Research Article

Mid-infrared Spectrally Pure Single-Photon States Generation from 22 Nonlinear Optical Crystals

Wu-Hao Cai,1,2,3 Ying Tian,1 and Rui-Bo Jin1

1Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
2Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
3Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan

Correspondence should be addressed to Rui-Bo Jin; jin@wit.edu.cn

Received 24 March 2023; Revised 25 April 2023; Accepted 29 July 2023; Published 24 August 2023

Academic Editor: YuBo Sheng

Copyright © 2023 Wu-Hao Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We theoretically investigate the preparation of pure-state single-photon source from 14 birefringent crystals (CMTC, THI, LiIO3, AAS, HGS, CGA, TAS, AGS, AGSe, GaSe, LIS, LPS, LGS, and LGS) and 8 periodic poling crystals (LT, LN, KTP, KN, BaTiO3, MgBaF4, PMN-0.38PT, and OP-ZnSe) in a wavelength range from 1224 nm to 11650 nm. The three kinds of group-velocity-matching (GVM) conditions, the phase-matching conditions, the spectral purity, and the Hong-Ou-Mandel interference are calculated for each crystal. This study may provide high-quality single-photon sources for quantum sensing, quantum imaging, and quantum communication applications at the mid-infrared wavelength range.

1. Introduction

Single-photon source at the mid-infrared (MIR) wavelength range (approximately 2–20 μm) has important potential applications in quantum sensing, quantum imaging, and quantum communication [1–4]. Firstly, the 3–5 μm band contains absorption peaks of many gases, such as H2O, CO, CO2, SO2, and SO3 [5], so this band is important for sensing of these gases in environmental monitoring [6, 7]; the 7–10 μm band contains absorption peaks of H2, O2, CH4, O3, trinitrotoluene (TNT), acetone, and sarin [5]. Therefore, this band is important for sensing chemical or explosive materials in the applications of industrial production or defense security. The single-photon source in these gas sensing applications may provide ultrahigh sensitivity [8]. Secondly, 3–5 μm and 8–14 μm are two widely used ranges for MIR thermal infrared imaging cameras for medical and forensic usage [9] since the room temperature objects emit light at these wavelength ranges. Also, MIR single-photon sources can provide a diagnosis in a noninvasive manner, which is important for medical or biological samples [10]. Thirdly, 3–5 μm is also an atmospheric transmission window with relatively high transparency, which is useful for large-scale free-space quantum communications, such as entanglement distribution [11], quantum key distribution [12], or quantum direct communication [13].

Spontaneous parametric down-conversion (SPDC) and four-wave mixing (FWM) are two widely used methods to prepare single photons. Many previous works have been dedicated to the development of high-quality single-photon sources or entangled photon sources in the MIR range from an SPDC or FWM process. On the experimental side, periodically poled lithium niobate (PPLN) [14–16], GaP [17], and silicon waveguide [18] have been investigated to prepare a single-photon source; PPLN [19] has been studied for entangled photon source generation. On the theory side, PPLN [20], periodically poled lithium niobate (PPKN) [21], 0.62Pb(Mg1/3Nb2/3)O3−0.38PbTiO3 (PMN-0.38PT) [22], etc. have been investigated for single-photon source [23–27]; p-doped semiconductor [28] has been studied for entangled photon source. In addition, some studies explored single-photon detection by superconducting nanowire single-photon detector (SNSPD) [29–31] or by silicon avalanche photodiode (SAPD) in an upconversion configuration [14, 32].
However, the previous studies are still insufficient for the need of MIR applications. On the one hand, the previous experimental work is mainly focused on PPLN crystal, and the wavelength range is below 5 μm. So, the range from 5 to 20 μm still needs further exploration. On the other hand, the spectrally pure single-photon source is proved to be a good resource [33], but this source is still rare because the group-velocity matching (GVM) conditions can only be matched at very limited wavelengths in a crystal. Therefore, it is still necessary to explore more nonlinear optical crystals to fully meet the need of MIR band applications. For this purpose, in this work, we investigate MIR spectrally pure single-photon generation from 14 crystals by the birefringence phase-matching (BPM) method and 8 crystals by the quasi-phase-matching (QPM) method. They can meet three kinds of GVM conditions and prepare spectrally uncorrelated biphotons so as to generate spectrally pure heralded single-photon states.

2. Theory

2.1. The Characteristics of 22 Kinds of Nonlinear Crystals. We investigate 22 kinds of nonlinear crystals in this work. Table 1 summarizes them from several perspectives, name, axial type, point group, transparency range, and the maximal velocity matching (GVM) condition can only be matched at very limited wavelengths in a crystal. Therefore, it is still necessary to explore more nonlinear optical crystals to fully meet the need of MIR band applications. For this purpose, in this work, we investigate MIR spectrally pure single-photon generation from 14 crystals by the birefringence phase-matching (BPM) method and 8 crystals by the quasi-phase-matching (QPM) method. They can meet three kinds of GVM conditions and prepare spectrally uncorrelated biphotons so as to generate spectrally pure heralded single-photon states.

For PEF, it is usually a Gaussian distribution and can be expressed as follows [51]:

\[\alpha(\omega_s, \omega_i) = \exp \left[-\frac{1}{2} \left(\frac{\omega_s + \omega_i - \omega_{0\pm}}{\sigma_p} \right)^2 \right], \]

where \(\sigma_p \) is the bandwidth of the pump, \(\omega_{0\pm} \) is the center frequency of the pump, and the full-width at half-maximum (FWHM) is \(\text{FWHM}_{\omega} = 2 \sqrt{\ln(2)} \sigma_p = 1.67 \sigma_p \).

If we use wavelengths as the variable by \(\omega = 2\pi c/\lambda \) for ease of calculation, the PEF can be rewritten as follows:

\[\alpha(\lambda_s, \lambda_i) = \exp \left[-\frac{1}{2} \left(\frac{1}{\Delta \lambda} \left[\frac{1}{\lambda_0^2} - \frac{1}{(\Delta \lambda/2)^2} \right] \right) \right]. \]

where \(\lambda_0/2 \) is the central wavelength of the pump, \(\Delta \lambda \) is the bandwidth of wavelength, and \(\sigma_p = 2\pi c/\Delta \lambda [\lambda_0^2 - (\Delta \lambda/2)^2] \), where \(c \) is the light speed.

For \(\Delta \lambda < \lambda_0 \), the FWHM of the pump at the intensity level is \(\text{FWHM}_\lambda = 2 \sqrt{\ln(2)} \Delta \lambda = 1.67 \Delta \lambda \).

By assuming a flat phase distribution, the PMF can be written as \(\text{sinc} \) function shape [51],

\[\phi(\omega_s, \omega_i) = \text{sinc} \left(\frac{\Delta \lambda \lambda}{2} \right). \]

where \(L \) is the length of crystal and \(\Delta \lambda \) is the wave vector mismatch. For QPM case, \(\Delta \lambda = k_p - k_i = k_{sp+} \pm 2\pi/\lambda \) and \(k = 2m(\lambda)/\lambda = \) the wave vector. The refractive index \(n_m(\lambda) \) is a function of wavelength \(\lambda \). A is the poling period and \(\Lambda = 2\pi(n_m - n_s, n_s - n_p) \). For BPM case, \(\Delta \lambda = k_p - k_i = k_{sp+} \) and \(k = 2m(\lambda, \theta, \phi)/\lambda \). For ordinary ray (o-ray), the refractive index \(n_o(\lambda) \) is a function of wavelength \(\lambda \). While for extraordinary ray (e-ray), the refractive index \(n_e(\lambda, \theta, \phi) \) is a function of polar angle \(\theta \), azimuth angle \(\phi \), and wavelength \(\lambda \).

According to the refractive index coordinate in Appendix of reference [52], \(\theta \) is the polar angle between the optical axis of the crystal and the light propagation direction and \(\phi \) is the azimuth angle in the \(xy \) plane. For uniaxial crystals, \(\theta \) is the cutting angle of the crystals. For biaxial crystals, when light propagates in the \(xz \) plane, \(\phi = 0^\circ \) and \(\theta \) is the cutting angle; when light propagates in the \(yz \) plane, \(\phi = 90^\circ \) and \(\theta \) is the cutting angle; when light propagates in the \(xy \) plane, \(\theta = 90^\circ \) and \(\phi \) is the cutting angle.

When \(\Delta k = 0 \), the phase-matching condition is satisfied. Under this precondition, we consider the GVM condition to prepare an intrinsic spectrally pure state. The angle \(\theta_{\text{PMF}} \) between the positive direction of the horizontal axis and the ridge direction of the PEF is determined by [53] as follows:

\[\tan(\theta_{\text{PMF}}) = \left(\frac{V^{-1}_{\omega_p}(\omega_p) - V^{-1}_{\omega_s}(\omega_s)}{V^{-1}_{\omega_{p,s}}(\omega_p) - V^{-1}_{\omega_{p,s}}(\omega_s)} \right), \]

where \(V_{\omega_s} = d\omega/dk_{\omega}(\omega) = 1/k_{\omega}(\omega), (\mu = p, s, i) \) is the group velocity of the pump, the signal, and the idler.

We consider three kinds of GVM conditions [54]. The GVM{\text{1}} condition (\(\theta_{\text{PMF}} = 0^\circ \)) is as follows:
Table 1: Main properties of the 10 uniaxial birefringent crystals (part I), 4 biaxial birefringent crystals (part II), and 8 periodic poling crystals (part III) discussed in this work, including the chemical formula, the axis (uniaxial, biaxial, or isotropic), the point group, the transparency range \(\lambda_{\text{transp}} \), and the maximal nonlinear coefficient \(d_{\text{max}} \) at different wavelengths (in pm/V). Most of the data were obtained from references [34, 35]. The BaTiO\(_3\) crystal has different types of point group at different temperatures. *\(d = |d_{31} \sin \theta| + |d_{22} \cos \theta| \). The calculated result is from [22] according to the method from [36].

<table>
<thead>
<tr>
<th>Name (ref.)</th>
<th>Chemical formula</th>
<th>Axis</th>
<th>Point group</th>
<th>(\lambda_{\text{transp}}) ((\mu \text{m}))</th>
<th>(d_{\text{max}}) (wavelength) (pm/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTC</td>
<td>CdHg(SCN)(_4)</td>
<td>Uniaxial</td>
<td>(\bar{4})</td>
<td>0.40 \sim 2.35</td>
<td>(d_{31(1.064)} = 6.2 \pm 1.2)</td>
</tr>
<tr>
<td>THI</td>
<td>Ti(_4)Hgl(_6)</td>
<td>Uniaxial</td>
<td>4m</td>
<td>1.00 \sim 60.0</td>
<td>Unknown</td>
</tr>
<tr>
<td>LiIO(_3) [37]</td>
<td>LiIO(_3)</td>
<td>Uniaxial</td>
<td>(\bar{3})</td>
<td>0.28 \sim 6.00</td>
<td>(d_{31(1.064)} = 4.6 \pm 0.3)</td>
</tr>
<tr>
<td>AAS</td>
<td>Ag(_5)As(_2)</td>
<td>Uniaxial</td>
<td>3m</td>
<td>0.61 \sim 13.3</td>
<td>(d_{32(1.064)} = 16.6 \pm 2.5)</td>
</tr>
<tr>
<td>HGS [38]</td>
<td>HgGa(_2)Se(_4)</td>
<td>Uniaxial</td>
<td>(\bar{1})</td>
<td>0.55 \sim 13.0</td>
<td>(d_{36(1.064)} = 31.5 \pm 4.7)</td>
</tr>
<tr>
<td>CGA [39]</td>
<td>CdGeAs(_3)</td>
<td>Uniaxial</td>
<td>(\bar{2}) m</td>
<td>2.30 \sim 18.0</td>
<td>(d_{36(1.064)} = 186 \pm 16)</td>
</tr>
<tr>
<td>TAS</td>
<td>Ti(_3)AsSe(_3)</td>
<td>Uniaxial</td>
<td>3m</td>
<td>1.28 \sim 17.0</td>
<td>(d_{36(1.064)} = 68 \pm 31)</td>
</tr>
<tr>
<td>AGS</td>
<td>AgGa(_2)Se(_2)</td>
<td>Uniaxial</td>
<td>(\bar{2}) m</td>
<td>0.47 \sim 13.0</td>
<td>(d_{36(1.064)} = 12.5 \pm 2.5)</td>
</tr>
<tr>
<td>AGSe</td>
<td>AgGaSe(_2)</td>
<td>Uniaxial</td>
<td>(\bar{2}) m</td>
<td>0.71 \sim 19.0</td>
<td>(d_{36(1.064)} = 39.5 \pm 1.9)</td>
</tr>
<tr>
<td>GaSe [40]</td>
<td>GaSe</td>
<td>Uniaxial</td>
<td>(\bar{6}) m</td>
<td>0.62 \sim 20.0</td>
<td>(d_{22(1.064)} = 54 \pm 11) [40]</td>
</tr>
<tr>
<td>LIS [41]</td>
<td>LiIn(_2)S(_2)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.34 \sim 13.2</td>
<td>(d_{33(2.35)} = -16 \pm 4)</td>
</tr>
<tr>
<td>LIs [42]</td>
<td>LiInSe(_2)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.46 \sim 14.0</td>
<td>(d_{33(2.35)} = -16 \pm 4) [43]</td>
</tr>
<tr>
<td>LG [44]</td>
<td>LiGa(_2)S(_2)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.32 \sim 11.6</td>
<td>(d_{33(2.35)} = -107 \pm 2.7) [45]</td>
</tr>
<tr>
<td>LGSe [46]</td>
<td>LiGaSe(_2)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.37 \sim 13.2</td>
<td>(d_{33(2.35)} = -18.2 \pm 4.6) [45]</td>
</tr>
<tr>
<td>LT [47]</td>
<td>LiTaO(_3)</td>
<td>Uniaxial</td>
<td>3m</td>
<td>0.28 \sim 5.50</td>
<td>(d_{33(1.064)} = 12.9)</td>
</tr>
<tr>
<td>LN</td>
<td>LiNbO(_3)</td>
<td>Uniaxial</td>
<td>3m</td>
<td>0.40 \sim 5.50</td>
<td>(d_{33(1.064)} = 25.2)</td>
</tr>
<tr>
<td>KTP</td>
<td>KTiOPO(_4)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.35 \sim 4.50</td>
<td>(d_{33(1.064)} = 14.6 \pm 0.7)</td>
</tr>
<tr>
<td>KN</td>
<td>KNbO(_3)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.40 \sim 4.50</td>
<td>(d_{33(1.064)} = 21.9 \pm 0.5) [48]</td>
</tr>
<tr>
<td>BaTiO(_3)</td>
<td>BaTiO(_3)</td>
<td>Uniaxial</td>
<td>4mm (room temp.)</td>
<td>0.40 \sim 9.00</td>
<td>(d_{32(1.064)} = 14.4 \pm 2.5)</td>
</tr>
<tr>
<td>MgBa(_2)F(_4)</td>
<td>MgBa(_2)F(_4)</td>
<td>Biaxial</td>
<td>mm(2)</td>
<td>0.14 \sim 10.0</td>
<td>(d_{32(1.064)} = 0.039)</td>
</tr>
<tr>
<td>PMN-0.38PT [49]</td>
<td>0.62Pb(Mg({1/3})Nb({2/3}))</td>
<td>Uniaxial</td>
<td>4mm</td>
<td>0.3 \sim 11.0</td>
<td>(d_{33(1.064)} = 12.6)</td>
</tr>
<tr>
<td>OP-ZnSe [50]</td>
<td>ZnSe</td>
<td>Isotropic</td>
<td>(\bar{T} 3m)</td>
<td>0.45 \sim 18.0</td>
<td>(d_{36(0.852)} = 53.8)</td>
</tr>
</tbody>
</table>

\[
V^{-1}_{g,p}(\omega_p) = V^{-1}_{g,s}(\omega_s). \tag{6}
\]

The GVM\(_2\) condition (\(\theta_{\text{PMF}} = 90^\circ \)) is as follows:

\[
V^{-1}_{g,s}(\omega_p) = V^{-1}_{g,s}(\omega_s). \tag{7}
\]

The GVM\(_3\) condition (\(\theta_{\text{PMF}} = 45^\circ \)) is as follows:

\[
2V^{-1}_{g,s}(\omega_p) = V^{-1}_{g,s}(\omega_s) + V^{-1}_{g,s}(\omega_i). \tag{8}
\]

The pure-state not only can be prepared through these three GVM conditions but also all the conditions that the \(\theta_{\text{PMF}} \) angles are between 0 and 90° [55, 56]. Since these three GVM conditions are listed in equations (6)–(8), which are the most widely-used cases in the experiment, we mainly consider these three conditions within this work. Besides, the degenerate or nondegenerate case of other \(\theta_{\text{PMF}} \) under type-II and type-0 phase-matching conditions will be illustrated in section 3.3.

Besides, it is important to discuss the calculation of spectral purity. The purity of \(\text{SA} \) can be calculated through Schmidt decomposition on \(f(\omega_s, \omega_i) \) [51] as follows:

\[
f(\omega_s, \omega_i) = \sum c_j \phi_j(\omega_s) \phi_j(\omega_i), \tag{9}
\]

where \(\phi_j(\omega_s) \) and \(\phi_j(\omega_i) \) are the two orthogonal basis vectors in the frequency domain and \(c_j \) is a set of non-negative real coefficients that satisfy the normalization condition \(\sum c_j^2 = 1 \). Then, the purity \(P \) can be defined as follows:

\[
P = \sum_j c_j^4. \tag{10}
\]

3. Calculation and Simulation

3.1. Birefringent Crystals. Firstly, we consider the birefringent crystals with the BPM method. We assume that the wavelength has degenerated, i.e., \(2\lambda_i = \lambda_p = \lambda_s \). For uniaxial crystals, negative uniaxial crystals satisfy the Type-II SPDC with \(e \rightarrow o + e \) phase-matching interaction. Here, the pump and idler are extraordinary (e) beams, while the signal is ordinary (o) beam. In contrast, the positive uniaxial crystals can meet the Type-II SPDC with \(o \rightarrow o + e \) phase-matching interaction. Note that all the simulations are based on collinear figuration.

Ten kinds of uniaxial crystals are investigated in this work. Taking AgSe crystal as an example, we plot the PMF and GVM\(_{(2,3)}\) conditions for different wavelengths and phase-matched angles in Figure 1(a). The PMF (red) crosses the GVM\(_{(2,3)}\) (blue and green) at three black points, which meet the PMF and three kinds of GVM conditions simultaneously. The three points are associated with wavelengths of 4.914, 8.158, and 6.272 nm, respectively, and angles of 79.9°, 81.9°, and 67.2°. Furthermore, we calculate the other uniaxial crystals with the same method, and then we summarize the result in Table 2. In Table 2, the downconverted photons have a wavelength range from 1.298 to 11.650 nm, which is in the near-infrared (NIR) and MIR...
bands. The corresponding spectral purity at GVM\(_{1(2,3)}\) wavelengths is 0.97, 0.97, and 0.82, respectively.

For biaxial crystals, all the crystals we investigated can only satisfy the GVM conditions in the xy plane, with polar angle \(\theta = 90^\circ\). We study 4 kinds of biaxial crystals and choose the LiSe crystal as an example, which represents the mm2 point group. The assignment of dielectric and crystallographic axes are X, Y, Z \(\Rightarrow b, a, c\). As shown in Figure 1(b), in the xy plane, the cross points reflect that the GVM condition can be fulfilled at the wavelength of 3,824, 6,410, and 4,982 nm, respectively.

Figure 1: The phase-matching function and group-velocity matching functions (GVM\(_{1(2,3)}\)) for different signal/idler wavelength and phase-matching angle (polar angle) \(\theta\) for AGSe crystal (a) and phase-matching (azimuth angle) \(\varphi\) for LiSe crystal in the xy plane (b). In this calculation, we consider the type-II phase-matching condition with collinear and wavelength-degenerate (2\(\lambda_p = \lambda_s = \lambda_i\)) configuration.

Table 2: Three kinds of GVM conditions for 10 uniaxial BPM crystals. \(\lambda_p(\lambda_i)\) is the GVM wavelength for the pump (signal, idler). \(\theta\) is the phase-matching angle, and \(d_{eff}\) is the effective nonlinear coefficient. The Sellmeier equations are obtained from references [34, 35]. Most of the \(d_{eff}\) values can be obtained from the SNLO v78 software package, developed by AS-Photonics, LLC [57]. The \(d_{eff}\) value for CMTC is not available from SNLO, we have calculated \(d_{eff}\) using the method in the Appendix of reference [52] and considering Miller’s rule [58]. The \(d_{eff}\) value for THI is unknown.

<table>
<thead>
<tr>
<th>Name</th>
<th>GVM(_1) (purity (\approx 0.97))</th>
<th>GVM(_2) (purity (\approx 0.97))</th>
<th>GVM(_3) (purity (\approx 0.82))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTC*</td>
<td>(\lambda_p = 649) nm, (\lambda_{ij} = 1298) nm, (\varphi = 41.2^\circ), (d_{eff} = -4.46) pm/V</td>
<td>(\lambda_p = 1156) nm, (\lambda_{ij} = 2312) nm, (\varphi = 43.6^\circ), (d_{eff} = -3.63) pm/V</td>
<td>(\lambda_p = 829) nm, (\lambda_{ij} = 1658) nm, (\varphi = 38.2^\circ), (d_{eff} = -4.13) pm/V</td>
</tr>
<tr>
<td>THI'</td>
<td>(\lambda_p = 2841) nm, (\lambda_{ij} = 5682) nm, (\varphi = 29.3^\circ), (d_{eff}) unknown</td>
<td>(\lambda_p = 4822) nm, (\lambda_{ij} = 9644) nm, (\varphi = 29.3^\circ), (d_{eff}) unknown</td>
<td>(\lambda_p = 3705) nm, (\lambda_{ij} = 7410) nm, (\varphi = 27.2^\circ), (d_{eff}) unknown</td>
</tr>
<tr>
<td>LiIO(_3)</td>
<td>(\lambda_p = 835) nm, (\lambda_{ij} = 1670) nm, (\varphi = 29.3^\circ), (d_{eff} = 0.09) pm/V</td>
<td>(\lambda_p = 1460) nm, (\lambda_{ij} = 2920) nm, (\varphi = 29.7^\circ), (d_{eff} = 0.09) pm/V</td>
<td>(\lambda_p = 1088) nm, (\lambda_{ij} = 2176) nm, (\varphi = 27.2^\circ), (d_{eff} = 0.09) pm/V</td>
</tr>
<tr>
<td>AAS</td>
<td>(\lambda_p = 2151) nm, (\lambda_{ij} = 4302) nm, (\varphi = 22.3^\circ), (d_{eff} = 0.16) pm/V</td>
<td>(\lambda_p = 3617) nm, (\lambda_{ij} = 7234) nm, (\varphi = 22.3^\circ), (d_{eff} = 0.15) pm/V</td>
<td>(\lambda_p = 2793) nm, (\lambda_{ij} = 5586) nm, (\varphi = 20.7^\circ), (d_{eff} = 0.16) pm/V</td>
</tr>
<tr>
<td>HGS</td>
<td>(\lambda_p = 1704) nm, (\lambda_{ij} = 3408) nm, (\varphi = 60.1^\circ), (d_{eff} = 0.29) pm/V</td>
<td>(\lambda_p = 2819) nm, (\lambda_{ij} = 5638) nm, (\varphi = 59.8^\circ), (d_{eff} = 0.29) pm/V</td>
<td>(\lambda_p = 2206) nm, (\lambda_{ij} = 4412) nm, (\varphi = 54.2^\circ), (d_{eff} = 0.32) pm/V</td>
</tr>
<tr>
<td>CGA</td>
<td>(\lambda_p = 3692) nm, (\lambda_{ij} = 7384) nm, (\varphi = 54.6^\circ), (d_{eff} = 0.02) pm/V</td>
<td>(\lambda_p = 5825) nm, (\lambda_{ij} = 11650) nm, (\varphi = 53.9^\circ), (d_{eff} = 0.02) pm/V</td>
<td>(\lambda_p = 4690) nm, (\lambda_{ij} = 9380) nm, (\varphi = 49.8^\circ), (d_{eff} = 0.02) pm/V</td>
</tr>
<tr>
<td>TAS</td>
<td>(\lambda_p = 3620) nm, (\lambda_{ij} = 7240) nm, (\varphi = 27.5^\circ), (d_{eff} = 0.24) pm/V</td>
<td>(\lambda_p = 5535) nm, (\lambda_{ij} = 11070) nm, (\varphi = 27.0^\circ), (d_{eff} = 0.23) pm/V</td>
<td>(\lambda_p = 4570) nm, (\lambda_{ij} = 9140) nm, (\varphi = 25.6^\circ), (d_{eff} = 0.24) pm/V</td>
</tr>
<tr>
<td>AGS</td>
<td>(\lambda_p = 1688) nm, (\lambda_{ij} = 3376) nm, (\varphi = 53.7^\circ), (d_{eff} = 0.14) pm/V</td>
<td>(\lambda_p = 2845) nm, (\lambda_{ij} = 5690) nm, (\varphi = 53.9^\circ), (d_{eff} = 0.14) pm/V</td>
<td>(\lambda_p = 2187) nm, (\lambda_{ij} = 4374) nm, (\varphi = 48.9^\circ), (d_{eff} = 0.15) pm/V</td>
</tr>
<tr>
<td>AGSe</td>
<td>(\lambda_p = 2457) nm, (\lambda_{ij} = 4914) nm, (\varphi = 79.9^\circ), (d_{eff} = 0.11) pm/V</td>
<td>(\lambda_p = 4079) nm, (\lambda_{ij} = 8158) nm, (\varphi = 81.9^\circ), (d_{eff} = 0.13) pm/V</td>
<td>(\lambda_p = 3136) nm, (\lambda_{ij} = 6272) nm, (\varphi = 67.2^\circ), (d_{eff} = 0.25) pm/V</td>
</tr>
<tr>
<td>GaSe</td>
<td>(\lambda_p = 2189) nm, (\lambda_{ij} = 4378) nm, (\varphi = 16.1^\circ), (d_{eff} = 0.51) pm/V</td>
<td>(\lambda_p = 3657) nm, (\lambda_{ij} = 7314) nm, (\varphi = 16.1^\circ), (d_{eff} = 0.49) pm/V</td>
<td>(\lambda_p = 2833) nm, (\lambda_{ij} = 5666) nm, (\varphi = 15.0^\circ), (d_{eff} = 0.51) pm/V</td>
</tr>
</tbody>
</table>
All the biaxial crystals can prepare pure-state in the range from 2,696 to 6,410 nm, as shown in Table 3. We can notice that the wavelength range is from 1,298 to 7,384 nm for the GVM₁ condition, from 2,312 to 11,650 nm for the GVM₂ condition, and from 1,658 to 9,380 nm for the GVM₃ condition (also shown in Figure 2), which can meet the different application demands in NIR, MIR, and telecom wavelengths.

3.2. Periodic Poling Crystals
In this section, we consider 8 periodic poling crystals with the QPM method, which has several advantages. For example, the largest component of the nonlinear coefficient matrix (usually d_{33}) can be utilized; there is no walk-off angle so as to achieve good spatial mode; it allows phase-matching interaction in isotropic media, in which the BPM is not applicable [59]. The GVM wavelengths, the poling period Λ, and the effective nonlinear coefficient d_{eff} are calculated and listed in Table 4. The LT, LN, KTP, and KN crystals are traditionally often-used QPM crystals [21, 60–62]. Here, we find that the GVM₂ wavelengths are all above 2 μm.

The BaTiO₃ crystal shows a low birefringence, thus, only suitable for the QPM method. With its high transmission in the IR range, it is possible to prepare pure-state at 3,036, 3,986, and 3,480 nm, respectively. The MgBaF₄ crystal can meet the GVM₁ condition at 1,978 nm and the GVM₃ condition at 2,780 nm. Note that this crystal does not satisfy the GVM₂ condition. The PMN-0.38PT is a functional ferroelectric material. The GVM condition only can be fulfilled at two wavelengths, i.e., 5,620 nm and 7,944 nm for GVM₁ and GVM₃ conditions. The orientation-patterned zinc selenide (OP-ZnSe) is an isotropic semiconductor material; therefore, the QPM rather than BPM is applicable. OP-ZnSe has extremely high nonlinear coefficients. Since the crystal possesses only one refractive index, it can only perform Type-0 SPDC, i.e., $e \rightarrow e + e$ interaction, which will be discussed in the next section. All the QPM crystals can be prepared in the pure-state at the range from 1,224 to 7,944 nm, as listed in Table 4.

3.3. Wavelength Nondegenerate Case
In this section, we focus on the wavelength nondegenerate case using the QPM method. Recently, we have investigated the wavelength nondegenerate case of doped PPLN crystal under type-0, type-I, and type-II conditions [24], and we utilize the same method to take OP-ZnSe as an example and calculate θ_{PMF} and the corresponding poling period Λ, as shown in Figure 3. The 50 curves with different colors in Figure 3(a) are based on equation (5) by changing θ_{PMF} from 0 to 90 degrees, and we depict 50 curves of the poling period Λ changing from 145 μm to 262 μm. The dashed black line in Figure 3 indicates the degenerate case, i.e., $2\Lambda = \delta$. For one fixed pump wavelength, we can find θ_{PMF} and Λ of different signal wavelengths.

The OP-ZnSe crystal can only perform Type-0 SPDC, i.e., $e \rightarrow e + e$ interaction. Under the degenerate condition, the signal and the idler have the same group velocity, so the pure state cannot be prepared. The lines of all the angles θ_{PMF} converge in one point. At this point, all the GVM conditions are satisfied synchronously. Due to the singularity caused by these GVM conditions, the degenerate case at this point does not provide high purity, while the pure state can be prepared in the other area of different θ_{PMF}.

3.4. HOM Interference Simulation
The quality of the spectrally uncorrelated biphoton state can be tested by Hong-Ou-Mandel (HOM) interference. There are two kinds of HOM interference, the first one is the HOM interferences using signal and idler photons from the same SPDC source, with a typical setup, as shown in [63]. In this case, the two-fold coincidence probability $P_2(t)$ as a function of the time delay t is given by [64–67] as follows:

$$P_2(t) = \frac{1}{4} \int_0^\infty \int_0^\infty d\omega_s d\omega_i \left| \int f(\omega_s, \omega_i) - f(\omega_i, \omega_s) e^{-i(\omega_s - \omega_i)t} \right|^2.$$

(11)

The second one is the HOM interference with two independent heralded single-photon sources, with a typical experimental setup, as shown in references [68–70]. In this interference, two signals s_1 and s_2 are sent to a beamsplitter for interference and two idlers i_1 and i_2 are detected by single-photon detectors for heralding the signals. The four-fold coincidence counts P_4 as a function of t, which can be described by [65, 66] as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>GVM₁ (purity ≈ 0.97)</th>
<th>GVM₂ (purity ≈ 0.97)</th>
<th>GVM₃ (purity ≈ 0.82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIS−xy</td>
<td>$\lambda_p = 1457$ nm, $\lambda_{ij} = 2914$ nm</td>
<td>$\lambda_p = 2473$ nm, $\lambda_{ij} = 4946$ nm</td>
<td>$\lambda_p = 1901$ nm, $\lambda_{ij} = 3802$ nm</td>
</tr>
<tr>
<td>LSe−xy</td>
<td>$\lambda_p = 1912$ nm, $\lambda_{ij} = 3824$ nm</td>
<td>$\lambda_p = 3205$ nm, $\lambda_{ij} = 6410$ nm</td>
<td>$\lambda_p = 2491$ nm, $\lambda_{ij} = 4982$ nm</td>
</tr>
<tr>
<td>LGS−xy</td>
<td>$\lambda_p = 1347$ nm, $\lambda_{ij} = 2696$ nm</td>
<td>$\lambda_p = 2282$ nm, $\lambda_{ij} = 4564$ nm</td>
<td>$\lambda_p = 1767$ nm, $\lambda_{ij} = 3534$ nm</td>
</tr>
<tr>
<td>LGSe−xy</td>
<td>$\lambda_p = 1641$ nm, $\lambda_{ij} = 3282$ nm</td>
<td>$\lambda_p = 2729$ nm, $\lambda_{ij} = 5258$ nm</td>
<td>$\lambda_p = 2129$ nm, $\lambda_{ij} = 4258$ nm</td>
</tr>
</tbody>
</table>
Figure 2: The result of all the BPM crystals for three kinds of GVM conditions. GVM₁ (0°) can achieve a purity of 0.97. GVM₂ can achieve a purity of 0.82. The GVM angle increases from 0° to 45° and ends up at 90° on the left axis for GVM₁ (red points) can cover the wavelength range from 1298 nm to 7384 nm. The GVM₂ condition (magenta points) can cover the wavelength range from 1298 nm to 7384 nm. The GVM₃ condition (green points) can cover the wavelength range from 1658 nm to 9380 nm.

Table 4: Three kinds of GVM conditions for 8 QPM crystals. \(\lambda_{s,i} \) is the GVM wavelength for the pump (signal, idler). \(\Delta \) is the poling period, and \(d_{\text{eff}} \) is the effective nonlinear coefficient. The Sellmeier equations are obtained from refs. [34, 35]. Most of the \(d_{\text{eff}} \) values can be obtained from the SNLO v78 software package, developed by AS-Photonics, LLC [57]. * The \(d_{\text{eff}} \) values for BaTiO₃ and MgBaF₂ are not available from SNLO, so we have calculated them using the method in the appendix of ref. [52] and considering Miller’s rule [58]. † The \(d_{\text{eff}} \) value for PMN-0.38PT is unknown.

<table>
<thead>
<tr>
<th>Name</th>
<th>GVM₁ (purity ≈ 0.97)</th>
<th>GVM₂ (purity ≈ 0.97)</th>
<th>GVM₃ (purity ≈ 0.82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>(\lambda_p = 1279 \text{ nm}, \lambda_{s,i} = 2558 \text{ nm})</td>
<td>(\lambda_p = 1320 \text{ nm}, \lambda_{s,i} = 2640 \text{ nm})</td>
<td>(\lambda_p = 1299 \text{ nm}, \lambda_{s,i} = 2598 \text{ nm})</td>
</tr>
<tr>
<td>LN</td>
<td>(\lambda_p = 1341 \text{ nm}, \lambda_{s,i} = 2682 \text{ nm})</td>
<td>(\lambda_p = 2015 \text{ nm}, \lambda_{s,i} = 4030 \text{ nm})</td>
<td>(\lambda_p = 1709 \text{ nm}, \lambda_{s,i} = 3418 \text{ nm})</td>
</tr>
<tr>
<td>KTP</td>
<td>(\lambda_p = 613 \text{ nm}, \lambda_{s,i} = 1224 \text{ nm})</td>
<td>(\lambda_p = 1169 \text{ nm}, \lambda_{s,i} = 2338 \text{ nm})</td>
<td>(\lambda_p = 792 \text{ nm}, \lambda_{s,i} = 1584 \text{ nm})</td>
</tr>
<tr>
<td>KN</td>
<td>(\lambda_p = 1412 \text{ nm}, \lambda_{s,i} = 2824 \text{ nm})</td>
<td>(\lambda_p = 1869 \text{ nm}, \lambda_{s,i} = 3738 \text{ nm})</td>
<td>(\lambda_p = 1605 \text{ nm}, \lambda_{s,i} = 3210 \text{ nm})</td>
</tr>
<tr>
<td>BaTiO₃*</td>
<td>(\lambda_p = 1518 \text{ nm}, \lambda_{s,i} = 3036 \text{ nm})</td>
<td>(\lambda_p = 1993 \text{ nm}, \lambda_{s,i} = 3986 \text{ nm})</td>
<td>(\lambda_p = 1740 \text{ nm}, \lambda_{s,i} = 3480 \text{ nm})</td>
</tr>
<tr>
<td>MgBaF₂*</td>
<td>(\lambda_p = 989 \text{ nm}, \lambda_{s,i} = 1978 \text{ nm})</td>
<td>Not satisfied</td>
<td>(\lambda_p = 1390 \text{ nm}, \lambda_{s,i} = 2780 \text{ nm})</td>
</tr>
<tr>
<td>PMN-0.38PT†</td>
<td>(\lambda_p = 2810 \text{ nm}, \lambda_{s,i} = 5620 \text{ nm})</td>
<td>Not satisfied</td>
<td>(\lambda_p = 3972 \text{ nm}, \lambda_{s,i} = 7944 \text{ nm})</td>
</tr>
<tr>
<td>OP-ZnSe</td>
<td>(\lambda_p = 3403 \text{ nm}, \lambda_{s,i} = 6806 \text{ nm})</td>
<td>(\lambda_p = 262.97 \mu m, d_{\text{eff}} = 19.1 \text{ pm/V})</td>
<td>(\lambda_p = 917.83 \mu m, d_{\text{eff}} = \text{unknown})</td>
</tr>
</tbody>
</table>
\[P_4(\tau) = \frac{1}{4} \int_0^\infty \int_0^\infty \int_0^\infty d\omega_1 d\omega_2 d\omega_3 d\omega_4 f_1(\omega_1, \omega_2) f_3(\omega_3, \omega_4) \left[f_1(\omega_1, \omega_2) - f_2(\omega_1, \omega_2) e^{-i (\omega_3 - \omega_4) \tau} \right]^2, \]

(12)

where \(f_1 \) and \(f_2 \) are the JSAs from the first and the second crystals.

We chose BiTaO\(_3\), LGSe, and PMN-0.38PT as examples to test the HOM interference. Figure 4(a) shows that JSA is generated from BiTaO\(_3\) crystal, which is under the GVM\(_1\) condition. BiTaO\(_3\) crystal is a uniaxial QPM crystal. The JSA is obtained by using a pump laser with a bandwidth of \(\Delta \lambda = 4 \) nm and a crystal length \(L = 100 \) mm. The JSA has a long stripe shape along the horizontal axis. Considering the spectral distributions of the signal and the idler photons, we can obtain them by projecting the joint spectral intensity onto the horizontal and vertical axes. The FWHM of the signal (idler) is 27.02 nm (0.92 nm). Figure 4(c) shows the HOM pattern of two signals heralded by two idlers; the FWHM is 726.87 fs with a visibility of 96.68%. Figure 4(d) shows the HOM pattern of two heralded idlers with an FWHM of 8.74 ps and a visibility of 96.68%.

For the GVM\(_2\) condition, the result is on the second row of Figure 4. We investigate a biaxial BPM crystal LGSe. The JSA shape is also a long stripe, but it is located along the vertical axis. The pump bandwidth \(\Delta \lambda \) and the crystal length \(L \) of Figure 4(e) are 8 nm and 200 mm. The FWHM of the signal (idler) is 5.17 nm (75.40 nm) for Figure 4(f). The FWHM of the HOM pattern by two heralded signals (idler) is 12.46 ps (1.17 ps), and the visibility is 97.05%, as shown in Figures 4(g) and 4(h).

For the GVM\(_1\) condition, the result is on the third row of Figure 4. We concentrate on the PMN-0.38PT crystal. This crystal has been studied before; however, it only focuses on the GVM\(_1\) and GVM\(_2\) conditions [22]. Here, we make a thorough study of the GVM\(_1\) condition. In this case, the JSA shape is near-round and the spectra of the signal and idler are almost equal. Figure 4(i) is obtained by using a pump bandwidth of \(\Delta \lambda = 11 \) nm and a crystal length \(L = 100 \) mm. The spectra of the signal and idler have the same FWHM of 54.64 nm. The HOM interference from two independent signal or idler sources manifests the same performance with the FWHM of 12.24 ps and visibility of 82.33%, which is much lower than the GVM\(_1\) and GVM\(_2\) cases. In case of the two-fold HOM interference, the visibility is 100% and the FWHM of the HOM pattern is 2.20 ps for Figure 4(l).

4. Discussion

We summarize the result of all the BPM crystals in Figure 2. The left vertical axis of the figure denotes the GVM condition and the corresponding PMF angle \(\theta_{\text{PMF}} \). The right vertical axis shows the maximal purity. The horizontal axis shows a wavelength range from 0 to 12 \(\mu \)m. Most of the crystals are located on the MIR band, from 2 \(\mu \)m to 12 \(\mu \)m. There are three cases on the NIR band. We also conclude the results of QPM crystals in Figure 5, which shows the down-converted wavelength, the poling period, and the maximal purity for all the results we calculated above.

It is important to discuss the detection of single photons in the MIR region. Recent work shows that superconducting nanowire single-photon detectors (SNSPD), which have the...
Figure 4: (a, e, i) are the JSAs; (b, f, j) are the spectra; and (c, d, g, h, k, l) are the HOM interference patterns. The FWHM of the spectra (Δ) for the signal and the idler, the visibility (V), and the FWHM (Δ) of two-fold and four-fold HOM interference are shown in the figures. The parameters of L = 100 mm and Δλ = 4 nm (FWHM = 6.66 nm), L = 200 mm and Δλ = 8 nm (FWHM = 13.32 nm), L = 100 mm and Δλ = 11 nm (FWHM = 18.32 nm) are adopted for BaTiO₃, LGSe, and PMN-0.38PT, respectively. Note that for all the calculations of purity, we use a grid size of 200 × 200 for all the JSAs.

Figure 5: The result of all the QPM crystals for three kinds of GVM conditions. GVM₁(2) can achieve a purity of 0.97. GVM₁ can achieve a purity of 0.82. The wavelength versus achievable maximal spectral purity and poling period Λ can be reflected on the scale of the left and right Y-axis. The wavelength range is from 1,224 nm to 7,944 nm, and the poling period Λ is from 6.1 μm to 1,301.38 μm.
best performance (98%) in the NIR band [71], while having a detection efficiency at MIR band of 70% at 2 μm [72], 40% at 2.5 μm and 10% at 3 μm [73], and 1.64% for free-space communication [30]; upconversion detectors module combined with the SAPD method demonstrates the efficiency of 6.5% at room temperature [14]; semiconductor photodiodes such as Cd admixture, graphene, black arsenic phosphorus, black phosphorus carbyde, tellurene, PtSe2, and PdSe2 are good candidates for wide detection range [74]. A recent review about MIR single-photon detection is presented in [75]. In the future, developing new material for SNSPD and a more effective nonlinear process of upconversion for MIR detection will be promising [76].

Except for the 22 crystals discussed above, we still find 6 kinds of new crystals in the MIR band, which are as follows: BGS, BGSe, BGGS, BGGSe, and BGSSe [77–81]. They can be written as BaGa3X6 (X = S, Se) and BaGa2MX6 (M = Si, Ge; X = S, Se). Since the d_{eff} calculated and phase-matched methods of these crystals are complex [82–86], we did not discuss them in this work. d_{eff} for BGS and BGSe has been investigated in [87]. d_{33} for BGGS, BGGSe, BGSS, and BGSe is −12.0, −23.0, 8.4, and 12.3 pm/V, respectively [88]. Moreover, the doping method can be utilized as a degree of freedom to manipulate the single-photon state at the MIR range [24].

For the GVM3 condition, the purity can be further improved from 0.82 to near 1 using the custom poling crystal scheme, for example, by applying the machine learning method or metaheuristic algorithm [25, 89].

5. Conclusion

In conclusion, we have theoretically investigated 22 nonlinear optical crystals for MIR photon generation. The downconverted photons' wavelength ranges from 1,298 nm (1,224 nm) to 11,650 nm (7,944 nm) for the BPM (QPM) crystals. The corresponding purity for the three kinds of GVM conditions is around 0.97, 0.97, and 0.82, respectively. The wavelength nondegenerated condition, the 4-fold HOM interference, and the 2-fold HOM interference are calculated in detail. This research study may be helpful in the study of quantum communication, quantum imaging, and quantum metrology at the MIR range.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Disclosure

The preprint has previously been published [90].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We thank Prof. Keiichi Edamatsu for the helpful discussions. This work was supported by the National Natural Science Foundations of China (Grant no. 12074299), the Natural Science Foundation of Hubei Province (Grant no. 2022CFA039), and the JST SPRING (Grant no. JP MJSP2114).

References

10 Quantum Engineering

