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Quantum information transfer is an information processing technology with high speed and high entanglement with the help of
quantum mechanics principles. To solve the problem of quantum information getting easily lost during transmission, we choose
topological quantum error correction codes as the best candidate codes to improve the fidelity of quantum information. +e
stability of topological error correction codes brings great convenience to error correction. +e quantum error correction codes
represented by surface codes have produced very good effects in the error correction mechanism. In order to solve the problem of
strong spatial correlation and optimal decoding of surface codes, we introduced a reinforcement learning decoder that can
effectively characterize the spatial correlation of error correction codes. At the same time, we use a double-layer convolutional
neural network model in the confrontation network to find a better error correction chain, and the generation network can
approach the best correction model, to ensure that the discriminant network corrects more nontrivial errors. To improve the
efficiency of error correction, we introduced a double-Q algorithm and ResNet network to increase the error correction success
rate and training speed of the surface code. Compared with the previous MWPM 0.005 decoder threshold, the success rate has
slightly improved, which can reach up to 0.0068 decoder threshold. By using the residual neural network architecture, we saved
one-third of the training time and increased the training accuracy to about 96.6%. Using a better training model, we have
successfully increased the decoder threshold from 0.0068 to 0.0085, and the depolarized noise model being used does not require a
priori basic noise, so that the error correction efficiency of the entire model has slightly improved. Finally, the fidelity of the
quantum information has successfully improved from 0.2423 to 0.7423 by using the error correction protection schemes.

1. Introduction

In the recent years, noise generated by the operation of
quantum computers will destroy the entanglement of
quantum states, which is a problem that needs to be solved
urgently. Quantum error correction [1, 2] is an effective
means to protect the quantum information [3] from loss. To
reduce the impact of quantum decoherence, error-correct-
ing codes with topological properties are widely used. +ey
can achieve good local stability, which provides feasibility for
reversing or eliminating noise and errors in quantum
systems.

+e topological error correction codes are in the form of
stabilizers [4]. Encoding the logical qubits in error-prone
physical qubits facilitates us to find valid codes for error
messages. Because the topology code information is stored in
global degrees of freedom, a larger grid can provide a larger
code distance. +e threshold is an important representative
of the performance of the physical qubits in line gate
transmission. When the physical error rate is lower than a
certain threshold, the quantum computers can suppress the
logical error rate to a lower level by applying the quantum
error correction schemes [5]. When the physical error rate of
the logical qubit is better than that of the physical qubit, it is
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called the pseudo-threshold. We encode the physical qubits
with different code distances into logical qubits and obtain
the decoding threshold by suppressing the logical error rates
[6]. We need to infinitely approach the pseudo-threshold to
the decoding threshold to achieve the best fault-tolerant
effect. When the error rate is low enough, increasing the
code distance will increase the probability of success in error
correction. However, when the error rate is high, increasing
the code distance will reduce the probability of successful
error correction. Under the depolarization noise model, [7]
the topological error correction code we want to choose is a
surface code with generalized constraints [8, 9] (commut-
ability and periodicity), which is convenient for further
research on the properties of topological error correction
codes. Since the surface code is not self-correcting, it will
have defects when it is affected by the noise. +erefore, we
must actively diagnose and correct errors, and the decoding
algorithm plays an important role in it. +e syndrome in the
surface code can check a group of physical qubits in the form
of parity checks to detect errors that have occurred. An
algorithm that provides a set of recovery operations for
correcting errors for a given syndrome is called a decoder
and it provides suggestions for correcting any errors that
may occur during the calculation [10]. Since the errors
detected by the syndrome are not unique, the decoder needs
to combine the error statistics detected by any syndrome.
+e decoder generates a correction chain for this infor-
mation to eliminate the syndromes in the least likely situ-
ations to cause new errors.

To solve the problem of spatial correlation [11, 12] of the
surface codes, we adopt a confrontation network structure of
the reinforcement learning mechanism, which is an im-
provement of the neural network in the deep Q network
(DQN) [13], which can help us better to find the best
correction chain. +e logic error rate is reduced by in-
creasing the number of flipped bits of the correction chain
[14], which solves the problem that there is a large gap
between the pseudo-threshold and the decoder threshold
and cannot be better fault-tolerant. +erefore, the con-
frontation network structure of the reinforcement learning
mechanism can be used to solve the problem of low-pseudo-
thresholds of the surface code [15].

+e sections of this paper are organized in the following
manner. First, Section 2 introduces the concept and prop-
erties of surface codes.+en, Section 3 explains the decoding
steps of the dueling network and the double-Q algorithm.
Next, Section 4 outlines the training process. +e decoding
performance results of different decoders and the analysis of
threshold and error rates are shown in Section 5. Finally,
conclusions are drawn as discussed in Section 6.

2. Background

+e surface code is a planar variant of the Kitaev code, [16]
which requires fewer quantum bits to achieve the same effect
of the error correction strength. +e model of the surface
code is the quantum double model (D(Z2)). It can be
regarded as a quantum double model D (G) [17] that defines
a general finite groupG on a general two-dimensional lattice.

+is paper chooses to use a surface code with a square lattice
representation and chooses the group G as the abelian group
Z2 [18]. +e codespace can then be defined by the parity
operator [19] acting on the four nearest quantum bits on the
square lattice [20].

+e surface code is chosen as a square lattice with the
shape L × L and the square contains L2 quantum bits. +e
quantum bits are placed at each lattice vertex, and the four
points adjacent to the middle part are a lattice, and each
logical quantum bit is encoded by these data quantum bits.
After spinning the lattice by 1/2, it is possible to form logical
quantum bits by using a minimum number of physical
quantum bits [21]. Some of the quantum bits are still located
in the lattice before rotation, and the new quantum bits are
defined as the auxiliary quantum bits. For the selected ge-
ometry, the surface code encodes logical quantum bits as L2

physical quantum bits and L2 − 1 ancilla qubits, and each
stabilizer measurement [15] cycle can identify and correct up
to ⌊(L − 1)/2⌋ errors. We mark the edge as ei, and we can
represent any edge set as the formal sum s � 􏽐isiei, where i

exists on the edge of the qubit or lattice. When ei is not in the
edge set, si is 0, and when ei is in the edge set, si is 1. We
define a qubit on each edge, therefore each element of the
calculation basis can be defined as follows:

|s〉 :� ⊗ si

􏼌􏼌􏼌􏼌 〉, s ∈ S. (1)

+e form sum of any set of edges is s and all are in the
edge abelian group S.

+e data quantum bits are placed on the vertices of the
lattice, as shown in Figure 1(a). +e four internally adjacent
vertices form two types of lattice operators, X and Z, while
the boundary is formed by two vertices, as shown in
Figure 1(b). In a lattice of surface codes with periodic
boundaries, the four data quantum bits surrounding the Z
auxiliary quantum bits form a Z stabilizer, and performing
the four Z operations does not change the parity and
therefore does not lead to a change in the corrector, and the
X-stabilizer remains the same as shown in Figure 1(c). +e
blue circle corresponds to the stabilizer of the Z operator,
and the yellow circle indicates the stabilizer of the X
operator. +e stabilizer performs a series of CNOT gates in
the same manner as shown in Figure 1(d), to entangle each
auxiliary quantum bit with its four neighboring
data quantum bits. Depending on the representation
chosen, the lattice stabilizer [22, 23] can be defined as
follows:

Sp � ⊗
i∈p

σi,

σi �
Xi forp ∈ Bp

Zi, forp ∈Wp.

⎧⎨

⎩

(2)

Since all the stabilizers commute with each other, the AT

and BU form the stabilizer operator in the stabilizer code. All
these operators are Hermitian with eigenvalues of ±1 on
different lattices of the matrix. +e commutative
Hamiltonian HP is constructed under the topological
stabilizer code.
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HP � −∑
T

Xp −∑
U

Zp. (3)

For the surface codes under the depolarization noise
model generates equal probability of X, Y, and Z errors that
lead to a bit-�ip X or phase-�ip Z of quantum bits, [24] so
the ancillary qubits are placed in the middle of each lattice.
Measuring the ancilla qubits only yields +1 or −1 eigen-
values, which can correspond to the parity of four (or two in
the boundary lattice) adjacent data quantum bits of the
internal lattice. �e set of ancilla measurements is called a
syndrome [25, 26]. �e introduction of ancilla qubits en-
sures that no information loss occurs in the measurement
of neighboring data quantum bits while performing the
syndrome submeasurement. �e intersection of the syn-
dromes can help identify the most likely error operators.
�e task of the decoder is to �nd errors on the data qubits
from the error correction subset. Due to the strong spatial
correlation between the vertex operator and the lattice
operator, it is di�cult to use the statistical mapping method
to perform an optimal correction chain. However, dueling
networks [27] under reinforcement learning can solve this
problem well.

3. Models and Algorithms

Reinforcement learning is a learning mechanism that seeks
to solve the problem that the agent can make the corre-
sponding action in a certain environmental state to get
maximum reward [28]. �e confrontation network is a
network structure of the reinforcement learning, which is an
improvement in the structure of the neural network in the
deep Q network (DQN), which can make the system the
fastest and the best close to the real maximum return.

3.1. Finding the Optimal Error Correction Chain. Our syn-
drome can be regarded as the next action that the agent will
perform in the state space environment. �e search for the
optimal error correction chain means that a trivial ring
correction chain or a nontrivial ring [29] correction chain is
�nally generated after a series of bit reversal or phase reversal
operations (as action behaviors). �e generation of a

nontrivial ring means that the system gets the smallest
cumulative reward corresponding to the characteristic value
of output −1, whereas the generation of the trivial ring
opposite the system gets the largest reward corresponding to
the characteristic value of output +1 as shown in Figure 2.

An action corresponding to the agent changes the
current environment state s0⟶ s1, accumulates rewards
for this process r1, and accumulates maximum return after a
series of actions R � r0 + cr1 + c2r3 + · · ·; among them, c is
the discount rate, [30, 31] a�ected by noise and other factors,
and the attenuation of the reward corresponds to the in-
crease of Pauli operators such as X and Y during the cor-
rection process [32]. �e speci�c operation process of the
next duel network is as follows: we de�ne bit �ip or phase �ip
as an action-value function.

Qπ(s, a) � E Ut|St � s, At � a[ ], (4)

where Qπ(s, a) is the action-value function, which refers to
the optimal correction chain that we expect to get after we
know the error type and syndrome layout, and π is the
strategy function, according to the current error state, the
corrections give further correction instructions. U is the
return, S is the state space set, and A is the action set. �e
optimal action value Q∗ is de�ned as follows:

Q∗(s, a) � max
π
, ∀s ∈ S, a ∈ A. (5)

To eliminate the existence of di�erent syndromes
resulting in the return of π after the strategy selection
(correction chain) is lower than the optimal value function.
it eliminates the strategy function π to ensure that the
optimal correction chain can be obtained. �e state value
function Vπ(s) is the expectation of Qπ(s, A) about a:

Vπ(s) � EA∼π Qπ(s, A)[ ]. (6)

�e de�nition of the optimal state value function V∗ is

V∗(s) � max
π
Vπ(s), ∀s ∈ S. (7)

�e de�nition of the optimal advantage function is

D∗(s, a)≜Q∗(s, a) − V∗(s). (8)
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Figure 1: (a)�e data qubit corresponds to the vertex of the lattice. (b) Qubits form two types of lattice operators: X and Z. (c)�e four data
quantum bits surrounding the X(Z) ancilla qubits form an X(Z) stabilizer. (d) Ancilla qubits the CNOT gate execution method.
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�e duel network consists of two neural networks, one is
denoted as D(s, a;ωD), which is an approximation to the
optimal advantage function D∗(s, a). �e other is denoted
by the neural network V(s;ωV), and it is an approximation
of the optimal action-value function V∗(s). �us, we derive
the optimal action-value function [19, 33].

Q(s, a;ω)≜V s;ωD( ) +D s, a;ωD( ) −max
a∈A

D s, a;ωD( ). (9)

Among them, Q(s, a;ω) on the left side of the formula is
the duel network we want, which is the optimal action-value
function Q∗. Approximately, its parameters are recorded as
ω≜ (ωV;ωD). �e optimal action value is the optimal error
we want to �nd in the correction chain as shown in Figure 2,
the state space (syndrome) [34] is the input to the con-
volutional neural network and the feature vector is the
output after the convolution operation, and the fully con-
nected network is further used for multilayer connection to
output multiple error chains [35] that we want to correct and
�nally output in the form of a feature vector [36, 37] to �nd
the optimal error correction chain we need.

3.2.Double-QLearningAlgorithm. We use a duel network in
the double-Q learning algorithm [38] to increase the number
of �ipped bits of the error correction chain and to reduce the
error rate threshold [39]. �e double-Q learning abbreviated
as DDQN is the optimization of the Q learning algorithm; it
can solve the bootstrap bias [40] thatQ learning is di�cult to
solve, alleviate the overestimation problem caused by
maximization, and better solve the problem of our opti-
mization threshold which is too high. We use the fully
connected network structure in the confrontation network
to encode the syndrome of the surface code and use the
DDQN algorithm to optimize the value of the action (bit-�ip
and phase-�ip) and use the convolutional neural network
decoder [41] to decode the output eigenvalues to gradually
�nd the correction chain that we want to restore.

�e DDQN algorithm will randomly take out a state
syndrome from our system space each time, as represented

by a quadruple (si, ai, ri, si+1), in the decoding process we
need to forward the syndrome to get

q̂i � Q si, ai;ωnow+( ). (10)

Among them, ωnow+ is the DQN parameter, select action
(corresponding bit �ip operation)

a∗ � argmax
a∈A

Q si+1, a;ωnow+( ). (11)

After performing a �ip, the new syndrome is

q̂i+1 � Q si+1, a∗;ωnow−( ). (12)

�en, do backpropagation to DQN to get the gradient
∇ωQ(si, ai;ωnow+). Update and optimize the number of �ips
for gradient descent

ωnew+←ωnow+ − α · δi · ∇ωQ si, ai;ωnow+( ). (13)

In DDQN, we set the rate of return c ∈ (0, 1)and update
the parameters of the CNN network by weighted average to
get the best syndrome

ωnew−←c · ωnow+ +(1 − c) · ωnow−. (14)

�e abovementioned algorithm �ow can be summarized
as shown in Figure 3 and Algorithm 1.

4. Training

�e syndrome (agent) can be chosen to add to the lattice of
defects in any direction (left, right, up, or down), which
corresponds to �ip one of the physical qubits on the lattice
containing the defect. Figure 3 is divided into the action
phase and the learning phase. �e training starts from the
action phase, [42] in which the state of the syndrome is sent
to the agent (a two-dimensional matrix is formed). �e
syndrome uses a double-Q network to propose the defect
(error position) state S and action a. �e agent uses a greedy
strategy, which means that it will suggest the operation with
the highest Q value with a probability of (1 − ε). Otherwise,
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Target network
Q* (θ; ωθ)

Double Q network
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Figure 2: �e confrontation network training inputs the syndrome to the convolutional layer, decodes the output feature vector, and then
enters into the double-layer fully connected network to optimize the optimal action value, and the two combine to generate the optimal
function value.
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random measures are recommended. �e action is to cause
the reward r and the new observation value Q′ derived from
the obtained syndrome at the defect e corresponding to S.
�e network training of this reinforcement learning utilizes
the DDQN algorithm and reimplements the technology
based on experience to store the new correction chain ob-
tained by the �ipping action after the syndrome row is
completed in the form of a binary array in the bu�er. When
we update the parameter ω of the confrontation network, we
randomly sample a small batch of samples from the bu�er to
randomly obtain our experience samples. In order to correct
the correlation of the training data with the gradient descent
and to minimize their correlation, the training accuracy of
our neural network can be made more accurate. To improve
the training speed of the model, and to ensure the e�ciency
of the model training under a larger dataset, the ResNet
network [43] layer is introduced as the underlying archi-
tecture, which is known as the “shortcut,” and it can ensure
that a large number of stacks can be stacked without re-
ducing the learning e�ciency convolutional layer by adding
the shortcut output to the output of the stacked-layer
through the residual block and by using the ResNet7, 14, and
21 network layers for data training. In order to ensure the
integrity of the data, we also need to periodically synchronize
the parameters of the fully connected network in the con-
frontation network with the parameters of the CNN
network.

�e training starts with the input of the syndrome and by
randomly selecting a reversal action with a probability of ε. It
records the action a and the defect (error center). �e
network uses a greedy algorithm to pregenerate the prob-
ability of the value action with the highest return (1 − ε).
�is action will generate a reward r, a new state environment
s1, a new defect center eΛ, and a new syndrome. �e whole
process of DDQN algorithm training is to input the qua-
druple (r, s, e∗;ω) in binary form into the bu�er for tem-
porary storage and then perform gradient descent to
minimize the correlation of the data. Learn
Ti � (r, s, e∗;ω){ }i�1N , where N is the size of a given batch.
Here is the optimal value of the network training target

ŷi � ri + cmax
a∈A

Q̃ r, s, e∗;ω( ), (15)

where c is the reward factor, in which the target network is
changed by the parameter ω to predict the future cumulative
reward (di�erent corrected trivial chain and nontrivial
chain). Afterwards, the gradient descent method is used to
minimize the di�erence between the sample value and the
double-Q network value, according to
−∇∑i∈N(ŷi − Q̃(r, s, e∗;ω))

2, normalization improves the
training parameters of the network. �en, train a new
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Figure 3: From the initial action selection stage, through the bu�er pool, samples are randomly selected for reinforcement learning, and
SGD is used to minimize the mean square error of the true value and the predicted value. �en, we use the double-Q algorithm to perform
multiple iterations on the syndrome, and �nally, we get the error correction chain that is best close to what we want.
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sequence and synchronize the weight of the target network
with the dual-Q network ωT at a speci�ed rate. Finally, use
the ResNet network architecture in the CNN network and
perform multiple iterations and predictions [7] and si-
multaneously synchronize the parameters of the regular fully
connected network and the CNN network. �e training
process is shown in Figure 4, in order to achieve our ideal
accuracy of more than 95%, because the network model of
ResNet21 can achieve the accuracy we want under lower
parameters, but for the 7-layer and 14-layer models, we have
to increase the training parameters, and �nally, after en-
suring that the iteration depth reaches 500 times, the ac-
curacy of the three can reach more than 95%, which ensures
that the generation of the corrected trivial chain with a code
distance of 5 can be accurately predicted under the noise
intensity of 0.042.

5. Simulation Analysis

We use the DDQN algorithm in the confrontation network
to generate our prediction model. �e e�ciency and ac-
curacy achieved by di�erent network layers are also dif-
ferent. �e dataset is shown in Table 1. We readded the
MWPM comparison again. It can be seen that the number of
training steps and parameters have been reduced by 2 data
level and 1 data level, respectively, in Table 1.

As can be seen in Figure 5(a), the logic error rate under
the MWPM decoder with a smaller code distance shows a
slow rise, where the pseudo-threshold of d� 7 is closest to
the decoder threshold of 0.0050 obtained in the gray region
as shown in the small �gure, at which the physical quantity
quantum bits can be well tolerated under noise interferences,
but the overhead is too large and the threshold is too low

(1) While the original syndrome defect still exists do
(2) �e syndrome is temporarily stored in the bu�er pool
(3) Randomly select the samples from the bu�er pool: Data � x1, x2, x3 . . .{ }
(4) Calculate Q(s, a;ω) using the dual-Q network for all perspectives s ∈ Data
(5) Choose which defect S to move with the action A using the experience reapplication technology
(6) Use the neural network in the duel network to �nd the optimal weight: ω⟶ ωweight to equation (14).
(7) �e feature vector into the fully connected network to get the target network: Q∗(θ;ωθ)
(8) SGD gets the optimal dual-Q network after normalization: Q∗(θ;ω)
(9) Get the new syndrome and store it in the quadruple: T � (S, a, e∗;ω)
(10) for each transition tuple Ti in the sample do
(11) Construct targets yi using the target network θT and reward ci to equation (16).
(12) end for
(13) Update dual-Q network parameters θ
(14) Every n iterations, synchronize the target network with the network setting of θT � θ
(15) end while

ALGORITHM 1: Training the reinforcement learning agent decoder.
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Figure 5: We used two decoders at d� 3 (marked with pink squares), d� 5 (marked with blue circles), and d� 7 for the ResNet network
(marked with yellow triangles) as trainingmodels. (a)�e variation of the logical error rate of theMWPMdecoder for di�erent d values, and
the zoomed-in plot shows the variation of the threshold at around 0.005. �e logical error rate increases gradually with the increase of the
physical error rate. (b) �e variation of the CNN decoder logical error rates for di�erent d values with a threshold value of 0.0068.
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leading to huge cost/expenditures. After using CNN de-
coder, the pseudo-threshold of the same code distance d� 7
as shown in Figure 5(b) is closer to the decoder threshold of
0.0055 in the gray area, although the pseudo-threshold is
closer to the decoder threshold in dimension, but the
threshold strength is still not high enough.

In order to further improve the decoder threshold, we
expand the code distance as shown in Figure 6, and it is
obvious that the logic error rate rises fast under the ex-
panded code distance, and the pseudo-threshold of d� 9 as
shown in Figure 6(a) has far exceeded the pseudo-threshold

of d� 3 and is closer to the decoder threshold and is in-
creased to 0.0055; in addition, the decoder threshold as
shown in Figure 6(b) has also increased to 0.0085. It is close
to the perfect threshold e�ect, and the pseudo-threshold of
d� 13 has achieved the idealized approach, which largely
solves the problem of the low threshold of the surface code
and the errors leading to the poor error correction ability. It
makes a reliable guarantee for the integrity of the quantum
information transmission and improves the quantum in-
formation �delity to the level of 0.7243.

After the decoder threshold has been signi�cantly raised,
this paper veri�es the integrity of the quantum information
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Figure 6: We used two decoders at d� 9 (marked with pink squares), d� 11 (marked with blue circles), and d� 13 for the ResNet network
(marked with yellow triangles) as training models. (a) �e variation of the logical error rates of the MWPM decoder for di�erent d values,
and the zoomed-in plot shows the variation of the threshold at around 0.0055. �e logical error rate increases gradually with the increase of
the physical error rate. (b) �e variation of the CNN decoder logical error rate for di�erent d values with a threshold value of 0.0085.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

fid
el

ity

3 6 9 12 15 18 21
quantum bites

0.00
0.02

0.04
0.06

0.08

fid
eli

ty 
diff

ere
nc

e

MWPM
CNN
difference

Figure 7: Using the MWPM decoder with a threshold of 0.005
(indicated by light blue bars) and the CNN decoder (indicated by
dark blue bars) as training models, the �delity at quantum bits of 3,
6, 9, 12, 15, 18, and 21 and the �delity di�erence curves are
determined.

3 6 9 12 15 18 21
quantum bites

0.00
0.02

0.04
0.06

0.08
0.10

0.12 fid
eli

ty 
diff

ere
nc

e

MWPM
CNN
distance

fid
el

ity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 8: Using the MWPM decoder with a threshold of 0.0085
(indicated by light blue bars) and the CNN decoder (indicated by
dark blue bars) as training models, the �delity at quantum bits of 3,
6, 9, 12, 15, 18, and 21 and the �delity di�erence curves are
determined.

Quantum Engineering 7



transmission at the line guys, as shown in Figures 7 and 8,
and the effect of quantum information fidelity produced
under different decoders. As can be seen in Figure 7, the
fidelity of the quantum bit information transmission under
the MWPM decoder is somewhat lower than that of the
CNN decoder, and in the case of the MWPM decoder, the
threshold bit is 0.0055, but the fidelity only reaches 0.435,
which fails to guarantee information transmission well. We
placed the boosted decoder threshold into the new quantum
bit transmission as shown in Figure 8 and it can be seen that
the quantum information fidelity has been boosted to a high-
performance fidelity of 0.754 under the CNN decoder, thus
upgrading the quantum information to a new stage in the
information transmission process against noise interference
and achieving a breakthrough of raising the fidelity infor-
mation to double.

6. Conclusion

In this paper, the surface code is selected as the quantum
error correction code under the ideal error, and it has
produced a good effect in the quantum error correction. To
avoid the problem of excessively high prediction values, we
have introduced a double-Q algorithm, which improves the
decoder threshold to about 0.0055 compared to the
MWPM’s 0.005 error correction. Using the 14 and 21 layers
of the ResNet network shortens the training time by 30%,
while at the same time increases the training accuracy to
about 96.6%. Using the dual-layer convolutional neural
network model in the duel network, we succeeded in in-
creasing the decoder threshold from 0.0068 to 0.0085, which
has greatly improved the error correction efficiency of the
whole model. However, from the simulation results in this
paper, we can see that the factors affecting the transmission
of quantum information are not only external noise in-
terference and code spacing but also other external factors
such as the possibility of stable measurement errors which
can affect the quantum bits and can lead to errors. Not only
the optimization of the decoder algorithm needs to get closer
to the optimal threshold but also the development of pre-
cision instrumentation for quantum computers is essential.
+erefore, we need to further investigate the quantum error
correction mechanism to obtain better quantum informa-
tion transmission results.
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