
Research Article
Quantum SoC and On-Chip Circuit Synthesis in the NISQ Era

Nan Wu ,1,2 Yucheng Hu,1,2 Fangmin Song,1,2 and Xiangdong Li3

1State Key Laboratory for Novel Software Technology, Jiangsu 210093, China
2Department of Computer Science and Technology, Nanjing University, Jiangsu 210093, China
3New York City College of Technology, City University New York, New York, NY 10016, USA

Correspondence should be addressed to Nan Wu; nwu@nju.edu.cn

Received 22 October 2022; Revised 29 April 2023; Accepted 27 June 2023; Published 12 July 2023

Academic Editor: ShiJie Wei

Copyright © 2023NanWu et al.Tis is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, fueled by the breakthroughs in the technology in quantum computation, there has been a rising interest in the
noisy intermediate-scale quantum (NISQ) era. In addition to a large number of qubits, the study of error correction and quantum
algorithms has made great progress. However, as a primary goal of quantum computation, making practicable quantum
computers in the NISQ era still needs further study, mainly focusing on quantum computer organization, architecture, and circuit
synthesis. Tis paper studies the quantum circuit synthesis in a small-scale universal quantum computing device called
a “quantum system-on-chip” (QSoC).We analyze the quantum compilation of the hybrid architecture for a small-scaled universal
quantum computational device with a specifc size (quantum chip). Two kinds of on-chip circuit synthesis algorithms are
proposed and discussed.

1. Introduction

In recent years, rapid development has been made in
quantum computing science and the quantum information/
communication industry, and several milestones in quan-
tum computing devices have been achieved. One remarkable
progress is that the number of controllable quantum bits is
increased from less than 20 to 20–50 or even to 100. Te
manipulation of these qubits in a noisy environment is
feasible. In 2018, Preskill frst used the term “noisy
intermediate-scale quantum” (NISQ) [1] for the current
quantum era.

Today, a feasible, reliable, scalable, and ultimately uni-
versal quantum computational device can meet several
rigorous requirements to build a quantum computer in
small-scale and noisy environments.

Several researchers focused on the small-scale and in-
tegrated realization of quasi-universal quantum computing.
Te term “on-chip” has also been proposed in some re-
search. In 2012, frst, on-chip quantum simulation with
a superconducting circuit was demonstrated [2]. In recent
years, the on-chip method has been widely used for
entangled pair generation [3, 4], quantum control [5], etc.

However, there is no research on the integrated architecture
for universal quantum computation in the on-chip method,
which means all the abovementioned studies are focused on
the part of the quantum computing system, not the whole
system itself. Our purpose in this paper is to give a tentative
study for building a fully functioned quantum computing
system on a chip-sized device. So we call this architecture
“quantum system-on-chip.”

We will mainly focus on the function of quantum sys-
tem-on-chip that meets the requirements of NISQ quantum
computation. In 2000, DiVincenzo proposed fve conditions
necessary for constructing a quantum computer [6]:

(1) A scalable physical system with well-characterized
qubits

(2) Te ability to initialize the state of the qubits to
a simple fducial state

(3) Long relevant decoherence times
(4) A “universal” set of quantum gates
(5) A qubit-specifc measurement capability.

Although the abovementioned conditions were pro-
posed for experimental quantum computing devices with

Hindawi
Quantum Engineering
Volume 2023, Article ID 5792902, 10 pages
https://doi.org/10.1155/2023/5792902

https://orcid.org/0009-0006-9829-5266
mailto:nwu@nju.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5792902

a very small size (approximately 2–10 qubits), but with
additional criteria, they are still necessary to meet the new
theoretical and technical requirements in the NISQ era.
Tese new criteria are listed as follows:

(1) Several scalable qubit-based quantum resources
(qubits in particular states, entanglement pairs, etc.)

(2) A hybrid “universal” computational architecture (at
the “hardware” level)

(3) A set of quantum low-level procedures (at the
“software” level) or as “quantum primitive”

(4) A set of noisy suppression and error correction
mechanism or algorithms (at both “hardware” and
“software” levels).

Te hybrid architecture refers to the famous principle of
“quantum data + classic control,” proposed by Selinger [7].
With the new criteria and studies on a quantum computer
system [8], we draw a block diagram showing the scientifc
(theoretical) and engineering (experimental) roadmap of
a quantum computer in the NISQ era (see Figure 1).

Te paper also studies a quantum circuit synthesis model
that ensembles most parts of the organization of a “quantum
system-on-chip.” Teoretically, it meets the requirements of
DiVincenzo and the new criteria. We mainly focus on
quantum circuit synthesis and the related architecture.

As a tentative study of the novel architecture and its
synthesis, there are several challenges. First, the small-size is
very challenging, although the manipulatable qubits
in QSoC.

Here is the outline of this paper: In Section 2, we study
the hybrid architecture and organization of quantum
computation in QSoC. A reduced quantum instruction set
for universal quantum computation is analyzed, and the
algorithmic realization of QSoC is discussed. In Section 3, we
study the quantum compilation, an equivalence measure-
ment of the quantum algorithm, and the corresponding
quantum circuits. Some classic synthesis algorithms and
a semiformal method of quantum synthesis are discussed.
Quantum gate decomposition and its optimization algo-
rithm for quantum circuit synthesis are studied in Section 4.

2. The Hybrid Architecture of the
Quantum System-on-Chip

From a microscopic point of view, quantum computation
performs a set of unitary transformations on a given initial set
of quantum states, and a quantum computational algorithm
at a large scale is a unitary matrix that performs on an initial
unitary matrix of the same size. It means that all quantum
algorithms have diferent functions in which the parameters
and return values are unitary matrices. Te quantum evo-
lutions in a quantum algorithm perform intrinsic actions on
the quantum variables. Although a quantum program can be
compiled into a sequence of quantum gates to control qubits,
from a point of view of reliability and scalability, the se-
quenced gate instructions cost more physical and logical
resources for error correction and may cause more cascading
failures in the program implementation.

Here, we give the discussion based on a logical archi-
tecture rather than a physical architecture of the QSoC
quantum device.

In quantum science, the design of the architecture and
organization of a computing device is based on a specifed
computational model. Te traditional architecture of
a computational model of a quantum Turing machine
(QTM) or quantum random-access machine (QRAM) is
mainly an imperative paradigm. Logically, an imperative
quantum computational device should have several separate
units, each with its own functions. Te most common
imperative architecture of quantum computing devices is the
quantum von Neumann architecture [9]. Te quantum
architecture contains a quantum memory unit, a control
unit, an input/output unit, a quantum arithmetic logic unit
(QALU), and a quantum bus system. In the quantum von
Neumann architecture, there is no physical QALU and
physical quantum control unit; all qubits are stored in
a quantum memory unit (like the organization proposed in
this paper). However, at the level of software processing,
there is a lot of diference between the quantum von
Neumann architecture and the proposed QSoC architecture.

We now discuss the diferent paradigms between classic
and quantum computation. In a classic computational al-
gorithm, a series of functions update the variables in a real
linear space. In a quantum computational algorithm, a whole
function performs the update of all quantum variables in
Hilbert’s space. Tis implies that the use of the imperative
paradigm in a classic computational model (architecture) is
better. For example, the von Neumann architecture of
a classic computer is an imperative paradigm. Te von
Neumann architecture allows the separation of all compu-
tational resources into several “units,” each of which has its
own functions, such as a processing unit, control unit,
memory, input, and output mechanism. However, quantum
computation is more like a declarative paradigm, which
means a quantum computational algorithm always performs
an integrated transformation with all intrinsic variables and
obtains the fnal output (i.e., all fnal states of variables inside
an entire unitary matrix). A detailed discussion of the dif-
ferent paradigms is given in [10]. Te design of a declarative
computational model and declarative architecture is more
simplifed than that of an imperative architecture. Te
proposed hybrid architecture of the quantum system-
on-chip is based on the imperative paradigm: a quantum
memory unit is the unique center of the architecture, storing
all qubits and/or quantum computations; quantum com-
munications are performed in the quantum memory, see
more discussion below.

From the universal viewpoint of a quantum computer,
the essential organization of a hybrid quantum computer
can be generalized as “quantum data with classic control.”
Tis architectural model mainly contains a classic controller
(or classic computing part), a quantum memory unit,
a quantum computing unit, and a quantum input-output (I/
O) device [10]. If a quantum computing device is designed
for a specifc use, e.g., quantum communication or quantum
random number generation (QRNG), the organization and
architecture can be simplifed.Te central parts of the hybrid

2 Quantum Engineering

Theory and
Technology

Quantum Mechanics and Information Theory

Quantum Information Theory Quantum Error Correction
Theory

Qubit Manipulate Technology Quantum Gates Manipulate
Technology

Qubit Coherence Control Qubit Storage Technology

Classic Control
Theory and
Realization

Physical
Platform of
Realization
(Hardware)

QEC Theory and
Realization

Quantum
Storage

Relization

Quantum
Coherence
Persistence
Relization

Qubit
Interconnec

tion/
Quantum

Wire

Quantum
Computer

Architecture

Classic
Data

Quantum Instruction Set System
and

Quantum Primitives

Hierarchical Quantum Error
Correction and Micro-

architecture/Algorithms

Quantum Resources Scheduling System

Quantum Operating
System

High-level Quantum Error Correction Realization
High-level Quantum Fault-tolerance Realization

Application Programming Interface (API)

Quantum Error Correction Code

Quantum Application Software in NISQ Era

Quantum Programming
Language Processing

System

Quantum
System

Software

Quantum
Application

Software

Quantum Computer Organization
Quantum Memory, ALU. Operational Control Unit, Quantum I/O Device. etc.

Quantum Basic
Operations

QFT, Toffoli, etc.

Specified Quantum
Algorithm

Shor, Grover, HHL, etc.

Figure 1: Block diagram of a quantum computer system (the parts flled with yellow are in QSoC).

Quantum Engineering 3

quantum computing device are a quantummemory unit and
a quantum computing unit.

In the architecture of QSoC proposed in the paper, the
central part of the entire system is the quantummemory unit
rather than the quantum computing unit, and we call this
“storage-centric” paradigm. Unlike a quantum computer in
its early age (so-called“computing-centric” paradigm),
quantum memory is a place where quantum states (e.g.,
quantum variables) are stored and quantum computation is
conducted. We have designed several mechanisms, like the
decoherence-free subspace and hierarchy QECC, to suppress
decoherence in the quantum computing process and qubit
states. In the NISQ era, these mechanisms can also be
considered in the design of QSoC, see Figure 2 and details in
[8, 10].

Now, we give a detailed description and a comparative
study of the “storage-centric” and the “computing-centric”
paradigms. In the traditional quantum computation model,
similar to the classic Turing machine model-based von
Neumann architecture, there is a quantum memory sub-
system at the hardware level. Tis traditional quantum
memory subsystem plays the complete role of quantum
storage, including the original input quantum data and the
quantum data generated during compute processing. It is
a crucial component of the traditional universal quantum
computer. Under this architecture, quantum memories can
communicate with the quantum arithmetic and logic unit
(QALU) during quantum computing through a quantum
state transfer (QST) process, which can be performed with
a “quantum wire (use entanglement)” or with other tech-
niques. A QSTallows quantum information to be transferred
from one physical system to another without disturbing its
quantum state. Tese communication mechanisms allow
quantum information to be stored and retrieved in
a quantum memory subsystem. However, there are several
disadvantages and challenges associated with this QST
technique, which are as follows: (1) QST requires the
preservation of delicate quantum states over a relatively long
distance (due to the separation of the quantum memory
subsystem and QALU subsystem. However, quantum states
are susceptible to decoherence, which is the loss of quantum
coherence due to interactions with the environment. Tis
can limit the distance over which quantum state transfer is
possible. (2) Error correction can also be challenging in the
QSTdue to the no-cloning theorem, so quantum error might
be accumulating in this architecture. (3) QST often requires
the use of entanglement, which is a limited and valuable
resource in quantum computing. In addition, the creation
and manipulation of entangled states can be resource-
intensive and time-consuming. (4) Finally, QST can be
a complex process, involving multiple physical systems and
control mechanisms. Tis complexity can increase the
likelihood of errors and decrease the overall efciency of
quantum information processing.

In comparison, the paradigm of “storage-centric” allows
the transfer of all quantum computing processing into the
quantum memory unit, which eliminates the quantum state
transfer from the quantummemory subsystem to the QALU.

All we need is the resource of qubit in the quantum memory
unit, and this actually makes the QALU a coprocessor.

Under thememory architecture (shown in Figure 2) with
the “storage-centric” paradigm, quantum memory units
tend to have simpler designs than computing-centric sys-
tems, because they equalize the logical functionality of
computation and storage. Te ensemble design of quantum
memory units, e.g., decoherence subspace (DFS) control and
code teleportation modules, EEU, and SPU, requires less
sophisticated control mechanisms to manipulate and
measure quantum states in real-time. Te second advantage
is that the storage-centric paradigm allows error-correcting
codes and DFS to protect quantum information from
decoherence and other errors, in both storage and com-
putation processing. In contrast, the computing-centric
paradigm should use diferent kinds of error correction to
maintain the accuracy of storage and computations. In terms
of scalability, storage-centric paradigm can be easier to scale
up both quantum storage ability and the useable number of
qubits in quantum computation.

Te quantum computing instructions in QSoC perform
a universal transformation on quantum data (variables) with
a given initial or intermediate quantum state. A quantum
gate set is a kind of interface between the hardware and
system software (quantum compiler). A hardware quantum
unitary gate set is a set Λ � Aj(θ)􏽮 􏽯, where Aj is a single-
qubit quantum gate or two-qubit quantum gate, which may
contain a continuous internal parameter θ. Te set Λ is
a discrete set with a continuous variable. Te size of the
quantum gate set can be small (e.g., IBM’s IBMQX4 5-qubit
experimental quantum computing device has a gate set that
contains only 10 universal gates [11]). Te quantum in-
struction set is designed based on the quantum gate set and
the architecture of the quantum computing device. Like
a classic instruction set, it can also be designed as a reduced
(i.e., reduced instruction set computer, RISC) or complex
(complex instruction set computer, CISC) set. A more de-
tailed discussion of quantum instruction sets can be found
in [12].

Te QSoC from this paper provides a reduced in-
struction set, which contains fve kinds of instructions: pure
quantum instructions, quantum initialization, quantum
evolution, scheduling, and measurement (fnalization).

In a memory unit of QSoC, the quantum bits are or-
ganized in a lattice structure shown in Figure 2. Each qubit
pool keeps the qubits in several rows and columns; they
share an entropy exchange unit (EEU) and a state purif-
cation unit (SPU) [13]. Te strength of quantum coherence
between adjacent qubits can be measured and manipulated
by a quantum program, which is realizable in NISQ [14, 15].
Such in-qubit coherence links up all qubits in a pool and
their characteristics in a “quantum wire.” Te disadvantage
of the qubit’s lattice topology is that it costs superpolynomial
SWAP operations in the quantum circuit. However, the EEU
can eliminate extraentropy made by SWAP operations by
using specifc protocols [16].

With the protection designed in the structure and or-
ganization of QSoC, all quantum algorithms can be

4 Quantum Engineering

programmed and compiled into quantum circuit language
and then assembled into quantum gate-based instructions.

In quantum algorithms, the frequently performed pro-
cedures can be reused. We call the reusable procedures as
quantum primary. Te set of quantum primary procedures
mainly includes quantum Fourier transform (QFT), quan-
tum phase estimation, fast quantum modular exponentia-
tion, and quantum algorithms for linear system of equations
(e.g., HHL algorithm).

3. Quantum Compilation in the Quantum
System-on-Chip

3.1. Quantum Compilation in the NISQ Era. Teoretically,
quantum computation can provide speed-up (polynomially
or even exponentially) in specifc algorithms, such as fac-
torization, approximate optimization, and simulation of
quantum systems. Building NISQ computers for practical
applications is challenging. Te main goal of the system

Quantum Memory Unit

……

Code

Telepo
rtation

Telepo
rtation

DFS

Con
trol

Con
trol

CodeDFS

Entropy Exchange Unit

Entropy Exchange Unit

Qubit Pool

Qubit Pool Qubit Pool

Qubit Pool
(20-50 qubits, in NISQ Era)

TO QUANTUM RESOURCE
SCHEDULER

TO QUANTUM COMPUTING
UNIT

State Purification Unit

: physical qubit , : coherence ,

: quantum device , : classic device (incl. quantum register)

or : quantum wire , : classic chanel , : quantum chanel

State Purification Unit

Figure 2: Diagram of a quantum memory unit in QSoC.

Quantum Engineering 5

software is to transform the formal quantum algorithms into
operational sequences of a quantum device, to meet the
requirements of NISQ, and to be executed on NISQ
equipment at the end. Technically, the limitations of NISQ
include the following: (1) the number of qubits, (2) con-
nections (quantum wire) between qubits, (3) quantum gates
(specifc hardware), and (4) the circuit depth caused by
noise. Te quantum algorithms are hardware-independent,
but quantum programs and applications are hardware-
dependent. Te quantum compilation can bridge the gap
between the requirements of algorithms and programs,
which is very important to realize the quantum system on
the chip.

In general, the execution of a quantum algorithm is
considered to run sequenced instructions in an idealized
architecture with perfect and sufcient qubits, quantum
gates, and an error-free environment. However, in actual
NISQ quantum devices (e.g., IBM, Rigetti Computing [17],
Google [18], and Intel [19]), the environment is imperfect.
Te quantum compilation is used to convert a higher level
algorithm into a lower level sequence that can be executed
on the NISQ device.

In addition, with the limitation of the quantum gate
resource, the compiler can shorten the sequence of com-
puting gate circuits. For example, in an n−qubit quantum
Fourier transform (QFT), there is a complex composition of
Hadamard gates and controlled rotation gates. Te number
of gates in the algorithm (QFT) is in O(n2). Te optimized
quantum compiler is based on the structure of QFT, so the
complied output is more accurate than the one just based on
the structure of the deep gate sequence. Tis optimization
can also be applied to quantum Oracle design, noise re-
duction, and error suppression.

3.2. Evaluation of Quantum Compilation. Several methods
can evaluate the efciency of a quantum compilation system.
A norm-based method is discussed below.

In quantum computing theory, if the same quantum
transform is simulated on diferent circuits, the compilation
results can be diferent. Te norm can evaluate the quality of
quantum compilation and circuit synthesis, that is, to
minimize ‖U − US‖ where the operator U is unitary, which
describes the quantum transform, and the operator US is the
output solution of the compiler or synthesis algorithm. An
error ϵ is set to approach the transform optimization, i.e.,
‖U − US‖≤ ϵ. In QSoC, the evaluation method is the Hil-
bert−Schmidt norm [13], due to its low cost of evaluation:

〈U, US〉HS � Tr U
†
US􏼐 􏼑. (1)

3.3. Quantum Circuit Synthesis by Heuristic Search. Te
traditional quantum circuit synthesis algorithm mainly in-
cludes cosine-sine decomposition (CSD) [20] and
UniversalQ [21].

Tis section introduces a new algorithm: quantum
stimulated annealing circuit synthesis (QSACS), which uses
stimulated annealing (SA) and machine learning to optimize

quantum compilation and circuit synthesis. QSACS can
minimize the objective function (1) based on the search
strategy.

Formally, we consider a quantum gate set Λ � Gk(α)􏼈 􏼉,
where k is a discrete parameter and α is a continuous pa-
rameter. Te compilation algorithm will output a quantum
gate sequence V. In QSoC, compiling unitary trans-
formation U into a sequence of gate V with sequence length
L can be described as the following optimization problem:

αopt, kopt􏼐 􏼑 ≔ argmin,
(α,k)

C U, Vk(α)(􏼁, (2)

where Vk(α) � GkL
(αL)GkL−1

(αL−1) · · · Gk1
(α1) is a trainable

machine; actually, it is a unitary transformation.
In the architecture of QSoC, the parameters of topology

and interconnection are defned. Te discrete parameter k
describes the topology of an entire circuit, which is a sub-
space of the QSoC’s circuit space; the continuous parameter
α describes the characteristics of each quantum gate, which
is the combination of the quantum gates defned in the
instruction set. Te length L of the sequence V is fxed as
a constant in the optimization process, and other parameters
may vary in the process of the optimization training pro-
cedure. Te function C(U, Vk(α)) is a cost function to
describe the “distance” between the trained and the target
unitary transformations. Apparently, for any unitary
transformation U and V, there is 0≤C(U, V)≤ 1 and U � V

if and only if C(U, V) � 0.
With topology-aware optimization, the QSACS method

can work properly to obtain the optimal circuit topological
mapping from the application quantum algorithms. Te
advantage of the proposed method contains two parts: the
system can use the declarative paradigm of quantum
computing as a whole unitary transformation; and the
topology-aware method can reduce the computational cost
of the quantum part in a QSoC system.

4. Quantum Circuit Synthesis for the Quantum
System-on-Chip

In the discussion of Section 3.3, we analyze a quantum
circuit synthesis algorithm based on machine learning and
simulated annealing (SA). Te algorithm defnes a cost
function and optimizes the target circuit in circuit space by
using heuristic search.Te algorithm’s target circuit (output)
will be the optimal circuit with a lower cost. Te strategy of
this algorithm is if the cost of a synthesis circuit increases,
the algorithm will determine whether to accept a structural
change based on a specifc probability. Te acceptance
probability decreases exponentially as distance for a change.

As discussed in Section 2 for the QSoC in the hybrid
architecture, the classic part of the QSoC maintains a classic
version of all quantum transformations, which correspond
to the quantum algorithm for execution. Te classic part is
a coprocessor which assists the quantum part in classical
computations in real-time circuit synthesis.

For the quantum part of QSoC, the memory unit is in
initial states at the time of circuit synthesis, and all quantum
variables are in preparation states. Notice that, in QSoC,

6 Quantum Engineering

there is no quantum processing unit (QPU). Te prepared
quantum circuit topology is in classic storage (classic
memory), similar to von Neumann’s stored-program
computer. Tere is no gate-based sequence generated
from the circuit synthesis procedure, only a declarative
circuit-based topological mapping from the classic part of
QSoC to the memory unit in the quantum part of QSoC.Te
detailed discussion of the quantum circuit synthesis by
heuristic search is shown in [22].

We consider that a unitary transformation U and a gate
sequence V are performed on a d−dimension space with an
n−qubit, where d � 2n. We defne the cost function from (1)
and (2):

C(U, V) � 1 −
〈U, V〉HS

d

� 1 −
Tr U

†
V􏼐 􏼑

d
,

(3)

where C(U, V) ∈ [0, 1] is real, when the term Tr(U†V)/d is
close to 1, and the sequences V and U are equivalent in the
global system when the loss function equals to 0.Tat means
the unitary transformation U and gate sequence V are
operationally equivalent in the given quantum algorithm.
Tis synthesize is simple and efcient.

A simplifed block diagram of the proposed circuit
synthesis is shown in Figure 3.

4.1. Method. In Section 3, a probabilistic methodology to
optimize the synthesis problem is proposed. A good
method may use randomly constructed gate sequences to
compute a large amount of data. Half of the data are used to
train the algorithm, namely, to optimize the cost function;
another half of the dataset is used as a test dataset to
evaluate the performance of the training model. Te data
used for training should cover all possible input branch
spaces of a given algorithm. Because the algorithm
(compiled gate sequence) is a linear mapping from the data
qubit space (in 22n−dimension) to a real number (in one
−dimension), the estimation of the amount of training data
to minimize the cost function is 22n, where n is the number
of data qubits. Te proposed method uses a unitary matrix
with a size of 22n, and the estimated constraints required to
determine the algorithm parameters are 22n. Tese data can
be processed by using a classic computer in the hybrid
model of QSoC.

Te structural update discussed in Section 3 refers to the
dynamical modifcation of the discrete parameters, in-
cluding the use of new quantum gates to randomly replace
some of the gates in the generated gate sequence. In the
update process, the type and/or position of a given quantum
gate may be changed to reoptimize the cost function on
a continuous parameter α. Due to the restrictions of the
structure, reducing the gate sequence is usually not easy.
Terefore, a key point of structural optimization is that every
change in discrete parameters requires to reoptimize the
continuous parameters; this is very important for the op-
timization efciency.

We chose the backtracking algorithm to optimize the
continuous parameter in which the updates of all single-
qubit gates are in operation order, which means that only
one single-qubit gate is updated at a time and other quantum
gates are kept in quantum memory. After determining an
optimal quantum gate (i.e. the quantum gate minimizes the
cost function), it moves to the next quantum gate. Te al-
gorithm can also change the order of a quantum gate
randomly to avoid local minima as possible. We consider the
gradient descent method as the continuous parameter op-
timization of a single quantum gate, because a qubit gate can
be described by three real parameters. Te gradient descent
method can be operated efciently in a three-dimensional
space. Compared with the continuous parameter optimi-
zation, the algorithm needs to repeatedly optimize the
continuous parameters until the cost function
converges [22].

After the iteration (including the update of both discrete
and continuous parameters), the cost will be computed. If
a structural change lowers the costs, it will be accepted; if
costs increase, then it will decide whether to accept the
structural change based on a specifc probability. Tis
process behaves as simulated annealing (SA), which can
efectively solve the problem of locally optimal solutions.Te
algorithm should fnd the global optimal solution instead of
searching for the local minimum (optimal). Such a synthetic
algorithm will have a greater “hit” possibility of fnding the
optimal solution for the circuit.

Another problem in this method is the length of the
generated gate sequence. Te simulation on NISQ shows
that the upper bound of the length of the gate sequence is
nearly eight times of the number of useable physical qubits.
If an overlength sequence is adapted, the cost for error
correction is also overproportioned. So limiting the length of
the gate sequence is important.

After several steps of the iteration, the algorithm checks
whether the current gate sequence Vk(α) can be reduced.
Te algorithm will try to fnd if there is an equivalent Vk(α)

subsequence that can be substituted as a number of gates
with a smaller size. If possible, it will modify the current gate
sequence Vk(α) accordingly.Te length of the gate sequence
is shortened, but the cost is not increased. Te algorithm to
compress the subsequences is consistent with the process of
the algorithm, and it is also iterative for both discrete and
continuous parameter optimization. Te same method can
be used recursively since the size of quantum gates is fxed.
Tis compression method may cause a shorter gate sequence
than the fxed length L. Regularly, compressing the length of
the gate sequence is particularly useful for searching for
global optima because the random update of discrete pa-
rameters can generate gate sequences containing re-
dundancy. Such gate sequences often reach the local minima
of cost after continuous optimization. But if the redundant
subsequences are removed, the local minima can be avoided.

Te algorithm iterates the process until the cost function
converges or the number of iterations reaches the limit; then,
the fnal gate sequence circuit is obtained. For a fxed gate
sequence length L, this algorithm can usually obtain an
approximate optimization of compilation for the quantum

Quantum Engineering 7

algorithm U, which is sufcient to realize an equivalent
circuit generation. If a more precise (or better) compilation
is required, more elaborate compilation methods should be
considered, such as hierarchical compilation.

4.2. Treshold of Synthesis. Te threshold is set in the al-
gorithm to speed up the compilation process. When the
algorithm searches for a circuit, it is terminated and gen-
erates a circuit when the cost reaches the acceptability
threshold ϵ. Te threshold is determined by the following
three criteria: (1) the new circuit can implement the original
quantum algorithm with a given accuracy, (2) the generated
unitary gate sequence should do the same task as the original
unitary transformation, and (3) the algorithm can be exe-
cuted within a reasonable time. Tomeet these criteria, we use
the thresholds with diferent precision in the simulation and
introduce a threshold of 10− 9.

4.3. Postcompilation Optimization. In the synthesis pro-
cedure, the algorithm optimizes the structure of the gate
sequence, and the approximate compilation for a gate se-
quence with length L of the quantum algorithm U is

obtained ultimately. Next, the obtained sequence will be
optimized by the gradient descent-based machine learning
method.

Suppose the gate sequence generated by a compiler is
Vk(α) � GkL

(αL)GkL−1
(αL−1) · · · Gk1

(α1), the gradient of
Vk(α) can be described as follows:

∇αVk(α) �
zVk(α)

zα1
, · · · ,

zVk(α)

zαL

􏼠 􏼡. (4)

Te gradient of one single gate can be described as
follows:

zVk(α)

zαl

􏼠 􏼡
i,j

�
zVk(α)i,j

zαl

, (5)

which refers to the gradient of the gate of (i, j)−th matrix
element of the given gate sequence Vk(α).

For example, we take the rotation gate Rz(α) � e− iασz/2

according to (5), and the derivate of the parameter α can be
obtained:

Quantum Algorithm
U

Iterate Convergence
or

Upper Bound Reached Quantum Circuit
Vk (α)

Update Parameters via
Compute Cost Function C

Optimize Continuous
Parameter

α = (α1, … , αL)

Stochastic Choice Discrete
Parameter

k = (k1, … , kL)

Figure 3: Diagram of the quantum circuit synthesize method in QSoC.

Input: Input unitary transformation Un; trainable unitary sequence Vk(α); gradient iterate number L; maximum iterate number N;
error tolerance ϵ′ ∈ (0, 1); learning rate η> 0;
Output: Optimal parameter αopt; C(U, Vk(αopt)); C(U, Vk(αopt))≤ ϵ′;
(1) αopt⟵ 0; cost⟵ 1; r⟵ 0
(2) While cost> ϵ′ and r<N do
(3) randomly choose the parameter α0
(4) for i � 1, 2, . . . , L do
(5) compute cost function C(U, Vk(αi− 1))

(6) compute gradient zαi−1Vk(αi− 1)

(7) update αi←αi− 1 − η∇αC(U, Vk(αi− 1))

(8) end
(9) compute cost function C(U, Vk(αL))

(10) ifcost>C(U, Vk(αL)) then
(11) αopt⟵ αL

(12) cost⟵C(U, Vk(αL))

(13) end
(14) r⟵ r + 1
(15) end
(16) return αopt, cost

ALGORITHM 1: Optimization of continuous parameter based on gradient.

8 Quantum Engineering

z

zα
Rz(α) � −

i

2
σzRz(α). (6)

Here, we only consider the parametrized single-qubit
gates, and all are rotation gates. Te gradient between them
can be easily evaluated.

Both the time and space complexities of the gradient
optimization are in polynomials: the primary compute
component is to compute the gradient zαi−1Vk(αi− 1), the
Kronecker product of a d−dimension unitary matrix
U ∈ U(d) takes O(d2) steps, and the normal product of 2
unitary matrices takes O(d3) steps. So, to compute the
gradient and take optimization in a quantum circuit with
depth in D and with the iteration round N, the total time
complexity should be O(d3D2N) and the space complexity
should be O(D + d2), due to the fact that the memory for
computing can be released between every iteration round.

Algorithm 1 is designed to optimize the continuous
parameter via gradient descent method [22].

Tis algorithm can obtain an ϵ−approximate compila-
tion result of U, where ϵ � (d/(d + 1))ϵ′, d � 2n.

5. Conclusion

Quantum circuit synthesis (quantum compilation) is
a fundamental technique in the era of NISQ, and it is
a method of generating equivalent circuits for quantum
processors. It synthesizes the equivalent circuits based on
a given unitary transformation. Various limitations of the
QSoC device (such as the limited circuit depth, limited
topology, and limited number of quantum gates) restrict the
realization of quantum algorithms. Circuit synthesis can be
implemented by adapting quantum algorithms to quantum
system-on-chip under limited conditions. Te development
of an efcient and high-fdelity quantum circuit synthesis
algorithm has become a focus of QSoC research.

Tis paper focuses on the quantum circuit synthesis
algorithm, which converts a higher level abstract algorithm
into a lower level form to be executed on NISQ devices. With
this algorithm, we improve the general quantum algorithms
for QSoC. Te algorithm or the method proposed in the
paper adapts a decomposition method based on a heuristic
search. When a circuit synthesis problem is formalized,
a high-fdelity output circuit can be obtained through it-
erative optimization on the optimizing target. In the process
of algorithm iteration, we use the gradient descent and
simulated annealing methods to optimize the cost function.

Compared with the traditional quantum computational
architecture with a quantum processing unit (QPU), the
quantum memory-centralized architecture proposed in this
paper has two advantages. First, all quantum variables are
independent of a physical quantum storage unit, making all
quantum variables “logical”. Second, all procedures that
quantum computation executes can be separated into dif-
ferent logical subprocedures. Tey can be executed in the
quantum ALU part, the quantum memory unit, or even in
the classic part. However, it adds difculty to preprocessing
because the “whole” logic processing of a set of variables is
separated into a number of small processing.

We also study the topology-aware synthesis algorithm. It
generates the corresponding gate sequence based on the
quantum gate set and topological structure of the QSoC.

For further study, an open quantum system will be
modeled in the noisy environment in the QSoC. Te syn-
thesis of circuits in an open environment (that is, in an open
environment without QECC or with weak error tolerance) is
interesting. Furthermore, a study of circuit synthesis-specifc
instruction sets, which can improve the performance and
speed of the circuit synthesis procedure, is worth studying.

Data Availability

No data were used to support this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Key R&D Program
of China (grant no. 2019YFA0308700) and the Chinese
National Natural Science Foundation of Innovation Team
(grant no. 61321491).

References

[1] J. Preskill, “Quantum computing in the NISQ era and be-
yond,” Quantum, vol. 2, p. 79, 2018.

[2] A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum
simulation with superconducting circuits,” Nature Physics,
vol. 8, no. 4, pp. 292–299, 2012.

[3] J. W. Silverstone, D. Bonneau, K. Ohira et al., “On-chip
quantum interference between silicon photon-pair sources,”
Nature Photonics, vol. 8, no. 2, pp. 104–108, 2014.

[4] M. Kues, C. Reimer, P. Roztocki et al., “On-chip generation of
high-dimensional entangled quantum states and their co-
herent control,” Nature, vol. 546, pp. 622–626, 2017.

[5] I. Bashir, “A mixed-signal control core for a fully integrated
semiconductor quantum computer system-on-chip,” in
Proceedings of the ESSCIRC 2019-IEEE 45th European Solid
State Circuits Conference (ESSCIRC), IEEE, Cracow, Poland,
September 2019.

[6] D. P. DiVincenzo, “Te physical implementation of quantum
computation,” Fortschritte der Physik, vol. 48, no. 9-11,
pp. 771–783, 2000.

[7] D. Carvalho, Towards Quantum Control, 2019.
[8] W. Nan and F. Song, “Universal quantum computer: theory,

organization and realization” Chinese,” Journal of Computers,
vol. 39, no. 12, pp. 2429–2445, 2016.

[9] M. F. Brandl, “A quantum von Neumann architecture for
large-scale quantum computing,” 2017.

[10] N. Wu, F. M. Song, and X. Li, “An improved architecture of
a realizable quantum computer for quantum programming
languages,” Quantum Information and Computation VII,
SPIE, vol. 7342, 2009

[11] J. Morris, F. A. Pollock, and K. Modi, “Non-Markovian
memory in IBMQX4,” 2019, https://arxiv.org/abs/1902.
07980v1.

[12] A. Cross, A. Javadi-Abhari, T. Alexander et al., “OpenQASM
3: a broader and deeper quantum assembly language,” ACM

Quantum Engineering 9

https://arxiv.org/abs/1902.07980v1
https://arxiv.org/abs/1902.07980v1

Transactions on Quantum Computing, vol. 3, no. 3, pp. 1–50,
2022.

[13] M. A. Nielsen and C. Isaac, “Quantum computation and
quantum information,” pp. 558-559, 2002.

[14] K. Wu, A. Streltsov, B. Regula, G. Xiang, C. Li, and G. Guo,
“Experimental progress on quantum coherence: detection,
quantifcation, and manipulation,” Advanced Quantum
Technologies, vol. 4, no. 9, Article ID 2100040, 2021.

[15] A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium:
quantum coherence as a resource,” Reviews of Modern Physics,
vol. 89, no. 4, Article ID 041003, 2017.

[16] M. Sawerwain, J. Wiśniewska, and R. Gielerak, “Switching and
swapping of quantum information: entropy and entangle-
ment level,” Entropy, vol. 23, no. 6, p. 717, 2021.

[17] W. Zeng, B. Johnson, R. Smith et al., “First quantum com-
puters need smart software,” Nature, vol. 549, no. 7671,
pp. 149–151, 2017.

[18] A. Cho, “Google claims quantum computing milestone,”
Science, vol. 365, p. 1364, 2019.

[19] G. G. Guerreschi, J. Hogaboam, F. Barufa, and
N. P. D. Sawaya, “Intel Quantum Simulator: a cloud-ready
high-performance simulator of quantum circuits,” Quantum
Science and Technology, vol. 5, no. 3, Article ID 034007, 2020.

[20] G. W. Stewart, “On the perturbation of pseudo-inverses,
projections and linear least squares problems,” SIAM Review,
vol. 19, no. 4, pp. 634–662, 1977.

[21] R. Iten, “Introduction to universalqcompiler,” 2019, https://
arxiv.org/abs/1904.01072.

[22] H. Yucheng, Te Study of Quantum Computation and
Quantum Circuit Synthesis Based on Quantum Computing
Chips (In Chinese), Nanjing University, Nanjing, China, 2021.

10 Quantum Engineering

https://arxiv.org/abs/1904.01072
https://arxiv.org/abs/1904.01072

