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In this paper, we propose a multiscale entanglement renormalization ansatz (MERA) feature extraction method based on a novel
quantum convolutional neural network (QCNN) for binary scanning tunneling microscopy (STM) image classifcation. We
design QCNN quantum circuits for state preparation, quantum convolution, and quantum pooling in the TensorFlow quantum
framework and compare the performance of QCNN classifer and two hybrid quantum-classical QCNN models. Adversarial
attacks are considered as a type of interpretable method to evaluate the robustness of QCNN models. Te similarity between the
pixels of image bitplane slicing and Ising phase transition opens up new ways for exploring classifcation performance en-
hancement by QCNN classifers. Classifcation performance of diferent bitplanes of QCNN also shows that they can robustly
resist adversarial attacks such as FGSM, CW, JSMA, and DEEPFOOL.

1. Introduction

In recent years, many researchers focused on the interplay
between machine learning and quantum physics and in-
vestigated if quantum technology can help to improve
traditional machine learning algorithms such as supervised
learning, principal component analysis, and other di-
mension reduction algorithms [1–4]. Cong et al. [5] pro-
posed a quantum circuit-based convolutional neural
network (CNN) which can accurately recognize quantum
states. Kossaif and Bulat [6] parameterized the global CNN
with a single higher-order tensor. Tensor methods have the
potential to parameterize network structure representations
in a compact manner. Via imposing a low rank structure on
the tensor, it can regularize the network, reduce the number
of parameters, and obtain higher accuracy and compression.
Henderson et al. [7] proposed a quantum convolution layer
with a number of random quantum circuits for feature
extraction in image classifcation. Broughton and Verdon [8]
proposed a software framework for quantum machine

learning where quantum circuits for supervised learning in
classifcation is make up of a sequence of quantum gates.
Quantum circuits play an important role in machine
learning [9–12]. More works of development in QCNN are
still be carried out. Henderson et al. [7] evaluated CNNs,
QCNN and CNNs with additional nonlinearity models on
the MNISTdataset. Tey showed that the QCNNmodel had
better accuracy as well as faster convergence when compared
to the purely classical CNNs. Wei et al. [13] proposed
a QCNNmodel for recognition of handwritten numbers and
simulated three types of image fltering, smoothing,
sharpening, and edge detection. It could reduce the com-
puting complexity compared with CNNs. Chen et al. [14]
proposed a QCNN model for the classifcation of high
energy physics events. It demonstrated an advantage of
learning faster than the CNNs. Li et al. [15] proposed
a quantum-classical hybrid processing model inspired by the
variation quantum algorithms on the MNIST and GTSRB
datasets and verifed the feasibility and validity when
compared with CNNs.
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However, the complex QCNN with features as a black
box cannot explain its internal mechanism well, so verifying
the robustness is crucial toward the trustworthy QCNN. In
order for QCNN to be trusted, it needs to reliably explain
why QCNN makes certain predictions. Traditional robust
and explainable methods [16, 17] on classifer has the
limitations of not revealing the intrinsic mechanism where
general image bitplane slicing has similar phase transition
pattern to that of the Ising models, and the adversarial
attacked image has minor visual diferences but the bitplanes
of attacked image show signifcant diferences. Our scheme
is explainable that the accuracies of QCNNmodels with local
construct features on some bitplanes also reveal the corre-
sponding diferences under diferent attacks with diferent
level of attack intensity. With the arrival of noisy
intermediate-scale quantum (NISQ) era, to solve these is-
sues, an explainable anti-adversarial attacks image classif-
cation scheme is proposed in this paper. First, we simulate
adversarial attacks and inject the perturbations on the input
data. Ten, the bitplane slicing and a feature extraction
method are both employed to the novel QCNNs. Finally, the
robustness of classifcation performance evaluation are
utilized to evaluate the model interpretation that some
bitplanes give over approximation of robust accuracy while
other bitplanes give under approximation of robust accu-
racy. Adversarial attacks [18–21] inject imperceptible per-
turbations to images and lead to deterioration of
performance in deep image classifers, it raise security
concerns of image classifcation. Te typical adversarial
attacks include FGSM, JSMA, CW, DEEPFOOL, etc. At-
tackers can inject perturbations to specifc objects, or inject
imperceptible noise to the background, or inject perturba-
tions to the whole image, the strength of the attack depends
on specifc parameters. Adversarial attacks are considered as
a type of interpretable method, that is, the classifcation
results of normal samples and adversarial samples can be
analyzed and reasoned by diferent features, which can assist
scientists to design a more appropriate structure of network.
Adversarial attacks and diferent features are applied to
study the robustness of interpretations for our QCNNs. Te
contribution of this paper are as follows: (1) We propose
a MERA feature extraction method on our new designed
quantum convolutional neural networks (QCNNs) for STM
image classifcation. (2) We discover image bitplane slicing
has similar phase transition pattern as that of the Isingmodel
and explore the correlation between this pattern and the
classifcation performance enhancement by QCNN classi-
fers. (3) For robustness and explainability, the classifcation
performance of diferent bitplanes of QCNN also shows that
they can robustly resist adversarial attacks such as FGSM,
CW, JSMA and DEEPFOOL.

2. Local MERA Feature Construction

To improve the transparency of QCNNs, the proposed ex-
planations provide the local construct features and the global
QCNN framework to enhance the understanding of classi-
fers. Building on the recent interest in tensor networks for
machine learning [22, 23], tensor networks have been a tool

for the analysis of quantum many-body systems, it encodes
the coefcients of the state wave function, ensembles of
microstates and is superior to dimension reduction. Tensor
networks can be interpreted as part of linear classifers op-
erating in exponentially high dimensional spaces to be useful
in image analysis application and measure the scale of par-
ticles/pixels with degrees of granulation. Tis granularity can
be distilled and encoded into a global QCNN.

Multiscale entanglement renormalization ansatz
(MERA) and discrete wavelet transformations have a similar
multiscale representation. Tensor networks can be used for
physical states classifcation and simulating entangled cor-
related systems. Such correlation states can be simulated
with multilevel analysis for extracting local features. Hallam
and Grant [24] proposed a method for tensorizing neural
networks by way of approximating scale invariant quantum
states. Tey employed MERA as a replacement for the fully
connected layers in a convolutional neural network on the
CIFAR datasets. Te proposed method provides great
compression for the same level of accuracy and great ac-
curacy for the same level of compression. MERA is a pow-
erful tool to study phase transition, critical phenomena and
strong coupling problems. In deep learning, people have
observed that deep neural networks have the ability to ex-
tract features layer by layer. Inspired by the fact that general
image bitplane slicing has a similar phase transition pattern
to that of the Ising model. With granularity at diferent
scales, we can explore the distinguishing ability of generated
features and convert the coarse-grained Ising phase/state
classifcation into fne-grained (pixel-level) image
classifcation.

Te scale-invariant MERA provides an efcient way to
extract scaling operators. Unitary gates with refection
symmetry in MERA quantum circuits are scale represen-
tation of quantum many-body wave function which struc-
turally similar to mappings of convolutional networks and
MERA [25, 26] can encode correlations between diferent
scales for data compression. Equation (1) is a 2 × 2 unitary
matrix represented as Usw with some refections.

Usw �
0 1

1 0
 . (1)

Equation (2) is a 3 × 3 unitary matrix with one parameter
of refection symmetric matrices v(θ).
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Te unitary circuit is formed by 3 × 3 refection sym-
metric matrices v(θ) with the swap gateUsw and a symmetric
transforms parameter dilation factor three. Te represen-
tation of Figure 1 is a scale layer unitary circuit with three
rotation angles θ as given below.

V is a 3 N× 3 N matrix with parameter N in a scale layer
unitary circuit, the decomposition form is,

V � V3UswV2UswV1. (4)

Vk is direct sum of N matrices v(θk) from (3),

Vk � v θk( ⊕ v θk( ⊕ v θk( ⊕ v θk(  . . . . (5)

Te scale layer unitary circuit has parameters θ1, θ2, and
θ3. Right, left of an edge-centered, and site-centered sym-
metric sequence are entered into this circuit. Te multiscale
circuit which encodes the images and its output are then be
chosen to yield the ten output features.Tere is a connection
between MERA quantum circuits and discrete wavelet
transforms. We describe how MERA quantum circuits can
be exploited to develop a new feature extraction method; the
process is similar to features extraction from the wavelet
transformation of the given image. FromMERA circuits, we
can distill features from an image and they can be integrated
into the QCNN.

3. Quantum Convolutional Neural Network

Quantum convolutional neural network (QCNN) [27] can
recognize specifc features of quantum states. It is signifcant
to study the combination of local features and the global
QCNN circuit structure and that of the bidirectional con-
tributions. Diferent from the previous work and recent
advances, we study the information distil ability on scale
patterns as local correlation features to be integrated into
global QCNNs and spread into the entire unitary evolution
system instead of parameterizing the whole network with
single tensors. As many-body wave-functions are structur-
ally similar to mappings of convolutional networks, we an-
alyze the transformation classifcation pattern of the physical
state/phase into the learning of traditional image classifca-
tion. It is critical to prepare quantum initial states where the

higher entangled state correspond to higher separated weight
function. With entangled state, the QCNN would have more
expressive power than its classical counterpart.

U ψ0
 〉 � U 

2n− 1

i�0
αi i〉 � 

2n− 1

i�0
βi




i〉. (6)

In a quantum system, an initial state
|ψ0〉 � 

2n− 1
i�0 αi|i〉, α ∈ C where 〈i, i � 0, 2, . . . , 2n − 1{ } de-

notes a set of bases in the Hilbert space, αi, βi ∈ C. Te
QCNN applies the unitary transformation U on it. Quantum
circuit operates quantum bits form by quantum logic gates
which are building blocks of quantum circuits. Tey are
combined to form a global quantum circuit, and the whole
quantum circuit is a large unitary matrix. It is critical to fnd
a good set of parameters for the quantum circuit like ac-
tivation function in the network. Te information can be
distilled through MERA based local features according to
diferent data distributions.

Te QCNN architectures for image classifcation task are
illustrated in Figure 2. In this architecture, the frst layer is
quantum cluster state prepare layer which is shown in
Figure 3. Where H gate is applied to any of its qubits in-
dicates an excitation and CZ gate is applied to any of the two
adjacent qubits to get the highly entangled state.

Te second layer is the input layer where the encoded
MERA features are distilled as the rotation angles θ of single-
qubit RX,RY,RZ gates and the rotation angles θ of the two
qubit XX,YY,ZZ gates. Te transformation of encoded
features parameters enter into the parameterized unitary
circuit where XX is supposed to be tensor product of X with
X with rotation angles θ. Equations (7)–(9) defne
RX,RY,RZ gates in the circuit, when the parameters enter
into the input layer, and they decide the rotation angle
around the X, Y and Z axis in Bloch sphere. Te gradient of
the QCNN is relatively smooth, so local MERA features are
vital to adjusting the gradient and exploring the correlation
between scale dimension reduced features and the gradient.
Te cluster state prepare layer and input layer are added to
the quantum circuit in order.
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One and two qubit parameterized unitary matrices
construct the convolution and pooling layers.Te third layer
is quantum convolution layer. Figure 4 depicts RX,RY,RZ
and XX,YY,ZZ gates in quantum convolution layer that can
be constructed by a cascade of two-qubit parameterized
unitary with pairs of adjacent qubits. Te last layer is
quantum pooling layer. Figure 5 depicts RX,RY,RZ and

CNOTgates in quantum pooling layer. CNOTgates are used
to control entanglement. Two arbitrary qubit unitary make
a parameterized pooling from two qubits to one qubit
unitary circuit. Te quantum pooling layer pools half of the
qubits by two-qubit pooling. Te pooling layer output the
qubits where the label 1 assigned one state while − 1 assigned
the other state. Te pooling layer is followed by the repeated
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Figure 2: QCNN and hybrid QCNNs with classical architecture. (a) QCNN, (b) hybrid QCNN, and (c) hybrid QCNN with multiple
quantum.
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measurement observable Z on state |ϕ〉 which is denoted as
〈Z〉|ϕ〉 ≡ 〈ϕ|Z|ϕ〉 � |α|2 − |β|2 where 〈Z〉 ∈ [− 1, 1]. In
QCNN architecture, image pixels are not suitable features
entering into quantum circuit for classifcation, we have
made MERA features as parameters of QCNN.

Figure 2(a) depicts a QCNN architecture is constructed
by cluster state prepare layer, input layer, convolution,
pooling and measurement layers. Figure 2(b) illustrates the
hybrid QCNN model which combines a classical neural
network with a single quantum convolution and pooling
layer. Figure 2(c) illustrates the hybrid QCNN with multiple
quantum which combines multiple quantum convolutions
and pooling layer with a classical neural network. In recent
years, more and more researchers concern about how to
improve the performance of the deep network, it should not
only pay attention to the depth of the network, an opposite
direction of neural network by expanding the width instead
of increasing the depth, called broad learning system should
be worthy of attention. Te diference between hybrid
QCNNs and hybrid QCNNs with multiple quantum is that
the width of the hybrid QCNNs with multiple quantum is
expanded wider than the hybrid QCNNs. In some of the
bitplanes, the diference of their performance will increase
when compared to the original image, whichmean that there
is still diference in their anti-adversarial attack ability.

4. Experimental Results

In order to verify the efectiveness and demonstrate the
interpretation of our proposed QCNN classifer based on
MERA features. We implement three sets of experiment in
an environment of TensorFlow-quantum 0.3.0 and cirq
0.8.0. Te frst experiment includes a dataset of 7589
scanning tunneling microscopy (STM) images [28], labeled
as acquired either with a good or bad probe. STM images
including 1761 images of good probe and good image which
are labeled as class 1. 5828 images of bad ones, with an
imperfect acquisition (e.g., inadequate sample region or
coarse in sample, noisy image without probe sample contact;
blurry images with dull probe, replicated images with
multiple-feature probe; artifact with contaminated probe),
which are labeled as class 2. In these experiments, the MERA
features and Box-counting fractal features [29] were nor-
malized to [− π, π] as parameters of rotation angles in
RX,RY,RZ gates and XX,YY, andZZ gates and then feed
into parameterized quantum circuits. Tis combination of
encoded local scale features and QCNN better demonstrates
the multiscale nature of data distribution.

A performance comparison of the three models: QCNN,
hybrid QCNN, and hybrid QCNN with multiple quantum
layers (horizontal expansion of hybrid QCNN by increasing
the width) suggests that improvement have been achieved
via the proposed features. Parts of the STM images are
shown as Figure 6(a), 60% of these images are also randomly
selected for training and the remaining 40% for validation.
In Figure 6(b), QCNN, Hybrid QCNN, and Hybrid QCNN
with multiple quantum layers have achieved accuracies of
about 75%–97%, the convergence rate improvement of pure
QCNN has much room for improvement when compared

with the other two quantum classical hybrid models. Better
convergence is expected for all three QCNN models, par-
ticularly the pure QCNN one.

MERA and fractal features have similarities in multiscale
image analysis and representation methods; it is important
to study the characteristics of images at various scales. By
multiscale decomposition, the image information is distilled,
which triggers improvement of the QCNN performance.
Comparisons have been made between the MERA and Box-
counting fractal features in our QCNN model and each
feature shows some advantage respectively. Table 1 shows
the classifcation performance comparison between the
MERA and Box-counting fractal features. Te accuracies of
boxcounting fractal outperforms MERA 98.44% vs 95.31%
and they must be accompanied by that the accuracies of
some high-order bitplanes of MERA outperform those of
boxcounting fractal features.

Ising model [30] can depicts the phase transition of
ferromagnetic materials. When heated over some temper-
ature threshold, the system loses its magnetism temporarily
until cooled down to that threshold. Te transition between
magnetic and non-magnetic phases is called phase transi-
tion. Te Monte Carlo method and Ising model-based
metropolis algorithm are used to generate images which
is shown in Figure 7(b). Granularity distribution with dif-
ferent scale can be used in classifcation, accompanied by
diferent position distribution of the pixel values. Figure 7(a)
depicts that the image bitplane decomposition has a similar
phase transition to that of the Ising model. It is particularly
important to study the relationship between phase transition
and classifcation performance and gives an interpretation of
why it achieve better performance.

Network structure and parameter adjustment help to
improve performance. It suggests that the phase transition of
the original image is universal. Especially, this phase tran-
sition is more likely to have a strong correlation with the
classifcation performance. In the second set of experiments,
image pixels are treated as physical particles. To demonstrate
the efectiveness of our QCNN models. We frst used the
Monte Carlo method and Ising method-based Metropolis
algorithm to simulate 10000 images with 100 × 100 pixels
which indicate ten diferent scale levels of granularity. Tey
are shown in Figure 7(b). For these 10000 Ising scale images,
a pre-defned number of clustering has been followed in
order to fx the number of categories to 10. Te [0-0.1], (0.1-
0.2], (0.2-0.3], (0.3-0.4], (0.4-0.5], (0.5-0.6], (0.6-0.7], (0.7-
0.8], (0.8-0.9], (0.9-1] region have been labeled with 1 to 10,
each corresponding to a category representing one of the ten
diferent scale of granularity from top to bottom in
Figure 7(b), i.e., from fne-grained to coarse-grained image
granularity. QCNN built on various scale granules can make
use of granularity and scale for classifcation. We divided ten
diferent scale Ising images into fve groups [0-0.1] and (0.9-
1], (0.1-0.2] and (0.8-0.9], (0.2-0.3] and (0.7-0.8], (0.3-0.4]
and (0.6-0.7], and (0.4-0.5] and (0.5-0.6] and performed
binary classifcation, respectively. QCNN, hybrid QCNN,
and hybrid QCNN with multiple quantum layers with
diferent network structures have achieved accuracies of
about 60%–97% on groups [0-0.1] and (0.9-1]. Accuracies of
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6 Quantum Engineering



about 70%–97% have been achieved on groups (0.1-0.2] and
(0.8-0.9]. Accuracies of about 74%–95% have been achieved
on groups (0.2-0.3] and (0.7-0.8]. Accuracies of about 65%–
97% have been achieved on groups (0.3-0.4] and (0.6-0.7],
accuracies of about 75%–97% have been achieved on groups
(0.3-0.4] and (0.6-0.7]. Tey help to explore the relation
between the quantization of pixels of the image and
quantum particles.

In the third set of experiments, we evaluate the ro-
bustness and explainability of QCNNs by exploring the
bitplanes and their antiadversarial attacks classifcation
performance. We simulate the fast gradient sign method
(FGSM) attack on STM to generate adversarial samples,
which exploits the maximum direction of gradient changes
in the network to inject perturbation noise to make the
model deteriorate under the attack. Figure 8 depicts the
original image and the adversarial sample images generated

by FGSM adversarial attack with diferent strengths on STM.
Te attacked image has minor visual diferences but the
bitplanes patterns under attacks show signifcant diferences
and distortions. Te frst column from top to bottom is the
original image, the associated 8th, 7th, 6th, and 5th bitplanes
of the original image; the second column is attacked image
by FGSM attack with the attack strength parameter eps
which is set to 12/255 and its associated sliced bit-planes; the
third column is the adversarial sample image when eps
parameter is set to 16/255 and its associated bit-planes; the
fourth column is the adversarial sample image when eps
parameter is set to 24/255 and its associated bitplane; the
ffth column is the adversarial sample image when eps pa-
rameter is set to 32/255 and its associated bitplane.

Figure 8 shows the original image and its adversarial
sample by FGSM attack and its associated bitplane changes.
Te visualization of the bitplanes changes helps in
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Figure 5: Quantum pooling.
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Figure 6: Binary classifcation on STM images. (a) Te STM dataset and (b) QCNN recognition accuracy.
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interpreting the feasibility of anti-adversarial attack abilities.
Table 2 shows comparisons of classifcation accuracy of
diferent bit-planes against FGSM attacks. Diferent bit-
planes have diferent anti-adversarial attack abilities, and
disturbances in some bitplanes will be suppressed. Classi-
fcation accuracy of classifer performance comparison
under a diferent intensity of FGSM attack has been made
between the original image and that of each bitplanes under
FGSM attacks. Table 2 depicts that when eps parameter is set
to 32/255 in FGSM attack, the accuracy rate is 98.44% in the
seventh bitplane; when eps parameter is set to 24/255, the
accuracy rate is 96.88% in the sixth plane; when eps pa-
rameter is set to 16/255, the accuracy rate reaches 92.19% in
the eighth bitplane; when eps parameter is set to 12/255, the
accuracy rate is 98.44% in the eighth bitplane. Te experi-
mental results show that bitplane slicing can help identify
the true class of adversarial samples and show good clas-
sifcation performance against attacks.

We simulate four typical adversarial attacks: FGSM, CW,
JSMA and DEEPFOOL. Te following experiments are se-
curity evaluation on our QCNN which can resist FGSM,
CW, JSMA, and DEEPFOOL adversarial attack. Figure 9
depicts diferent attacks on the background of the target

image. Te upper images are the original image and the
FGSM, CW, JSMA, DEEPFOOL attacked image, and the
lower images are the corresponding perturbations attack
noise. Te color bar indicates the strength of the attack
which is also shown in Figure 9. An interesting observation
is that some bit-planes can help classifer to improve ac-
curacy. Table 3 depicts that in FGSM adversarial attack, the
eighth bitplane yields the best accuracy 95.31%; in CW
adversarial attack, the sixth bitplane yields the best accuracy
92.19%; in JSMA adversarial attack, the ffth bit-plane yields
the best accuracy 87.50%; in DEEPFOOL adversarial attack,
the sixth bitplane yields the best accuracy 93.75%. Te ex-
perimental results show that bitplanes slicing of QCNN can
accurately identify the true class of adversarial samples and
show good classifcation performance against diferent at-
tacks. Image bitplane slicing has a similar pattern to that of
the Ising phase transition. Tere is research signifcance to
explore the correlation between the chaotic nature of image
and the classifcation/clustering models where the pixels of
the image and the Ising chaology particles share similar
patterns.

In the feature extraction section, the time complexity
of the boxcounting algorithm is shown to be O(nlogn),

Table 1: Experimental results of diferent bitplanes on MERA and boxcounting features.

Feature MERA accuracy Box accuracy MERA loss Box loss
Original 0.9531 0.9844 0.2526 0.0837
Bitplane1 0.7246 0.7326 0.2353 0.3046
Bitplane2 0.7244 0.7355 0.2839 0.2101
Bitplane3 0.7203 0.7364 0.2892 0.2299
Bitplane4 0.7348 0.7552 0.2486 0.2869
Bitplane5 0.9688 0.8906 0.2118 0.7642
Bitplane6 0.9844 0.9062 0.2044 0.2981
Bitplane7 0.9844 0.8281 0.6144 0.7873
Bitplane8 0.9531 0.9821 0.7535 0.6259

(a) (b)

Figure 7: Te similar phase transition in image. (a) Image bitplanes slicing, and (b) multiscale Ising model.
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where n is the number of considered points. Te time
complexity of MERA is shown to be O(n6 log χ · χ4), where χ
is a refnement parameter for bond dimensions. We will
demonstrate that for the neural computation with an
input size of n � 2k, the operator used in quantum
implementation is O(log2 n), while it is O(n) on classical
computers. We adopt the widely used time-space product

complexity as the cost complexity, for the quantum
implementation, the time complexity circuit depth is
O(d · log2 n), where d is the number of layers, while the
space complexity (i.e., qubit numbers) is O(log n). Te
time-space complexity is O(d · log3 n), the hybrid
quantum-classical complexity can still lower than O(d ·

n2) on the classical computer.

Figure 8: FGSM adversarial attack image.

Table 2: QCNN accuracy against FGSM adversarial attacks.

Parameter 32/255 24/255 16/255 12/255
FGSMs 0.9062 0.9219 0.9487 0.9844
Bitplane1 0.7394 0.7439 0.7426 0.7541
Bitplane2 0.7278 0.7297 0.7384 0.7641
Bitplane3 0.7386 0.7344 0.7528 0.7921
Bitplane4 0.7473 0.7469 0.7531 0.7853
Bitplane5 0.9062 0.8281 0.8594 0.8750
Bitplane6 0.8906 0.9688 0.8906 0.8281
Bitplane7 0.9844 0.9665 0.8750 0.9688
Bitplane8 0.9375 0.9531 0.9219 0.9844
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5. Conclusions

In this paper we propose a multiscale entanglement
renormalization ansatz (MERA) features extraction method
based on a novel quantum convolutional neural network
(QCNN) for binary scanning tunneling microscopy (STM)
image classifcation. We design QCNN’s quantum circuits for
state preparation, quantum convolution, and quantum pooling
in the TensorFlow quantum framework and compare the
performance of QCNN classifer and two hybrid quantum-
classical QCNN models. We also reveal the intrinsic mecha-
nism where general image bitplane slicing has a similar pattern
to that of the Ising phase transition, and the adversarial
attacked images have minor visual diferences but the bitplanes

of attacked image show signifcant diferences. Our scheme can
robustly resist adversarial attacks and it is explainable that the
classifcation performance of diferent bitplanes of QCNN also
shows the corresponding diferences under FGSM, CW, JSMA,
andDEEPFOOL attackswith diferent levels of attack intensity.

Data Availability

Te data used to support the fndings of this study are
available at https://alex-krull.github.io/stm-data.html.
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Figure 9: Diferent kinds of adversarial attacked image and their associated perturbation.

Table 3: QCNN accuracy against diferent adversarial attacks.

Types FGSM CW JSMA DeepFool
Attacks 0.8906 0.8906 0.8438 0.8750
Bitplane1 0.7498 0.7465 0.7599 0.7364
Bitplane2 0.7236 0.7283 0.7681 0.7826
Bitplane3 0.7942 0.7563 0.8013 0.7169
Bitplane4 0.8045 0.7954 0.7842 0.7765
Bitplane5 0.9219 0.8112 0.8750 0.8906
Bitplane6 0.8906 0.9219 0.7188 0.9375
Bitplane7 0.9375 0.9062 0.8728 0.9062
Bitplane8 0.9531 0.7656 0.8594 0.9219
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[2] V. Havĺıček, A. D. Córcoles, K. Temme et al., “Supervised
learning with quantum-enhanced feature spaces,” Nature,
vol. 567, pp. 209–212, 2019.

[3] A. W. Harrow and A. Montanaro, “Quantum computational
supremacy,” Nature, vol. 549, no. 7671, pp. 203–209, 2017.

[4] E. Tang, “A quantum-inspired classical algorithm for rec-
ommendation systems,” in Proceedings of the 51st Annual
ACM SIGACT Symposium on Teory of Computing, Phoenix
AZ USA, June 2019.

[5] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional
neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–
1278, 2019.

[6] J. Kossaif and A. Bulat, “T-net: Parametrizing fully con-
volutional nets with a single high-order tensor,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, June 2019.

[7] M. Henderson, S. Shakya, S. Pradhan, and T. Cook,
“Quanvolutional neural networks: powering image recogni-
tion with quantum circuits,” Quantum Machine Intelligence,
vol. 2, no. 1, p. 2, 2020.

[8] M. Broughton and G. Verdon, “Tensorfow quantum: a soft-
ware framework for quantum machine learning,” 2020,
https://arxiv.org/abs/2003.02989.

[9] M. Plesch and C. Brukner, “Quantum-state preparation with
universal gate decompositions,” Physical Review A, vol. 83,
no. 3, pp. 032302–032320, 2011.

[10] A. M. Childs and N. Wiebe, “Hamiltonian simulation using
linear combinations of unitary operations,” 2012, https://
arxiv.org/abs/1202.5822.

[11] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
“Quantum circuits for isometries,” Physical Review A, vol. 93,
no. 3, Article ID 032318, 318 pages, 2016.

[12] J. G. Liu and L. Wang, “Diferentiable learning of quantum
circuit born machines,” Physical Review A, vol. 98, no. 6,
Article ID 062324, 324 pages, 2018.

[13] S. Wei, Y. Chen, Z. Zhou, and G. Long, “A quantum con-
volutional neural network on nisq devices,” AAPPS Bulletin,
vol. 32, no. 1, p. 2, 2022.

[14] S. Y. C. Chen, T. C. Wei, C. Zhang, H. Yu, and S. Yoo,
“Quantum convolutional neural networks for high energy
physics data analysis,” Physical Review Research, vol. 4, no. 1,
Article ID 013231, 2022.

[15] Y. C. Li, R. G. Zhou, R. Xu, J. Luo, and W. Hu, “A quantum
deep convolutional neural network for image recognition,”

Quantum Science and Technology, vol. 5, no. 4, Article ID
044003, 2020.

[16] A. Datta and M. Fredrikson, “Machine learning explainability
and robustness: connected at the hip,” in Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, Singapore, August 2021.

[17] G. Ras, N. Xie, M. Van Gerven, and D. Doran, “Explainable
deep learning: a feld guide for the uninitiated,” Journal of
Artifcial Intelligence Research, vol. 73, pp. 329–397, 2022.

[18] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and
control for cyber-physical systems under adversarial attacks,”
IEEE Transactions on Automatic Control, vol. 59, no. 6,
pp. 1454–1467, 2014.

[19] N. Akhtar and A. Mian, “Treat of adversarial attacks on deep
learning in computer vision a survey,” IEEE Access, vol. 6,
pp. 14410–14430, 2018.

[20] J. W. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for
fooling deep neural networks,” IEEE Transactions on Evolu-
tionary Computation, vol. 23, no. 5, pp. 828–841, 2019.

[21] X. Y. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples:
attacks and defenses for deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 9,
pp. 2805–2824, 2019.

[22] S. Y. Yang and M. Wang, “Deep sparse tensor fltering net-
work for synthetic aperture radar images classifcation,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 29, pp. 3919–3924, 2018.

[23] E. M. Stoudenmire and D. J. Schwab, “Supervised learning
with quantum-inspired tensor networks,” 2016, https://arxiv.
org/abs/1605.05775.

[24] A. Hallam and E. Grant, “Compact neural networks based on
the multiscale entanglement renormalization ansatz,” 2017,
https://arxiv.org/abs/1711.03357.

[25] G. Evenbly and S. R. White, “Entanglement renormalization
and wavelets,” Physical Review Letters, vol. 116, no. 14, Article
ID 140403, 2016.

[26] J. Haegeman, B. Swingle, M. Walter, J. Cotler, G. Evenbly, and
V. B. Scholz, “Rigorous free-fermion entanglement renorm-
alization from wavelet theory,” Physical Review X, vol. 8, no. 1,
Article ID 011003, 2018.

[27] G. Chen and Q. Chen, Quantum Convolutional Neural
Network for Image Classifcation”, Pattern Analysis and Ap-
plications, Newyork, NY, USA, 2022.

[28] A. Krull, P. Hirsch, C. Rother, A. Schifrin, and C. Krull,
“Artifcial-intelligence-driven scanning probe microscopy,”
Communications on Physics, vol. 3, no. 1, p. 54, 2020.

[29] C. Panigrahy and A. Seal, “Is box-height really a issue in
diferential box counting based fractal dimension?” in Pro-
ceedings of the International Conference on Information
Technology, Delhi, India, June 2019.

[30] B. Coyle, D. Mills, V. Danos, and E. Kashef, “Te born su-
premacy: quantum advantage and training of an Ising born
machine,”Npj Quantum Information, vol. 6, no. 1, p. 60, 2020.

Quantum Engineering 11

https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/1202.5822
https://arxiv.org/abs/1202.5822
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/1711.03357



