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Quantum machine learning uses quantum mechanical concepts of superposition of states to make the decision. In this work, we
used these quantum advantages to enhance deep reinforcement learning (DRL). Our primary and foremost goal is to investigate
and elucidate a way of representing and solving the frozen lake problems by using PennyLane which contains Xanadu’s back-end
quantum processing unit. Tis paper specifcally discusses how to enhance classical deep reinforcement learning algorithms with
quantum computing technology, making quantum agents get a maximum reward after a fxed number of epochs and realizing the
efect of a number of variational quantum layers on the trainability of enhanced framework. We have analyzed that, as the number
of layers increases, the ability of the quantum agent to converge to the optimal state also increases. For this work, we have trained
the framework agent with 2, 3, and 5 variational quantum layers. An agent with 2 layers converges to a total reward of 0.95 after the
training episode of 526. Te other agent with layers converges to a total reward of 0.95 after the training episode of 397 and the
agent which uses 5 quantum variational layers converges to a total reward of 0.95 after the training episode of 72. From this, we can
understand that the agent with a more variational layer exploits more and converges to the optimal state before the other agent.
We also analyzed our work in terms of diferent learning rate hyperparameters. We recorded every single learning epoch to
demonstrate the outcomes of enhanced DRL algorithms with selected 0.1, 0.2, 0.3, and 0.4 learning rates or alpha values. From this
result, we can conclude that the greater the learning rate values in quantum deep reinforcement learning, the fewer timesteps it
takes to move from the start point to the goal state.

1. Introduction

Quantummachine learning (QML) is a subconcept of quantum
computational data and information processing research in
which the main target is developing the QML algorithms that
can learn from data to improve the existing classical learning
methods inmachine learning [1]. Here, quantum computers can
process data in the form of qubits rather than bits and this
computer can have also its own architecture. For this archi-
tecture, it is impossible to apply classical machine learning
methods directly to learn and process the data. A quantum
machine learning algorithm can be implemented on a quantum
computer; this computer can exploit the laws of the quantum

mechanical model (quantum theory) to process the data and to
predict the outcome. Aimed to investigate the applicability of
quantum computing advantage to solve such problems, the
researcher proposed this study and developed quantum circuits
for DRL to analyze the performance of quantum agents with
diferent learning rates and diferent quantum layers. Tis study
used the advantage of PennyLane provided by Xanadu to create
circuits and the open gym benchmark-like frozen lake problem
was solved. Te expected optimization of the best policy action
selection of a quantized agent to get maximum reward is an-
alyzed and then the learning performance is stated. Tis can be
achieved by calculating the quantum expectation value or ex-
pected energy value.
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Te main basis of quantum machine learning is to use
the essential benefts of quantum computing technology
such as quantum entanglement, quantum superposition,
and quantum parallelism to increase the performance of
classical machine learning algorithms [2–5]. Although they
utilized the quantum mechanics’ concept of quantum en-
tanglement and supper position, most of the quantum
machine learning algorithms (QMLA) are borrowed from
the basic concept and architecture of classical machine
learning algorithms [6]. In other cases, some researchers
used the hybrid classical-quantum architecture and proved
that the use of classical-quantum hybrid systems can
overcome the limitation of noise intermediate scale quan-
tum (NISQ) computers [7, 8]. For example, Dunjko et al. [9]
proposed the quantum approximate algorithm in which
classical solution parameters to a problem can be used as an
input and as the starting point for larger problems such as
variational quantum eigen solvers. Recently, the experiment
held by Parades et al. [10] proved that quantum machine
learning has shown interesting results for machine learning
applications where classical machine learning techniques are
limited to perform because of inadequate training data and
high dimensionality of the features. Tey proposed a Pen-
nyLane simulator-based hybrid classical-quantummodel for
transfer learning to enhance the classifcation of face images
with a COVID-19 mask and resulted in an accuracy of
99.05% in classifying the exact protective masks. Lloyd et al.
[11] also proposed quantum-inspiredk-means and nearest
centroid algorithms through quantum distance approxi-
mation as we do have quantum access to the classical data. In
quantum enhanced clustering algorithm, the execution time
for a certain state of N vectors in feature space with di-
mension D of each iteration (by a distance approximation
technique with error ε) is given by O(kN logD/ε). Generally,
several works depict the incredible performance of the
quantum-enhanced machine learning model for the prob-
lem with large feature spaces, which can be difcult for the
classical machine learning algorithm to perform.

2. Related Works

By its nature, whether it is enhanced or not, deep re-
inforcement learning (DRL) is a machine learning in
which the interaction takes place between an agent and
the environment. In various real-worlddecision-making
situations, there is no data on the best course of action.
For such a scenario, the model must interfere with its
surroundings in order to gather information and learn
how to complete a task via its own experience. Tis
learning method is called reinforcement learning (RL).
For example, a video game character might learn
a fruitful strategy by repetitively playing the game, ex-
amining the outcomes, and improving the future ways. In
current studies of quantum enhanced RL [12, 13], var-
iational quantum circuits (VQC) replace the policy of
training the deep neural network (DNN) of existing deep
reinforcement learning (DRL). At each experience in
each episode, a quantum agent with particular state
information decides its action from the policy of

variational quantum circuits, and the classical optimizer
such as RMsprop, Adam optimizer, and others are used
to update the parameters. Te action selection is based on
the expected value of quantum measurement.

Tough quantum deep reinforcement learning (QDRL)
with designated parameterized quantum circuits (PQC) is
a quite new feld of study, some researchers such as Lock-
wood and Si [12] studied diferent encoding methods such as
directional encoding and scaled-up encoding techniques and
also pooled the parameterized circuit with quantum pooling
operations to solve some reinforcement learning problems.
Tis encoding technique is cost-efcient but requires a large
number of quantum gates which are beyond the capabilities
of actual quantum simulators.

Temethod used by Hu andHu [14] uses common gates,
but they investigated with less number of qubits. It needs
some investigation to know what if the number of qubits
increased. Here, the intention is to advance the intelligence
of quantum agents, which can react with the environment
and learn from it to reach some stated goal. In this sense,
numerous works have provided suggestions in the last few
years [9, 15–18]. Few of these deal with enhancing reward by
quantizing an agent which interacts with a classical envi-
ronment through Grover search. Te others prove quantum
speed up when both agents and environments had been
quantized with quantum phenomena.

Table 1 shows the bird’s eye view of quantum, quantum-
classical, and classical deep reinforcement learning. Te
learning algorithm can be enhanced either by quantizing an
agent or an environment, or both. Quantum computers may
be available only in large companies such as IBM, D-Wave,
and Google for research purposes [9, 19]. For the reason of
unavailability of such resources, we fnd a way for developing
the hybrid and running the learning algorithms on current
classical computers such as the method used by [15, 20, 21].

For the scenario of “quantum agent classical environ-
ment,” Dunjko et al. [9] suggested the Grovers iteration-based
searching algorithm for unstructured search and investigates
a potential quantum computing beneft when a quantized
agent interacts with a classical environment and the study
improves the quantum speedup over the classical computa-
tions. Te other scenario of quantum-enhanced deep re-
inforcement learning comes with a “quantum agent quantum
environment.” Te proposed study by Lamata [22] and
Albarran et al. [23] works on this scenario by considering the
quantum agent and quantum environment interactions to
investigate the possibility of implementations by increasing
the extent of system complexity. Another prospect would be
to investigate classical agent and quantum environment in-
teractions which are made by applying the “classical agent-
quantum environment” scenario. Te study proposed by
Daoyi Dong et al. [24] investigates the way of mapping
conventional reinforcement learning into quantum re-
inforcement learning, and the study focuses on linking the
previous states with future quantum states. According to the
study with diferent learning parameters, there is a quadratic
quantum speedup compared to the classical temporal dif-
ference (TD) by applying superposition and quantum en-
tanglement on the quantum algorithms.
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Some other researchers [9, 15–18] study the applicability
of quantum computing on classical reinforcement learning.
According to the study, variational quantum circuits can
replace the policy training of deep neural networks in
existing classical DRL. Te interaction between the envi-
ronment and an agent takes place based on the policy of
quantum circuits. For each and every episode, an agent
decides its action from the policy of quantum circuits, and
the classical optimizer such as Adam optimizer is used to
update the parameter [19]. Tis paper uses the same sce-
narios with diferent circuit designs and diferent
environments.

3. Methods

3.1. Deep Reinforcement Learning. Reinforcement learning
(RL) is diferent from supervised and unsupervised machine
learning, which is naturally about training input with its cor-
responding output and searching the structure hidden in
a group of unlabeled examples. Even though one might think of
reinforcement learning as a type of unsupervised learning for the
reason that it does not depend on the instances of correct
behavior, RL is a learningmethod tomaximize the reward signal
instead of fnding the hidden structure of the dataset. Finding
structure in an agent’s experience can be advantageous in re-
inforcement learning, but the agent does not know the learning
tricks of future activities.

All RL agents have obvious goals in that they pick
actions to make an impact on their environments and
based on the action the agent can be rewarded. Fur-
thermore, it is typically supposed that from the starting
point, the agent must try in any doubt about the envi-
ronment it faces. When RL comprises of planning, it has
to identify the relationship between planning and agents’
ability of real-time action selection, and also the
searching method of the environments model are de-
veloped and enhanced. By recall, the aim of RL is to solve
the problem of serial decision-making in discrete and
continuous state space and to take actions with extremely
probable rewards. Te agent must follow a policy in
making a series of decisions by taking actions in a dif-
ferent environment. Estimating the goodness of policy in
taking the decision is evaluated at the end of accumulated
costs or rewards through epochs. Based on the evaluation
of the prior policy, the next policy must be improved by
the agent to make an increased probability of deciding
with greater estimated rewards. In the iteration of every
step, the agent uses trial and error to improve the policy
till the policy reaches the best optimum, which is the
Markov decision process (MDP). MDPs are a classical
reinforcement learning in serial decision-making, where
actions afect not just the immediate rewards but also the
successive states and the future rewards.

Here, the interaction is between agents and the envi-
ronment. Te agent acts on an environment by selecting
actions from the set of actions A. Selecting the best action is
based on the policy π, which is a function used to map the
environment state st to the action at (where t is the time
steps an agent takes to receive state st). Here, the policy π can

be stochastic, which depicts that, for every state, the result of
an action can be a probability distribution.Te agent obtains
the next state st+1, and a scalar of reward rt, after performing
the action at, and the process is iteratively continued up to
the end of episodes. Te total discounted reward R for the
time step t is calculated as

Rt � 􏽘

T

tnext�t

d
tnext− t

r tnext( 􏼁( 􏼁. (1)

Here, d represents the discounted factor and its value lies
between (0 and 1] in principle and it is decided by the
programmer to control the future returns. No matter what
the discount rate is, the agent takes the future rewards into
account when the programmer decides to take a large
discount factor d. Conversely, the agent rapidly disregards
the future rewards when the assumed discount factor d is
small.

(i) Action-value function
Based on policy π, there is an expected reward
returned to the agent for picking the action a in the
environment of state s.Te value of taking an action
a in the state s following the policy π is represented
by qπ(s, a) as the probable return of reward starting
from the state s, taking an action a, and then fol-
lowing the policy π which is represented as

qπ(s, a) � Eπ Rt st

􏼌􏼌􏼌􏼌 � s, a􏽨 􏽩,

� Eπ 􏽘

T

tnext�t

d
tnext− t

r tnext( 􏼁( 􏼁 st

􏼌􏼌􏼌􏼌 � s, a⎡⎢⎢⎣ ⎤⎥⎥⎦.
(2)

(ii) State value function
Te function value of state s which is under the
policy π is represented by vπ(s) which is the
probable return when the agent is initially in the
state s and is following the policy π and this is
represented as

vπ(s) � Eπ Rt st

􏼌􏼌􏼌􏼌 � s􏽨 􏽩,

� Eπ 􏽘

T

tnext�t

d
tnext− t

r tnext( 􏼁( 􏼁 st

􏼌􏼌􏼌􏼌 � s⎡⎢⎢⎣ ⎤⎥⎥⎦.
(3)

(iii) Optimal action-value function
Tere is one action value that is greater or equal to
all other action values, and also at the minimum
probability, there is permanently one policy that is
greater than or equal to all other policies.Tis action
value and policy are said to be optimal action value
(denoted by q∗) and optimal policy (denoted by π∗)
respectively.

q∗(s, a) � maxπqπ(s, a). (4)

Tis function q∗(s, a) provides the probable return
for taking action a in state s and then following the
optimal policy π∗.
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3.1.1. Q-Learning: Of-Policy Temporal Diference Control.
According to Amelia [25], it is a type of model-free re-
inforcement learning algorithm in which the agent does not
require to know the future environment state. In the be-
ginning, Q is allocated to the random value. Here, regardless
of the policy trained, the trained action-value function Q is
an estimate q∗ which is the optimum action-value function.
At each timestep, the agent uses the ε-greedy policy resulting
fromQ to choose the action at, and perceives a reward rt and
enters the new state st+1, and with the learning rate ι, Q is
updated. In this case, the learner is the of-policy learner in
which the agent learns from previous experiences with
diferent policies which is shown by the following equation:

Q st, at( 􏼁⟵Q st, at( 􏼁 + ι rt + dmax
a

Q st+1, at( 􏼁 − Q st, at( 􏼁􏼔 􏼕.

(5)

Tis bellman equation taken from [25] simplifes the
investigation of an algorithm and is used to provide early
convergence confrmations. However, this algorithm is
applicable only for the problemwith a small number of states
in the state space and is represented by the tabular method
and is difcult for the problem with a huge number of state
spaces and action spaces. Tat is why Huang came up with
deep Q-Learning [26].

3.1.2. Te Deep Q-Learning. According to Huang [26], Q-
learning is one type of reinforcement learning algorithm
that solves the Markov’s decision problem in the classical
method. But, we recall that Q-learning is restricted to
solving only problems having a discrete state. Tis means
that it converges to optimal states by obtaining an op-
timal policy when the state or action space is small.
Representing the action value function for the re-
inforcement problem with larger action and state by
using Q-learning can be difcult. For this reason, the
function approximators such as neural networks (NN)
are used by researchers to represent the action-value
function. Various researchers such as [27–29] have
utilized NN to depict the Q-value function for the
function approximators and they have gone over various
reinforcement learning tasks such as playing a video
game. Enhanced Q-Learning and deep Q-learning
(DQN) are employed to learn the optimal policy of
a problem containing a large state and action space.

DQN is a model-free RL algorithm in which the agent
does not require to know just how the environment behaves
and works. Te two key features for training deep neural
network (DNN) are the target network and experience re-
play. Every experience denoted by E which is Et � (st, at, Rt+1,
st+1) is stored in a bufer memoryM� (E1, E2, E3, E4, . . .. ET).
Te stored experience is sampled and resampled from time
to time to restore and update parameters θj of policy π with
loss function L(θj) at the j

th iteration of training. Te main
function of applying experience replay is to reduce the input
correlations for training Q-functions. Te loss function is
defned as

L θj􏼐 􏼑 � E rt + dmax
anext

Q st+1, anext; θ
n
j􏼐 􏼑 − Q st, at; θj􏼐 􏼑􏼠 􏼡

2
⎡⎣ ⎤⎦.

(6)

Here, θn
j , is the parameter for the target network and θj is

the parameter for the Q-network. In each defned timestep,
the Q-network parameter θj is used to update the target
network parameter. st+1 is the state of the environment after
the agent plays an action at at the environmental state st. Te
loss function is calculated from the batch sampled from the
replay memory.

3.2. Froze Lake Environment. For this paper, we have se-
lected frozen lake (FL) grid environment for its simplicity in
discrete state space. It comprises of a 4× 4 grid demon-
strating a frozen surface, where the agent can select to move
one step down, up, right, or left. Te aim is to cross the lake
from the starting point of the top left corner to the endpoint
of the bottom right corner. Nevertheless, the particular grid
point of the environment corresponds to holes in the ice, and
when the agent steps on them, the iteration of the episode
terminates and it has to restart from the initial state. One of
the following conditions makes the terminations of iterative
episode:

(1) Te agent reaches the goal G
(2) Te agent iterates and reaches a maximum of 3000-

time steps
(3) Te agent falls into a hole (red subgrid).

For each episode in which the goal is reached, the agent
takes a reward of +1 for successfully reaching the goal, and
−0.1 if the agent is stepping into one hole.

As shown in Figure 1 in frozen lake environment (ex-
tended from Hu and Hu [14]), it is expected from the
quantum agent to move from the grid start location (S)
found at the left-up corner to the right bottom corner goal
location (G). Te lake may not all be frozen which means
there may be various holes (red color) on the path. It is the
responsibility of the quantum agent to train and avoid
walking into these hole locations, and if not, the quantum
agent will get a huge negative reward, and then an episode
iteration will be ended. To realize this, we have assigned
a little negative return value to each wrong move.Te frozen
lake environment shown in Figure 1 has 16 eigen states (4
holes+ 12 frozen states) and 4 eigen actions (MoveTop,
MoveDown, MoveLeft, and MoveRight). Without applying
trainable input data weights, we encode each point on the
grid as one of the computational basis states of a 4-qubit
quantum system (|0000〉 . . . |1111〉).

From Table 2 , we have seen that most research studies
have been performed in quantum reinforcement learning
and they have realized the possibility of enhancing classical
reinforcement learning with quantum computing. Te lit-
erature depicts that the performance of the enhanced model
was better than the classical one. Additionally, in the last fve
years, the study on the feld of quantum computing has
become signifcant and has grown as of frightening data

Quantum Engineering 5



increment and the idea of promising quantum computing
technologies will change today’s computing world. Tis feld
got attention from various researchers of companies such as
Google [34], IBM [35], and Microsoft [36], and they are
racing to develop quantum computers and have realized the
applicability of quantum computing technology in classical
machine learning algorithms [37].

3.3. Variational Quantum Circuits. Te parameterized
quantum circuit (PQC) is a quantum circuit using tunable
parameters to accomplish several mathematical tasks, such
as classifcation, approximation, and optimization [38]. To
perform such tasks, the operation of the quantum circuit
model can have 4 simple steps.

3.3.1. Quantum State Preparation. Tis is the process of
encoding input information into equivalent qubit quantum
states, which can be processed in the quantum circuit later.

3.3.2. Applying Quantum Entanglement. Tis is the process
of entangling qubit quantum states by controlled quantum
gates such as CNOT gate and rotating qubits by parame-
terized quantum rotation gates. Tis process can be iterated
after the update of parameters in a multilayer manner with
other parameters, which attempts to improve the perfor-
mance of the quantum circuit.

3.3.3. Quantum State Measurement. Tis is the process of
decoding and evaluating the treated qubit states to a piece of
proper output information.

3.3.4. Parameter Optimization. It is the last process con-
ducted external to quantum circuits (QC) on a classical
computer. Te conventional classical optimizer algorithm,
such as the Adam optimizer, can update the quantum circuit
parameters in the way of optimizing the objective function of
the algorithm. Ten, the updated circuit with the new pa-
rameters has the ability to perform the calculation again
from the 1st process with the next state input to the circuits.
Similar to classical NN, the parameterized quantum circuit is

known to estimate any continuous functions, and therefore,
it has been broadly applied in QML research [39–42].

In the prototype of designed circuits shown in Figure 2,
the agent is initially placed on the state |0000〉, and taking
this encoded state as input, the unitary Pauli gates are ap-
plied to rotate the values on the arbitrary x-axis and z-axis.
Te entangling layer of the circuit entangles the values of
unitary Pauli gates making the entangling between the
qubits. Te measurement layer measures each expectation
value, which is related to the probability of measuring
a certain state and how much does that state adds to the cost
function.

3.4.HybridClassical-QuantumDeepReinforcementLearning.
Te proposed hybrid framework with the designed VQC is
viable on the existing noise intermediate scale quantum
machine learning platform. Tanks to Xanadu for providing
the PennyLane which consists of quantummachine learning
libraries to simulate various tasks of quantum-enhanced
machine learning, and the developed framework can re-
solve the VQC depth challenges by being hybridized with
iterative parameter optimization (IPO) on a classical com-
puter. Classical optimization takes place external to the
quantum circuit and it provides the loss function and
gradient calculations to update the parameters.

In our work, the loss function is calculated by mean
squared error and RMsprop optimizers for providing an
update for the parameters. Currently, PennyLane provides
seven types of hardwired optimizers, which can work with
the standard gradient descent with momentum, gradient
descent, gradient descent with Nesterov momentum, Adam,
Adagrad, and RMSprop. PyTorch and TensorFlow use op-
timizers that this library provides [33]. Here, we have se-
lected RMSprop (the little explanation about the optimizers
is found in T. Tieleman and G. Hinton, “Lecture
6.5_RmsProp: Divide the gradient by a running average of
its recent magnitude”) which is broadly utilized in deep
reinforcement learning. Te parameter used in this opti-
mizer is the learning rate, alpha, and eps which are applied
for gradient descent optimizers (GDO) only. For the frozen
lake environment, the utilized strategy for the ε-greedy is
given by

ε⟵
100ε

episode + 100
. (7)

From Figure 3, the experience replay chooses ε-greedy
action from the current state, executes it in the frozen lake
environment, and returns a reward and then moves to the
next state. It keeps this observation as a training sample of
data. All previous experience replay observations are kept as
training data. We now take the random batch of samples
from this training data, so that it comprises of a combination
of older and more recent samples.Tis batch of training data
is then entered into both the quantum Q network and the
target quantum network. Te quantum Q network takes
a current state and an action from the separate data sample
and predicts the quantum Q value for that specifc action
which then becomes the predicted quantum Q value.

S

G

Figure 1: Schematic view of the standard frozen lake environment.

6 Quantum Engineering



Te target quantum network takes the next state from
each data sample and predicts the best Q value out of all
actions that can be taken from that state and is called the
target quantum Q value. Te predicted quantum Q value,
target Q value, and the observed return of reward from the
data sample are used to calculate the loss to train the
quantum Q network. Moreover, we take a broad view of
VQC to the standard deep reinforcement learning for ap-
proximating the action-value function. Lastly, we examine
a policy reward of diferent hyperparameters of deep re-
inforcement learning for investigating the performance of
PennyLane-based quantum deep Q-learning. For the testing
environment, we have selected the standard openAI gym
[43] frozen-lake environment.

Algorithm 1 Quantum enhanced DQL sampled from
Huang [26] and Chen et al. [13].

3.4.1. Action Selection in Quantum Enhanced Deep Q-
Network. In deep reinforcement learning, the agent takes
an action based on its policy. Selecting the best action among
the other set of actions can provide a better reward for the
agent. Here in the enhanced framework, selecting the action
is determined via quantum expectation values of n number
of quantum bits (Qubits). We have four action and four

qubit systems which means that there are four expectation
values after the measurement is applied on a four-qubit
quantum system. Ten, we represent each measurement of
the qubit output wire (port) from zero to three. Ten, the
action with the index of the largest expectation value of the
output wire is selected. For example, let us say our four qubit
quantum system has the output wire with the set actions
A� (a1, a2, a3, and a4). If the set of numerical expectation
values of all actions after the measurement is e� (e (a1), e
(a2), e (a3), and e (a4)) and the expectation value of e (a3) is
greater than all four expectations, then the action that must
be chosen is the index of action a3 which is 2. Now, action 2
is selected based on the expectation values and passed to the
environment for testing. We recall that, in the FL envi-
ronment, there are 4 actions in an agent’s action space.Tese
actions are MoveTop, MoveDown, MoveLeft, and MoveR-
ight, and their output wires of four-qubit quantum systems
are indexed with 0, 1, 2, and 3, respectively. If the output of
wire indexed with 3 has the greatest value of expectation,
then the action that should be chosen by the quantum agent
is to go up one stage from a current state in a frozen lake
(FL). Quantum simulators such as PennyLane [44] and IBM
Qiskit [45] are used to calculate the expected value of
quantum measurements on the current classical computer.
Te result of expectation values after the quantum

|0〉

|0〉

|0〉

|0〉

MeasurementEntangling each Qubits repeated
with parameter update

Unitary Pauli gates, Rx and
Rz

Schematic Quantum Circuits designed to enhance DRL

RX  (α1)

RX  (α2)

RX  (α3)

RX  (α4)

Rz (β1)

Rz (β2)

Rz  (β3)

Rz  (β4)

R (X1, Y1, Z1)

R (X2, Y2, Z2)

R (X3, Y3, Z3)

R (X4, Y4, Z4)

Figure 2: Variational quantum circuits.

Table 2: Some quantum-enhanced ML algorithms we found from the literary review.

Related
works of literature OpenAI gym environment Performance Algorithm used by

the researcher
Yueh Hsiao et al. [30] Acrobot and LunarLander Converged faster Proximal policy optimization (PPO)
Lockwood and Si [31] CartPole-v1 and Acrobot Not defned Policy gradient with baseline’
Lan [32] Pendulum Faster convergency Soft actor-critic
Yun et al. [33] CartPole-v0 Not defned Q-Learning
Hu and Hu [14] 2× 3 frozen lakes Not defned Deep actor-critic

Quantum Engineering 7



measurement is deterministic. Specifcally, let us take the FL
and let us say that the reinforcement learning quantum agent
receives the state of 8 on the 4× 4 grid which is 1000 in
binary. Te basis encoding with a two unitary Pauli gets are
applied and this number must be converted to a quantum
state such as |1〉⊗ |0〉⊗ |0〉⊗ |0〉. Te encoded quantum
state passes through the quantum circuit and at the end the
expectation value will be measured. Here, the result after the
measurement is either 0 or 1 if the system measures a frst
qubit |1〉 above, but the possibility of being 0 or 1 is sto-
chastic or random. In random measurement, the agent
selects only a single qubit randomly and uses that value for

action selection. Each qubit of the prepared quantum state
|1〉⊗ |0〉⊗ |0〉⊗ |0〉 can pass via blocks of the circuit and the
measurement layer measure each qubit’s expectation value.
For each qubit state, there are multiple number of repeated
measurements but the chance of becoming exactly in the
state |0〉 and  state|1〉 is a probability distribution. Tis
means that, we can predict the probability of being in state
|0〉 and |1〉 by averaging the expectation value of repeated
measurement. For example, let us measure T times the state
of the frst qubit |1〉 and from this measurement, if K times
the state of some qubit gives 1, then the probability
P(1)andP(0) is calculated as

Quantum
agent

Hybrid Classical-Quantum DRL architecture

Agent Environment
Reward ‘r’

Eigen action ‘|A〉’

|a1〉, |a2〉, ...|an〉

Observed Eigen state’|S〉’

|S1〉,|S2〉,|S3〉...|SN〉

classical optimization

RMSProp

update parameter

Frozenlake

Figure 3: Proposed architecture.

Set replay memory M to state size N
Initialize action-value function quantum circuit Q with arbitrary parameters θ
For episode e� 1, 2, 3, 4, . . .. . .. E do
Initialize State s1 from the set state S and encode it into
the quantum state using basis encoding
for the time step t� 1, 2, 3, . . .. T do
With probability ε, select a random action at
otherwise, select the optimal action at at � maxa q∗(st, a; θ) from the result of quantum circuit
Execute the selected action at and see the reward rt and the next state st+1
Store transition (st, at, rt, st+1) in replay memory M
Sample a random minibatch of transitions (sb, ab, rb, sb+1) from the replay memory M

yb �
rb for the terminal sb+1
rb + dmax

anext
Q(sb+1, anext; θ) for a non − terminal sb+1

⎧⎨

⎩

Perform a gradient descent step on (yb − Q(sb, ab; θ))2

end for
end for

ALGORITHM 1: Quantum enhanced deep Q-learning.
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P(1) �
K

T
,

P(0) �
T − K

T
.

(8)

Te average value can be produced after the measure-
ment, and this average value is called the value of quantum
expectation.

To be specifc, let us take the following example. Te
quantum agent again wants tomeasure the expectation value
of |1〉⊗ |0〉⊗ |0〉⊗ |0〉 (See Table 3) and let us say that each
qubit has been measured 500 times.

Furthermore, each measurement on a quantum bit of n
qubits can be executed concurrently in parallel.

3.5. State Encoding. In the parameterized quantum circuits
(PQC), to process classical data, data encoding is needed so
that, classical data is converted into the quantum state.Tere
are quite a lot of types of quantum encoding frequently used
in quantum machine learning (QML) applications (see
Schuld and Petruccione [46] for more information about
quantum encoding). Some of them are amplitude encoding
utilized by Antipov et al. [47], computational basis encoding,
angle encoding, and directional encoding. Encoding classical
state to quantum state is currently a hot research area and
various methods of encoding can provide various quantum
advantages for machine learning and natural language
processing. Some of the encoding methods are currently not
realized on real quantum computer hardware because they
need a large number of quantum circuits made from
complex quantum gate interaction.

3.5.1. Computational Basis Encoding for Frozen Lake
Environment. Every quantum-enhanced machine learning
investigation needs quantum computers (or quantum
simulators) that are used to process classical data (states).
Te frst step to processing classical data is encoding the

classical data into quantum states. In fact, encoding the
classical data is the most vital step in quantum data pro-
cessing in a near-term quantum computer. Te potential
power of a quantum machine learning algorithm in the
noise-intermediate scale quantum (NISQ) era is determined
by the way we encode classical data [13, 48]. Our study
mainly focused on hybrid quantum-classical computation
and in hybrid quantum-classical computation, the basis
encoding techniques are employed by [33, 49] and it is well
suited for the DRL problem with fewer discrete states. In
basis encoding, frst, the state is represented by decimal
numbers and then converted to a binary number. To be
enhanced by quantum computation, these classical binary
bits must be encoded to a quantum state to be processed by
quantum circuits. Te quantum state with n number of
qubits is represented by the following equation:

|ψ � 􏽘

q1 ,...,qn[ ]∈ 0,1{ }n

cq1...qn􏼐 􏼑 q1〉
􏼌􏼌􏼌􏼌 ⊗ q2〉

􏼌􏼌􏼌􏼌 ⊗ q3〉
􏼌􏼌􏼌􏼌 ⊗ . . . ⊗ qn〉

􏼌􏼌􏼌􏼌 .

(9)

Te value of Cq1. . .Cqn is an element of complex number
C and they are said to be the amplitude of quantum state, and
the square sum of these complex numbers are measurement
probabilities of fnding each of the corresponding states and
their sum must be equal to 1, and this is represented as

p q1〉
􏼌􏼌􏼌􏼌 ⊗ q2〉

􏼌􏼌􏼌􏼌 ⊗ q3〉
􏼌􏼌􏼌􏼌 ⊗ . . . ⊗ qn〉

􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽘

q1 ,...,qn[ ]∈ 0,1{ }n

cq1...qn􏼐 􏼑
2

� 1.
(10)

Here, we have taken a frozen lake environment with four
qubit systems.Te four-qubit quantum system gives 24 or 16
possible basis states. Te single-qubit unitary Pauli rotation
operation is used to encode the classical bits into the 16
quantum states.

Table 4 shows the encoding of classical input state from
the selected frozen lake environment into quantum states of
the quantum circuit which needs the application of a single
qubit unitary rotation method. Te single quantum gates of
arbitrary rotational angle ω, with any κ axis rotation is given
by the following equation:

Table 3:Te method of calculating the expectation value for action
selection (this is the assumption).

|1〉 |0〉 |0〉 |0〉

Total number of repeated measurements 500 500 500 500
Total number of measurements which gives
1 330 400 350 190

Total number of measurements which gives
0 170 100 150 310

Probability of getting 1 or P (1) 0.66 0.8 0.7 0.38
Probability of getting 0 or P (0) 0.34 0.2 0.3 0.62
Expectation value 0.66 0.8 0.7 0.62

Quantum Engineering 9



Rκ(ω) � e
1/2 − iωδκ[ ],

k �

rotate alongx − axis, Rx(ω) � cos
ω
2

􏼒 􏼓∗ I − i∗ sin
ω
2

􏼒 􏼓,

rotate alongy − axis, Ry(ω) � cos
ω
2

􏼒 􏼓∗ I − i∗ sin
ω
2

􏼒 􏼓,

rotate along z − axis, Rz(ω) � cos
ω
2

􏼒 􏼓∗ I − i∗ sin
ω
2

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Here, δx, δy, and δz are the Pauli matrixes of Pauli gates,

which can be represented by 0 1
1 0􏼢 􏼣,

0 −i

i 0􏼢 􏼣, and 1 0
0 −1􏼢 􏼣,

respectively. We have utilized the Pauli X gate and Pauli Z
gate for the abovementioned quantum circuits (Figure 2)
with αi and βi rotation angle, respectively.Te rotation angle
is shown by the following equation:

αi � Π∗ bi,

βi � Π∗ bi,
(12)

where i is the qubit index, b is a bit, and Π is a radian so that
we can encode for each state.

From Table 5, we can see that the 14-state entangled with
the CNOTgate, |1〉⊗ |1〉⊗ |1〉⊗ |0〉 can have α1, α2 , α3, and
α4 values of (Π,Π,Π, and 0) and the same for all β. From
equation (11), we can get the following expression:

Rk(Π) � −iδk,

Rk(0) � I,

Rx(Π) � −iδx,

Rz(Π) � −iδz.

(13)

Now, from the given circuit (Figure 2), we have used Rx
(αi) and Rz (βi) for encoding the state and both take |0〉 as
the initial quantum state. Te state after rotating the Pauli X
gate and Pauli Z gate with Π rad is given by

RX(Π)RZ(Π)|0〉 � −iδx( 􏼁 −iδz( 􏼁|0〉 � |1〉,

0 1

1 0
􏼢 􏼣(Π)

1 0

0 −1
􏼢 􏼣(Π)|0〉 � −iδx( 􏼁 −iδz( 􏼁|0〉 � |1〉,

(14)

and the state after rotating the Pauli X gate and Pauli Z gate
with 0 degree is given by

RX(0)RZ(0)|0〉 � (I)(I)|0〉 � |0〉,

0 1

1 0
􏼢 􏼣(0)

1 0

0 −1
􏼢 􏼣(0)|0〉 � (I)(I)|0〉 � |0〉.

(15)

Tese are applicable for all states and the result of the
entangled qubits using a controlled CNOT gate (see Fig-
ure 2) is given by the following equation:

R(Xi, Yi, Zi) � Rx(Xi)Ry(Yi)Rz(Zi),

R(Xi, Yi, Zi) �
0 1

1 0
􏼢 􏼣(Xi)

0 −i

i 0
􏼢 􏼣(Yi)

1 0

0 −1
􏼢 􏼣(Zi).

(16)

Te three parameters (Xi, Yi, andZi) for this general
single qubits unitary rotation operator are used to provide
optimization.

4. Experimental Setup and Results

4.1. Experimental Setup. Quantum enhanced deep re-
inforcement learning (QDRL) framework is developed in the
python programming language. Programming, experi-
mental visualization, and all advance of this research study

Table 4: Te method of encoding binary state to quantum state.

Decimal number Classical binary numbers Representation of entangled
quantum states

0 0000 |0〉⊗ |0〉⊗ |0〉⊗ |0〉

1 0001 |1〉⊗ |0〉⊗ |0〉⊗ |1〉

2 0010 |1〉⊗ |0〉⊗ |1〉⊗ |0〉

. . .. . . . . .. . .. . . . . .. . .. . .

13 1101 |1〉⊗ |1〉⊗ |0〉⊗ |1〉

14 1110 |1〉⊗ |1〉⊗ |1〉⊗ |0〉

15 1111 |1〉⊗ |1〉⊗ |1〉⊗ |1〉
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was completed in Python 3. We employed Python 3.7.8 for
accessing the PennyLane platform. Te other program that
we have employed to simply manage the package and
control the environment is the anaconda. We utilized
Jupyter Notebook as the development environment for
writing and implementing the python code. Te Matplotlib
was utilized for the plotting and was mostly tied to NumPy
in real-world applications and it ofers functions for the plots
such as line, pie charts, scatter, histogram, and others.
Hence, the implementation procedures and the hyper-
parameters needed for the developed framework is discussed
in the following table. At the last, the researcher discusses the
overall outcome of the study with the experiment-based
interpretations, and all hyper parameters used through this
study is depicted in table 6.

4.2. Experimental Result. Te frozen lake environment is
used in our work to evaluate the performance of DRL al-
gorithms on quantum circuits. Previous practitioners such
as Hu and Hu [14] used a grid-based environment similar to
the frozen lake but with smaller size (2× 3) grids. For this
study, we have used the standard frozen lake values of grid
size (4× 4) by increasing the number of qubits to 4 which can
have 24 basis states. For the designed circuits, we have
simulated numerically with the PennyLane [44]. A numeric
simulator is used to discover the prospects of using quantum
computing technology to solve DRL task and their opti-
mality. To expand the former work of Hu and Hu [14], we
present algorithms that improve upon the previous results.
We have applied the learning techniques to OpenAI Gym
[43] and frozen lake environments which are more complex
with the number of states and layers than in the previous
work [14]. To verify the trainability of the framework, we
take 1000 episodes of the standard frozen lake experiment.
Te horizontal coordinate signifes an episode in the en-
hanced learning process, and the vertical axis represents the
number of rewards returned to the agent for taking some
actions on the environment. Te experiment considers the

trainability of enhanced DRL and the efect of the number of
layers on the enhanced DRL framework. According to the
experiment, the quantum enhanced DRL is trainable in all
cases but, the time it takes to converge to the optimal value is
diferent for the diferent quantum layers.

Figures 4(a)–4(c) show the learning ability of diferent
quantum agents based on the diferent layers. From
Figure 4(a), it is seen that the agent executed with two layers
hit the maximum negative reward of −15.09 on episode 148.
Te agent tried and converges to the optimal Q value by
taking the reward of 0.91 after the training episode of 525.
Te second agent from Figure 4(b) is executed with 3 layers
and converges to theQ value with a total reward of 0.95 after
the 397th episode. Te third agent is executed with 5 layers
and converges to the optimalQ-value with the reward of 0.95
after the 72nd episode. Here we can conclude that, on the
framework, the agent explores more if the framework uses
a smaller number of layers and this means that, it exploits the
optimal value when more layers are used. Tis means, when
the quantum layer increases from 2 to 5, the framework
converges faster without going for testing on various epi-
sodes. In the other scenario, the QDRL is better than classical
DRL to reduce the parameters (weights in the classical case).
Here, a number of parameters in PQC subjected to opti-
mization can be calculated as

C(θ) � number of qubits∗ [(number of block in circuits∗number of layers + 1)], (17)

where θ is the number of quantum layers, the number of
circuit blocks used in this research study is 3, and the +1 is
the added bias which is also subjected to optimizations [13].

Classically, four layers of NN which need 16 x 4 or 64 pa-
rameters are needed to represent the 4x 4 frozen lake
problem [13]. In QDRL, we can represent this problem with

Table 6: Some hyperparameters used in the study.

Hyperparameters Value assigned
Number of qubits 4
Number of layers 2, 3, 5
Epsilon 1
Batch size 5
Maximum time step 3000
Maximum episode 1000
Gamma 0.99
Alpha 0.1, 0.2, 0.3, 0.4
Learning rate 0.01
eps 1e− 08

Table 5: Entangling qubits.

State with the decimal
number Entangled quantum state

Value after applying Pauli gate of X gate and Y
gate operators

αi (i� 1, 2, 3,
4)

βi (i� 1, 2, 3,
4)

0 |0〉⊗ |0〉⊗ |0〉⊗ |0〉 (0, 0, 0, 0) (0, 0, 0, 0)
1 |0〉⊗ |0〉⊗ |0〉⊗ |1〉 (0, 0, 0,Π) (0, 0, 0,Π)

. . .. . .. . .. . . . . .. . .. . .. . . . . .. . . . . .. . .

14 |1〉⊗ |1〉⊗ |1〉⊗ |0〉 (Π,Π,Π, 0) (Π,Π,Π, 0)

15 |1〉⊗ |1〉⊗ |1〉⊗ |1〉 (Π,Π,Π,Π) (Π,Π,Π,Π)
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4x(3 x 4 + 1) or 52 parameters which reduces the number of
parameters by 12. So, QDRL is a better choice for parameter
reduction. On the other hand, the quantum-enhanced action
selection strategy makes a good balance between exploration
and exploitation using expectation values, which increases
the quantum agent learning ability and promises to solve
searching problems over entire state-action (s and a) space
search in classical DRL.

In the case of seeing the performance in diferent
learning rates (alpha), the agent running with 0.1 alpha
value hits the maximum time steps of 2012. When the
alpha value is 0.1 or smaller, the agent explores much
more but it learns very slowly, so the training process
converges to the optimal state very slowly.

Figure 5 gives a precise description of enhanced
framework learning results. We record every single
learning epoch to verify the outcomes of enhanced DRL
algorithms with selected 0.1, 0.2, 0.3, and 0.4 learning
rates or alpha values (see Figures 5(a)–5(d), respectively).

From this result, we can conclude that the greater the
learning rate values in quantum deep reinforcement
learning, the fewer timesteps it takes to move from the
start point to the goal state. Te result of QDRL shows
advantages with 0.4 learning rate or alpha values. Te
advantages are the use of quantum representation. Te
quantum representation uses the quantum superposition
strategies of quantum mechanics in which the updating
method is carried out via quantum parallelism. Quantum
parallelism will be more useful in the near future when
quantum enhanced device comes into use rather than
simulating on conventional computers.

From Table 7, we can see that when the agent got the
reward of 0.95, it costs the agent 6 timesteps which is the
time step the agent takes to converge into the optimal
state. Generally, the time steps of an agent with a learning
rate from 0.2 to 0.4 for the last 200 episodes is similar
which is 6 and the reward also converges to the optimal
value of 0.95.
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Figure 4:Te agents reward with diferent quantum layers (a, b, and c): (a) agent with quantum layer 2, (b) agent with quantum layer 3, and
(c) agent with quantum layer 5.
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5. Conclusions

Tough the main focus of this study is enhancing DRL
with quantum machine learning and analyzing the
learning performance of that framework, we have studied
the background of this technology and its applicability as
well as and the need of applying this technology to
current machine learning models. Tis can be seen from
two sides which are the theoretical side and the technical
side. On behalf of the theoretical study, we have studied
that, the motivation behind this new machine learning

paradigm is to obtain improved learning performance.
Te study also presents the state-of-the-art in the de-
velopment of quantum science in the area of AI and
encourages the enhancement of classical ML technology.
Specifcally, the representation of quantum computa-
tions is generally diferent from the current classical
computations, and various features of quantum com-
putation are prospectively evolving.

Machine learning is a feature that is currently
infuenced by the theory of quantum computation. Tere
are various demonstrations and conformations that
quantum mechanical phenomena such as superposition,
entanglement, and quantum inference which can change
the current machine learning algorithm such as super-
vised, unsupervised, and reinforcement learning for its
betterment in providing sustainable speed up on pro-
cessing data. In this study, we also analyzed the need for
classical data and the method of encoding it to the
quantum state to process it on cloud-based provided
resources of quantum machine learning. To be accessed
and processed on quantum processing units, the data
need to be encoded into the quantum state. Te type of
encoding can be diferent from task to task for the
specifc problem that needs to be solved.
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Figure 5:Te timestep comparison for diferent learning rates: (a) time step with 0.1 alpha value, (b) time step with 0.2 alpha value, (c) time
step with 0.3 alpha value, and (d) time step with 0.4 alpha value.

Table 7: Te reward and timestep of the agent for the last 200
episodes.

Episode 799 849 899 949 999 Alpha

Reward

−0.24 −0.24 −0.26 0.95 0.95 ←0.1
0.95 0.95 0.95 0.95 0.95 ←0.2
0.95 0.95 0.95 0.95 0.95 ←0.3
0.95 0.95 0.95 0.95 0.95 ←0.4

Timesteps

8 8 7 6 6 ←0.1
6 6 6 6 6 ←0.2
6 6 6 6 6 ←0.3
6 6 6 6 6 ←0.4
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Generally, we have analyzed that knowing the
encoding techniques that can handle the problems with
that limited resource is expected from the researcher as
the existing quantum devices are very small and in-
termediate scale. Tey only cover a small number of
qubits. Te other thing is considering the complexity of
circuits. Minimizing the number of quantum circuits is
needed to reduce the complexity and needs to minimize
the number of parallel quantum actions required to grasp
the quantum encoding. Te well-known quantum data
encoding is computational basis encoding which pro-
vides codifcation of classical data to a quantum state.
Quantum phenomena such as superposition and en-
tanglement can provide parallelization for all quantized
states. Lastly, we have confrmed that the computational
basis encoding is not efcient for the quantum deep
reinforcement learning (QDRL) problem that needs
a huge number of qubits but is efcient for tasks solved by
applying a smaller number of qubits. Te standard DRL
task can be enhanced with a smaller number of qubits
because the trainability of the framework can be in-
vestigated on a standard frozen lake which contains 4 × 4
matrices of state action spaces.

On behalf of the practical side, the outcomes of ex-
periments validate the feasibility of an enhanced deep Q-
learning framework and then verify its learning per-
formance for the agent with diferent quantum layers and
diferent learning rates. Te experiment depicts that the
value of a number of layers and the number of learning
rates can afect the learning performance of an agent and
as soon as a quantum-enhanced deep reinforcement
learning turn on a real quantum computer, it can be
efciently used to improve the quantum robot learning
for achieving some important tasks. Generally, we have
verifed the applicability of quantum computation to
machine learning specifcally deep reinforcement
learning, and the further exciting results are what we
expect after this enhanced deep Q-learning run on fully
quantum computers in the nearby future.

6. Recommendations

Quantum-enhanced machine learning as a whole and
quantum-enhanced deep reinforcement as specifc is
a newly quantum computing-inspired learning frame-
work that has a theoretical and experimental gap. Most of
the experimental gaps can be solved only when the
quantum resource is available than today’s resources.
Most companies such as IBM, Google, and Xanadu are
trying to handle these problems by providing cloud-
based resources. Tough the resource is enough for
some simple problems, it is not efcient for complex
problems such as the Atari games and Game of Go. Here,
every activity such as state representation (preparation
and encoding), policy evaluation and policy iteration,
action selection, and optimization in reinforcement
learning needs theoretical and experimental studies to
enhance it with quantum computing technology. In the
case of state representation, we have applied basis

encoding techniques to encode the classical states into
quantum states and we recommend that, by seeing the
framework’s performance applying other encoding
techniques such as amplitude and angle encoding. In this
paper, we mostly discussed the deep reinforcement
problem with discrete state spaces. But the expected
recommendation here is to extend this enhanced
framework to DRL problems with continuous state
spaces efciently.
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