we can
correct the error according to the commutation property of
Bb to ensure the correctness of the qubit.

All vertex operators with eigenvalues +1 and all pla-
quette operators with eigenvalues −1 constitute the code
space of a system. When an error occurs, the symbol of the
stabilizer will fip. Tese fipped positions can be regarded
as a vertex excitation, similar to the Kitaev toric code. Te
recovery process uses string operators to form a small loop,
which is a way to eliminate incentives. Te string that
generates lattice excitation is a string of Z operators, which
we denote as SZ, and the string that generates vertex ex-
citation is a string of X operators. SZ can be exchanged with
any stabilizer, except for the grid at the end of the string. A
character string on the path b as shown in Figure 1(a) is
denoted as S+

b :

S
+
b � Σj∈zbσ

x
i Σj∈zbFb( i

→
)| i

→
〉〈 i

→
|. (11)

Tevalue of some phasesFb is ± 1 or ± i, and the operator
S+

b only works on Conn(b), as shown in Figure 1, Fi( i
→

) �

Fi( i
→
⊕ i

→
), and any i whose qubits in Conn(b) are zero. Fore-

chiral chord is S+, and negative-chiral chord is S− . S− � S+SZ.
S+, S− generate semions at endpoints. If chirality is the same, it
is reversed exchange, and if chirality is diferent, it is exchanged.

Te Hamiltonian is used as the coding space, and stable
codes are vertex and plaquette operators. Semion code is
similar to Kitaev toric code. Te logical operator consists of
S+

L and S+
V, L(V) is any homogeneous nontrivial path in the

horizontal(vertical) direction, and the other pair logical
operator is S−

L and S−
V. Embedding the semion code in Kitaev

toric code results in two quantum memories with logical
qubits, the embedded torus 16 lattices of the code, and two
logical qubits of the code require two pairs of logical op-
erators, which are defned as Xi and Xj:

Xi � S
−
L, Zi � S

V
Z, Xj � S

+
V, Zj � S

L
Z. (12)

Te set of these operators satisfes the inverse relationship.
Te hexagonal lattice makes the distance of the X operator
twice that of the Z operator, which can better avoid errors.
Te semion code has a topological protection efect on
quantum information and will not afect the global error due
to local errors. It can correct the quantum information [34]
during the invisible transmission process. For the wrong
qubit, after the syndrome is successfully corrected, the
measurement result of the eigenvalue will be restored to the
+1 eigenvalue, and the quantum information will be restored.
Te stabilizer must be measured regularly, and the stabilizer
must be combined with the string operator to eliminate
excitation and ensure the security of quantum information.

3.4. Coded Logic Quantum State. Suppose that the quantum
information transmitted by quantum teleportation is | G0〉,
| G0〉 in teleportation is regarded as a physical quantum
state. According to the relevant knowledge of quantum error
correction codes, physical quantum states can be encoded as
logical quantum states, and each logical qubit is described by
a set of connected physical qubits that meet the requirements
of any nonzero coupling in the target, what may happen
when a physical quantum state | G0〉 interacts with the
environment: no error (represented by I), bit reversal error
(represented by X), bit phase reversal error(represented byZ

), bit phase reversal error, and bit phase reversal error
(represented by Y), and the most preferred choice is de-
polarization noise, which assigns only X, Y, Z errors with
equal probability p/3 on the data qubits with probability p

an error occurs in a given qubit.

CNOT

G0

G1 G2

β00

H
Measurement1

Measurement2

ZM1XM2 G0

Figure 2: Quantum teleportation circuit diagram. Where M1 is measurement1, M2 is measurement2.

Table 1: Quantum teleportation sender and receiver operations.

Sender Receiver Action to take
00 | G0〉 No
01 | G0〉 X

10 | G0〉 Z

11 | G0〉 X and Z

Source: assuming that the qubit obtained by the sender is 01, then the
receiver needs to perform the X gate operation to obtain | G0〉.
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Te general error of a qubit can be expressed as a linear
combination of these error operators. Assuming that the
state | G0〉 of k logical qubits is saved in a quantum com-
puter, the frst step is to introduce redundancy and encode
the state in a larger space of r physical qubits. For this reason,
it is necessary to introduce r − k physical qubits and prepare
these newly introduced physical qubits in the | 0〉 state, and
this extended system is R, that is, introduce them into the
logical space of semion codes, and then perform a coding
operation Ccode:

Ccode|G0〉|0〉 � |GE〉, (13)

| GE〉 is the coding state of the original state | G0〉 in the
Hilbert space of r qubits.

3.5. Detect and Correct Errors. For the noise model com-
posed of the Pauli operator, it is very important to determine
the infuence of the Pauli operator on the path of the semion
code. We take Pauli-X operator as an example. Suppose that
the Pauli-X on a path b acting on the code is

Xb � 
k∈b

Xk � S
+
b 

i
→ Fb( i

→
) 
∗

| i
→

〉〈 i
→

|. (14)

Use diagonal part F( i
→

) to express Pauli-Z as follows:


i

→ Fb( i
→

) 
∗

| i
→

〉〈 i
→

| � 
P∈Conn(b)

c ZP( ZP, (15)

where ZP � i∈PZi is expressed as the qubit set P of the
Pauli-Z operator acting on Conn(b) by

c ZP(  �
1
2n Tr ZP 

i
→ Fb( i

→
) 
∗

| i
→

〉〈 i
→

| , (16)

which can get c(ZP) [35]. For logical quantum state | GE〉,
suppose G is represented as a logical subspace, g is repre-
sented as an eigenvalue, and the eigenvalue is divided into +1
and −1, +1 represents a vertex operator, and −1 represents a
plaquette operator, when Xb acts on the logical quantum
state | GE〉:

Xb GE〉 � S
+
bΣP∈Conn(b)c ZP( ZP


GE〉, (17)

where S+
b fips the vertices at the b endpoint, and ZP fips the

plaquette at the P endpoint. Satisfy [ZP, Bb]s(b) � 0 for each
plaquette involved, where sb is the syndrome of plaquette b:
sb ∈ ± 1. So the infuence of Pauli-X operator on the path b

of the semion code is

GE
′〉 � NS

+
bΣP∈Oc ZP( ZP


GE〉, (18)

where N is the normalization factor, and O � P ∈ Conn(b){ }.
For error recovery operations, we assume that the re-

covery operation is ZH, ZH|GE〉 � |GE〉 can be made, and
ZHZP can form a trivial cycle of the Pauli-Z operator, so ZH

can be used to correct the error and restore the quantum
state to the | GE〉.

Before designing the CNN decoder, we must map the
quantum topological semion code into the toric code.
Figure 3 shows the semion code map converted to an

embedded toric code suitable for CNN, as shown in the
fgure, with 16 slabs, 32 vertices, and 48 physical quantum
bits, the vertices, and plaquettes being labelled right-to-left
and top-to-bottom as 8 × 8 images, corresponding to the
matrix form in Table 2. Numbers represent vertex operators,
plaquette operators are represented by letters, and 0 does not
represent any number or letter. It has no meaning, just for
space validity. Te mapping method can refer to the way in
Refs. [35]. Tis article directly gives the result after the
mapping and does not go into the process.

4. Decoder

4.1. Build a Network Model. Neurons [36] are elements that
accept input data and perform operations, and the highest
abstraction of NNs can be thought of as black-box functions:

FNN � (x, w), (19)

where w parameter here needs to be adjusted several times.
Choose the loss function L and do the operation to minimize
F, the input and output relationships of the dataset are as
follows:

D � xi, yi( . (20)

Terefore, it is necessary to use gradient descent to train
the network, and the gradient descent algorithm will cal-
culate local minima or regions with small gradients, which
has a huge advantage. A common classifcation problem is to
use cross-entropy. For dataset D � (xi, yi), where yi ∈ 0, 1{ },
and the output yi

′ of the NN tries to approach Prob(yi � 1),
and the cross-entropy loss function is

−Σi yilogyi
′ + 1 − yi( log 1 − yi

′( ( , (21)

where the dataset D � (xi, yi) is calculated by the probability
distribution. Diferent basic neurons will be combined into
diferent architectures. Te current well-known structures
are CNNs [37], recurrent NNs, fully CNNs, etc. All archi-
tectures are composed of layers, which are combinations of
neurons.

An alternative to traditional decoders is used to
identify errors, they exhibit constant execution time and
physical error rate, and their execution time scales linearly
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Figure 3: A semion code embedded in a torus. Tere are 16
patches, 32 vertices, 48 physical quantum bits, and code distance is
4.
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with the number of qubits. And it has been proven that
NNs provide better decoding performance than many
classical decoding algorithms [38, 39]. To build a NN
decoder, one can simply train a CNN with input-output
pairs, namely syndrome and logic correction, but it does
not achieve good enough performance in practice.
Terefore, special attention needs to be paid to the design
of CNNs.Te CNN in this paper allows the construction of
very deep networks. Since CNN can naturally take into
account the spatial structure of the code, it has scalability
and signifcant performance advantages. For semion
codes, the CNN can be the largest to achieve it to the limit.
Since the vertices and squares of semion codes have a
robust correlation, for a variety of noises, the CNN can
take the correlation into account and obtain better results.

Te CNN decoder in this paper consists of three diferent
parts, namely the input layer, the hidden layer, and the
output layer, where the hidden layer is the convolutional
layer, as shown in Figure 4(a), and we start with the syn-
drome slice, arbitrarily choose the depth of the syndrome
volume, and then input the syndrome into the CNN in
Figure 4(b), and these layers are composed of neurons or
nodes with trainable parameters, and each node is fully
connected to all nodes in adjacent layers. All hidden layers
have the same number of nodes. Te cost function uses
categorical cross-entropy, and the optimizer uses the gra-
dient-based optimization algorithm Adam [40]. NNs have
been widely used for image recognition, although the in-
formation of each position in the lattice is binary, and it is
still necessary to treat this as an image, and false syndrome
patterns can be seen as CNNs can identify an image.
Compared to other NNs, CNNs are more suitable for semion
codes because the structure of the lattice stabilizer of semion
codes can lead to complex correlations between externally
generated X and Z errors.

4.2. TrainingModel. Te data to be used as a training dataset
should be collected frst, and we may all think that all
possible error syndromes have an impact on the perfor-
mance of the decoder but as the code distance increases, all
error syndromes slowly become infeasible, because the space
of all potential errors increases exponentially with increasing
code distance and therefore needs to contain as few and
diverse error syndromes as possible that will provide the
greatest generalization ability.

During sampling, multiple error correction cycles are
run to store each decoder’s corresponding input and output.
At frst, smaller and shorter code distances [41] are selected,
and when the performance is stable enough, we expand the
code distance and gradually train the stability of the decoder.
Due to the diverse nature of semion codes, diferent datasets
may generate the same error syndrome, so it is necessary to
track the frequency of occurrence of each set of errors that
provide the same error syndrome. One set of errors is more
likely to occur when the physical error rate is small, and
another set of errors is more likely to occur when the
physical error rate is large. When training a NN decoder
[42], regardless of the physical error rate being tested for a
given error syndrome, only one of these error sets will be
selected. To get better decoding performance, it is necessary
to create multiple datasets, obtain diferent datasets for
diferent physical error rates, and train diferent NNs. By
sampling, training, and testing performance at the same
physical error rate, the decoder has the most relevant in-
formation to perform the decoding task.

Create an error probability distribution for each logic
state based on the observed error syndrome. Train a NN to
map all stored inputs to corresponding outputs. When the
NN can correctly predict a higher value, the training ends,
and a relatively stable decoder performance is obtained. Te
decoder’s corrections do not need to exactly match the errors
that occur, just correct the observed error syndromes, and
predict whether the corrections proposed by the decoder will
result in logical errors. In addition, the decoder is designed
in the simplest way to conform to semion codes, ensuring
fast and convenient data acquisition. Te decoder is tested
against an error model, the depolarization noise model [43],
which assigns only X, Y, Z errors with equal probability p/3
on the data qubits. Tere are no insertion errors on the
auxiliary quantum bits, and perfect measurements are used.
Terefore, only a single error correction cycle is required to
fnd all errors.

Te physical error rate corresponding to the logical
quantum bit exceeding the physical quantum a bit is referred
to as the pseudothreshold, which is defned as Ppseudo, can be
expressed as follows:

Plogical � Ppseudo
Pphysical

Ppseudo
 

s· 1− c·Ppseudo( )

, (22)

where s and c denote the ftting parameters for the pseu-
dothreshold, respectively. Pphysical denotes the physical error
rate, and Plogical indicates the logical error rate. Tis formula
is adapted from the study of [44]. Te slope of the decoder is
also an important parameter, which is defned as Pslope.
Figure 5 shows a correlation plot between Pslope and Ppseudo
and code distance during training, from which it can be seen
that the Pslope increases from 2 to about 4.5 as the Ppseudo
increases from 0 to 0.12 and increases as the code distance
increases from 7 to 9 and then to 11. It can therefore be
concluded that both the slope and the pseudothreshold
increase when increasing to a sufciently large code distance,
but due to the exponential relationship, the slope usually
dominates the decoding performance at lower physical error

Table 2: Convert semion codes to toric codes in square form.

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4
0 B15 0 B16 0 B13 0 B14
B11 0 B12 0 B9 0 B10 0
23 24 17 18 19 20 21 22
0 B8 0 B5 0 B6 0 B7
16 9 10 11 12 13 14 15
B4 0 B1 0 B2 0 B3 0
1 2 3 4 5 6 7 8
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rates. Regarding the CNN framework simulated in this
paper, thanks to the provider of the open-source code [44].

4.3. Analysis of Performance. Te primary function of the
NN decoder is to obtain the output of the correction data
through the training of the NN and to generate the basic
correction of the error by measuring the given syndrome.
Specifcally, the decoder process can be regarded as a
classifcation problem of a NN, and we use cross-entropy for
the classifcation problem. A CNN decoder takes as input the
error syndrome and produces that the corresponding
thresholds are obtained based on the relationship between
the Pphysical, Plogical, and the code spacing. Te threshold
value is defned as the Pphysical at the intersection of the
diferent code pitch curves. By displaying diferent code
distances d, diferent thresholds can be obtained. For code
distance d, Plogical has the following formula: as output the
error probability of the logical state of the logical qubit.
Based on this error correction scheme, the NN does not need
to predict the correction of all data qubits but only needs to
predict the state of the logical qubits, which will make
prediction easier. Tis is because there are four types of logic
errors: no error, the output result is I; X logic error, Y logic
error, and Z logic error. It is worth noting that a very high

level of granularity is required to correctly predict each
physical error, which is unnecessary for semion codes.

Plogical � p − Pthreshold(  × d
1/v0 , (23)

where Pthreshold is the threshold of decoders, and Plogical is the
logical error rate, and v0 is the scaling exponent corresponding
to the universality class of the three-dimensional random-
plaquette gauge model. When using the same dataset size,
there is a constant execution time and physical error rate
Pphysical for a given code spacing, and the sum of samples from
multiple datasets with diferent Pphysical increases linearly
relative to the code spacing. Training improves decoding
performance because the samples are more correlated. Fig-
ure 6 plots the relationship between Plogical, Pphysical, noise area
Area, and d, as shown in the Figure 6(a), when the code
distance d � 7, 9, 11, thePphysical of the intersection is 0.082 for
the noise area Area< 0.007 dB, which is the threshold
Pthreshold � 0.082. Figure 6(b) shows that when the code
distance d � 7, 9, 11, thePphysical of the intersection is 0.096 for
the noise area Area< 0.01dB, which is the threshold
Pthreshold � 0.096. For diferent noise area, we have diferent
thresholds. Compared with other decoders [45–47], the CNN
decoder is easier to train, can decode higher code distances,
and achieves better decoding performance.
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Figure 5: Correlation between slope Pslope and pseudothreshold Ppseudo for the three code distances. Each point represents a diferent neural
network confguration, and the dashed line indicates the slope and pseudothreshold Ppseudo of the neural network decoder.
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Figure 4: Convolutional neural network decoding graph. (a) Syndrome value. (b) Convolutional neural network diagram.Te syndrome is
input to the input layer, and the corresponding value is output through the convolution layer.
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Trough our experiments for the semion code decoder,
we can see that we can successfully suppress information
errors during the transmission of states by quantum in-
visibility through quantum topological semion codes, which
not only solves the problem if possible errors in quantum
information but also verify the contribution of NNs to
quantum computing, the great potential of NNs.

5. Conclusions

Tis paper protects quantum information during quantum
teleportation based on quantum topological semion codes,
suppresses errors in quantum information due to the in-
fuence of noise during transmission, ensures the safety of
quantum information, uses NNs to simulate the error
suppression process, and evaluates the performance of the
NN decoder. Error correction using quantum topology
semion codes is a new error correction method. Trough
regular measurements and checks, it is ensured that inter-
ference from local errors does not destroy the global degrees
of freedom. Error-correcting codes protect the security and
correctness of quantum information. Semion codes are more
novel and fexible than ordinary QEC codes. Embedding the
hexagonal lattice into the surface code by mathematical
thinking will make experimental simulations easier to im-
plement, and the resulting input into a NN algorithm and
numerical results will be obtained. We demonstrate the
possibility of QTEC codes for the protection of quantum
information in invisible transmission states, and the pos-
sibility of NN implementations of QTEC codes, and discover
the great potential of NNs.
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