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Let ‘.Rk—IF (b, ty, -+ ]/ <u? = aquy, UL =

u;u; = 0>, where g = p™, p is an odd prime, o; is a unit over F, and i, j =

L,2,---, k. In this article, we define a Gray map from R}, to [F(k“)” we study the structure of skew g-A-constacyclic codes over Ry,
and then we give the necessary and sufficient conditions for skew g-A-constacyclic codes over R, to satisfy dual containing. Further,
we have obtained some new nonbinary quantum codes from skew g-A-constacyclic over R, by using the CSS construction.

1. Introduction

Since Calderbank and Shor [1] and Steane [2] introduced
a simple construction of quantum error-correcting code in
1996, many quantum error-correcting codes have been
obtained from classical error-correcting codes by using the
CSS construction [3-6]. In recent years, many researchers
constructed quantum codes from constacyclic codes over
finite nonchain rings [7-14]. In [15, 16], Boucher et al.
proposed skew cyclic codes as a new kind of generalized
cyclic codes by applying skew polynomial rings. Siap et al.
[17] studied the structure of skew cyclic codes for an ar-
bitrary length over finite fields. In [18, 19], skew constacyclic
codes were studied over finite fields and finite chain rings.
Bag et al. constructed quantum codes from skew (1 —2u, —
2u, — - -+ — 2u,,)-constacyclic codes over F,+u,F, +---+
um[Fq and ®-A-skew constacyclic codes over F,[u, v]/ u? -
1,v* — 1,uv = vu) by applying the CSS construction [20, 21].
In [22, 23], some good quantum codes were obtained from
linear skew constacyclic over F.R and F. [vy,v,,..., v/
v -Ly; iVi = ViVidi<ij<e DY usmg the Herm1t1an con-
struction. In [24, 25], some new quantum codes were ob-
tained from skew constacyclic codes over R, ]/ u® = 1),
and some MDS quantum codes were construed from skew
cyclic codes over F, [u]/ Wt = u) by applying the CSS
construction. Dinh et al. [26] obtained some optimal codes

and near-optimal codes from skew 8-cyclic codes and dis-
cussed the advantages of quantum codes from skew 6-cyclic
codes than from cyclic codes over F,. In this article, we study
the algebraic structures of skew g-A-constacyclic codes over
Ry = Fplup, g, w )/ (uf = aguy, uu; = uju; = 0); as an
application, we give some new quantum codes from skew g
-A-constacyclic codes over R, by using the CSS
construction.

The rest of this article is arranged as follows: In Section 2,
we define a new nonchain ring R, and a Gray map from R}
to [Fék+1 and introduce some basic knowledge of skew
constacyclic code over R,. In Section 3, we give the nec-
essary and sufficient conditions for skew g-A-constacyclic
codes over R, to satisfy dual containing. In Section 4, we
give some examples and obtain some new quantum codes
from skew g-A-constacyclic codes over R,.

2. Preliminaries

Let Ry=F, [, vy, w ]/ <uf = qupuu; = uju; = 0y be
a nonchain ring, where g = p™, p is an odd prime and «; is
a unit over F i,j=1,2,---, k.

Clearly, R, is semilocal and has q**!) elements.
Let G = ufag, G = uylay, - G = U/, Gy = 1-
uyfoy— uylay — -+ — /oy We can get that ¢;¢; = 0, when
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i, GG =¢, when i,j=1,2,---;k+1, and 1=¢, +¢,
+-o + Gy Thus, Ry = R BGR @ - - 66,1 Ry
For any r € Ry, r can only be said to ¥ = 7,6, + 1,6, +
“++Thy1Gksp> Wherer; € Fpand j=1,2,---,k+ 1.
Let 0, be F, automorphism, 6, F, — F, by@ (a) =a?”.
We deﬁne the automorphism of mk as follows
Q: mk ad ka)
ag+agu, +--- (ar)uy.

(1)

+ a0, (ag) + 6, (a)uy +---+ 6,

By the above definition, the order of g is m/t.

Let the set Ry [x, 0] = {ag + a;x + -+ +a,x", a; € Ry,i =
0,1,2,---,n}, the addition on R, [x,g] is defined as the
general form of polynomials and the multiplication of
polynomials is (ax’) (bx/) = ag’ (b)x'*/.

By the above definition, it is easy to know that the set
R, [x, 0] is a noncommutative ring and a skew polynomial
ring. V f (x), g (x) € Ry [x, 0], g(x) is a right divisor of f (x)
if there exists g (x) € R [x, o] subject to f (x) = q(x) * g(x).
Similarly, the left divisor can be given as above.

Let A be a unit of R, the skew constacyclic shift o, of
c=(cpCppvsCyy) € RY is defined by o0,,(c) = (e
(c,u1),0(co)s -5 0(c, ). Then, C is called a skew g-A
-constacyclic code of length n over R, if C is invariant under
0,00 Ri — Ry In particular, C is called a skew o-cyclic
code and skew g-negacyclic code of length n over R, when
A=1land A =-1.

A map is defined as follows:

% ERZ —)72];[9_(’/\@; >
(2)
(Ggs @y Gy )ag + A X + -+ a, X"
Then, V(ag,a;, -+, a, ) € Ry is identified as a poly-

nomial a, + a;x + --- + a,_;x" ! over R [x, 0]/ {x" — A). Let
the order of g, |g| = I; if I|nn, we define a skew g-A-constacyclic
code of length n over R, as a left ideal of R, [x, 0]/{x"* — 1).

By the same method of Lemma 7 in [17], we can have the
following lemma.

Lemma 1. If f(x)g(x)€ Z(Ri[x,0]), the centre of
Relx,0l is Z(Rilx,0) and then f(x)g(x)=g(x)
f(x) € Relx, el

For any a = a,¢; + a,¢, +
map ¢, is defined as follows:

o+ Ap16Ge1 € Ry the Gray

¢k: L [Fk+1

(3)
a— (a1, a5+ Ayy)-
We extend ¢, as follows:
(/)k: mz N I]:;k+1)n,
(ag,ap, - ’an—1)'_’(“1,0> A8y Ay s (4)
T 01,007 ak+1,n—1)’
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where A; = Q)6 + ;G + o+ Ay Gy € Ry =
0,1,2,---,n—1.
For any ¢ = (¢y,¢;,-++,¢,_1) € C, ¢ can be said to be as
follows:
n-1 .
c=(copCprrrCyq)c(x) = Z c;x' € R [x]. (5)

i=0
Let C be a linear code of length n over R;, and

k+1

N
Cj :{xj € [Fq
J=1

Z xiG; € C,x1,%y, -

n
SXj X Xy € [Fq }

(6)

for j=1,2,---,k+1. One can quickly Verify that C; is

a linear code of length n over I, for j=1,2,---,k+1, and
C= ®k+1 C] i |C| Hk+1|C |
Lemma 2 (see [14]). An element A=1,¢ +16,

+ + Myi G B8 @ unit in Ry if and only if A; is a unit in T,
for j=1,2,---,k+1

3. Skew g-A-Constacyclic Codes over R
Lemma 3. LetC = eak“cJC be a linear code of length n over
R and A=A + izcz “+ Ap1Serr Is a unit in Ry,
ord(g) | n. Then, o(A) = zfand only if 6, (Aj) = /lj and j =
1,2,---,k+1, where 0,(a;) =o; and i =1,2,---, k.

Proof. Suppose g(A) = A, we have

A=161 + 456 + -+ M1 Gy

A -A -1
:/\k+1+u1(17k+1)+...+u ( k akm)
A -4 A - A
:Q(Ak+1+ul<la41k”>+...+uk(k7kk+l>>

A -2 A=A
= 60,(be) + u19t<17k+1) s uwﬁ(%)
k

1

r ?
‘ A=A A=A
:A’£+1+ul<17k+1> +...+uk<u>
o (492
P APt
_ 47 /11 k+1
= A Tty <ap +-
1

em)+(%)++<%>
)

t

On comparing the coefficients, we have
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et ("1) B et (/\k+1)
6, (0‘1)
— /\1 - /\k+1 L.

et (Ak) B 91‘ (A’ki—l) - Ak - /\k+1 )
o 0 () 277

P
Aesr = Aierrs

(8)

Note that 0, («;) =, for i = 1,2,---,k, we can get that
Ht()tj) =/\j for j=1,2,---,k+1.

Conversely, if 6, (1;) = A; for j = 1,2,---,k + 1, note that
0,())=0a; for i=1,2,---,k, then we can have
0,(g) =6, (u;/a;) =¢; and 6,(g,y) =0, (1 —uylay — - —
U/ o) = Gy

So, o) = (A6 + A6y + o+ Ay o) =
MG+ A6+ Ay G = A O

Theorem 1. Let C = @’;;'llqjcj be a linear code of length n
over Ry and A = 1,6, + 1,6, + -+ + A1 Geyq 1S a unit in Ry,
ord(@)|n, (L) = A. Then, C is a skew g-A-constacyclic code of
length n over R, if and only if C; is a skew 6,- ;-constacyclic
code of length n over |, for j=1,2,---,k+ 1.

Proof. For any c; = (¢;0,¢j15+*€jn1) €Cj, j=k1+,12,.--,
k k++11 Then, ¢ Sct GGt G = (221850
2im16iCi s X ie16i€n) € C

IfC; is a 0,-A-constacyclic code of length n over F, then

0, 0, [?)
09,1,(¢7) = 06,0,(¢j0 o2 €nt) = (Ai(1na) ™ (10) "+ (eju2)™) € Cpo

k+1 k+1 k+1
00 (0) = A6y + 4565 + -+ + g1 6eir )@ Z GiCin-1 |»Q Z GiCip > > @ Z GiCin-2
i-1 i=1 i=1

= <(A1C1 A6+t Ak+1ck+1)9t<

k+1

k+1 k+1
Z GiCin-1 >) 0 (Z GiCio >) 50 < Z GiCin-2 > ) ©)
i=1 i=1

k+1 k+1
= <(A1C1 + 226+ + M1 Gkt ) Z Cier(can—l)’ Z Ciet(ci,o)> ) Z Ciet(ci,n—2)>
i1 i=1 i=1

=610p,, (c1) + 6200,1, (c) +-+-+ Ck+196,,0,.,, (¢ks1) € C.

So, C is a skew p-A-constacyclic code of length n over R,.
On the other hand, if C is a skew p-A-constacyclic code of
length n over R, we have

00 (€) = 6100, (c1) + 6200,1, (c2)
(10)

k+1
+ GO, (Crir) € C= @11 6;,C

j-
S0, 04, (c;) € Cj, C; is a skew 6;-A ;-constacyclic code of
L) .
length n over F, for j=1,2,---,k+ 1. O

Theorem 2. Let C = EB’;jllchj be a skew g-A-constacyclic

code of length n over Ry, A =216, + 2,6, + -+ + A1 Gpyp 05

a unit in Ry, ord(o)ln, ¢(A) = A. Then, C* = zIJ(;rllcchl is

0=x-0' (MAxge(3)" " +Ax10(p,)
= A(xo0 (yl)n_l + x1Q()’2)n_l
0=10(0)
= Q(on()’l)n_l +x10(y2)

n-1

4o+ xnizg(ynilnfl + Ailxnflg(y()nil)

a skew 0,-A" ' -constacyclic code of length n over Ry, and Cjis
a skew Gt-)t;l-consmcyclic code over F, for j=1,2,---,k +1,
where A" = ANq + A 6y -+ At Gh

Proof. Let C = e)’;;’ll ¢;C; be a skew g-A-constacyclic code of

length n over R, where A = A,¢, + 1,6, + -+ + A 6y 1S

a unit in R, Foranyx = (xyx,---,%, ;) € C,
y= oY1 s Yu1) €C, then
ot (1) =0 ()" e ()" ke () he(e" ) € C
(11)
We can get that
1 n-1 n-1
+"'+Axn—29(yn—l) +xn—lg(y0)
Tt X, 00 (yn— 1)"_1 +A lxn—IQ(yOrFl)’
(12)

=0(x)y1 +e(x)ys + -+ 0(X2) Yt + /\_IQ(xn—l)J’o)

=0, (%) -y,



SO (x) € CY; hence, C* is a skew 6,-A7"
-constacyclic code.

By Lemma 2, C* is a skew 60,-A"'-constacyclic code of
length n over R,. By Theorem 1, C; is a skew

Ht—AJTI—constacyclic code over F_ for j=1,2,---,k+1. O

Theorem 3. LetC = ea’]?*}c] C; be a skew g-A-constacyclic code
of length n over Ry, A =A16 + 1,6, + -+ + A1 Gpyy 1S a unit
in Ry ord(0) | n, 0(A) = A. Then, there exists a polynomial
6191 (%) + 6,95 (%) + -+ + G 1 Grr1 (X) € Ry [x, 0] subject to
C =619, (%) + 6,95 (X) + -+ + Gy Gia1 (X)), where the right
divisor of x" — X is ¢, g, (%) + 6,9, (X) + + + Gp1Gpsr (), the
generator  polynomial of skew 6,-A;-constacyclic C; is
g;(x) € F[x, 6,1, and g;(x) divides x" —)Lj on the right for
i=1,2k+ 1

Proof. Let C = 69]1(:11 G;C; be a skew g-A-constacyclic code of
lengthn over R, By Theorem 1, C; is a skew 6,-A ;-constacyclic
code of length n over F, for j=1,2,---,k+1.

Let g;(x) be the generator polynomial of C;, then

c :<C191 ()5 629 (%)s > Gpy1 Giar (%)) (13)
Let = €6191 (%) + 695 (%) + -+ + G Gpr (X))
Clearly, C' CC
Because  ¢; [(clgl (%) + 6295 () + -+ + GG (X)] =
6;gj(x) for j=1,2,---,k+1, so ccC.
( );-Ience, Cc=C'= 6191 (%) + 6295 (X) + -+ + 61 Gk
x)).

Because the right divisor of x" -1, is g;(x) for j=

k+1. Let fj(x)gj(x) = x" —/\j. Then, [¢ f;(x) +

G2+ + 0 fra (D69 (0) +69, () +---+
Skr1Grer ()] = X" = (A6 + 6ot -+ + Ay G) = X" — A

So, the right divisor of x"-A is ¢ g;(x)+

O

6292 (X) + -+ + Gy Gpear ()

Corollary 1. Let C = EBk"l ¢;C; be a skew Q -A-constacyclic
code of length n over ERk, A=2416 + A6 + - + A1 Geyq IS
a unit in Ry, ord(e) | n,0(A) = A. Then, C* = (¢, f] (x) +

k+1
* * . deg(g;(x
f3 (0t 4G fi (), [CH] =g 2t
where  f(x)g;(x) =x"-1;, f;(x)=ay;+a;x+ -+
Ay X" T €F[x,0,), fi(x)=a,,;+0,(a,,)x+ -+
0/ " (ag ;)x""", and f; (x) is the generate polynomials of skew
Gt—AJTI—constacyclic Cjfor j=12,--k+1.

Proof. Let C; =

<fj(x)> for j=1,2,---,k + 1, using The-

orems 2 and 3, Ct = ®k+1 S

(Z ket 1deg <g»(x>>>
g\ci=1 "/, and we can get that
Ct = e f1 (62 f5 (%) 5 Gy frgr (X)) Let
D= {6 f1 () + 6, f5 () + -+ Gy frpn () Clearly,
DcC*.Because G [clff (X) + 6 f5 (X)) +++ + Gpy g (0)] =
Gif; (x) for j=1,2, k+~1, so C+cD.

Therefore, t=D={¢fi(xX)+¢fr(x)+-+

Sker S rer (- o

.,then ICL|=HI;+1|CL|_
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4. Quantum Codes from Skew g-1-Constacyclic
Codes over R,

Theorem 4. Let C = eak”c C; be a linear code of length n
over Ry, with order |C| = ¢, and the minimum Gray distance
of Cis dg. Then, ¢ (C) is a [(k+ 1)n,1,dg] linear code and
¢ (O = ¢, (O)". If C is a self-dual code over Ry, then
¢ (C) is a self-dual code over F,.

Proof. By the definition of ¢, we can have that ¢, (C) is
a [(k+ 1)n,1,dg] linear code.

Let a=(agay--,a,,) €Cb=(byby,---,b,) €
o a;=0ay6 +ayiG+- -+ ak+1,jck+1:bj = bl,jC1+ bz,ﬁz +
-~+bk+1,jCk+1 €eR,, j=01,2---,n-1, and a"¥=
(aiO’ Ai>t s zn—l) b® (bto’bzl)"':bi,n_l)’ i=1,2,...,

n-1<k+1
k+1.Then, a-b= Z Ofbf_zjzozizl a;;b;
G = z f{jlla b(l G; = 0.S0 a(i)b(i)T =0 and i=
1,2,---,k+1Since ¢ (a) = (aV,a?,...,a®D)  and
BB = (60,6, b)),
k+1
$i (@) - ¢ (b) = ¢y (@) (b)" Za W Z0. (14

So, we have ¢, (C+)c¢, (C)*.

Because ¢, is bijective, [C| = |¢, (C)|. Then, |¢, (C*) | =
q(k+l)n/|c| — q(k+1)n/ | ¢k ©)] = | ¢k (C)l |. We have
$i(C) = ¢ (O

If C is a self-dual code, C =C*and then ¢, (C)* =
¢ (CT) = ¢ (C).

Therefore, ¢ (C) is a self-dual code over F,. O

Lemma 4. Let C be a skew 0,-A-constacyclic code of length n
over F,, whose generator polynomial is g (x) and ord (6,)|n.
Then, C contains its dual code if and only if x" — A is the right
divisor of f*(x)f(x), where A = =1 and the generator
polynomial of C* is f*(x).

Proof. Let C*+ = {f*(x)), where f(x)g(x) = (x"—A) and
A= + 1, C contains its dual code if and only if there exists
h(x) € F, [x, 0,] subject to f*(x) = h(x)g(x), by Lemma I,
) f(x)=h(x)g(x)f (x)=h(x)f (x)g(x) =
h(x)(x" — 1) if and only if the right divisor of f* (x) f (x) is
x" = A

In the present section, we construct quantum codes from
skew - A-constacyclic over R, by using the CSS con-
struction [1, 2]. O

Theorem 5. (CSS Construction). Let C = [n,k,dlq be
a linear codes over F_, if C+ CC, then there exists a quantum
code [[n,2k —n, d]]q.

Theorem 6. Let C = &"*1c.C. be a skew g-A-constacyclic
code of length n over 9€k, ord(g) In, o(A) =4, A=A, +
Ay + - + A1 Gy IS a unit in R, Then, C+< C if and only
if the right divisor of f;" (x)f;(x) is x" =1, A;= +1 and
i=1,2,---,k+1.
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Proof. Suppose the right divisor of f;" (x)f;(x) is x" - A,,
by Lemma 4, C;cC;, i=1,2,---,k+1, then ¢C/<gC;,
. . . k k
which implies C* = @],C;cel]¢,C; = C.
On the contrary, let C'cC, then C*= ea’]‘.*llcj

ng®’;jllc .C; = C. Hence, C;-cC;. By Lemma 4, we have the
right ~ divisor of f,"(x)f;(x) as x"-1, A= %1,
i=1,2,---,k+ 1

Using Lemma 4 and Theorem 6, we can get the following
corollary. O

/il

Corollary 2. Let C = &t 5;C; be a skew g- A-constacyclic
code of length n over ?{k, where ord () | n, 9(A) = A, and
A= + A6 + - + Ay Gy B8 a unit in Ry Then, C+cC if
and only if C;<Cj, j=1,2,---,k + 1.

Theorem 7. Let C = @’?;'llqjcj be a skew o- A-constacyclic
code of length n over R, where ord (o) | n, 0(A) = A, and
A =216y + 456 + -+ + Mgy Gy Bs @ unit in Ry IfC; is a skew
6,-Aj-constacyclic code over F, and C]*QC]., where A; = +1

and j=1,2,---,k+1, then ¢, (C)* ¢, (C) and there exists
a quantum code [[(k+ 1)n, 2] - (k+ )n, dG]]q, where the
minimum Gray weight of C is d; and the dimension of ¢, (C)
is L.

Proof. Since C; is a skew 6,-A;-constacyclic code over [ and
C;cCy A= £1,j=1,2,--+,k+]1, using Corollary 2, and
C*cC. So, ¢, (CH)<¢; (C), by Theorem 4 ¢, (C)* = ¢, (CH).
Therefore, ¢, (C)*C¢,(C), and by Theorem 4, ¢, (C)
= [(k + 1)n,1,dg]. Using Theorem 5, there exists a quantum
code [[(k+ 1)|n, 21— (k + 1)n, dG]]q. O

Example 1. Let n=3 and R, = F,, [u;,u,]/{u} = uy,u5 =
Uy, Uty = Uyt = 0), CL=uUpG =uy ¢ =1—u —u,
Va € F,,, and 0,: F,, — F,, is defined by 6, (a) = a’, and
V(ay + a,u; +au,) € R,,0 (ag +a,u, +ayu,) =
((@)" +ay)"u; + (a)"u. Then, ol = 3,0rd (o)l

X +1= (w24 +w'x+ wsxz)(wzx + a)z)
eFy[x0]x -1= (w12 +wPx + xz) (x + w)
€ Fyy [x,0,].
(15)

Let C be a skew g-(¢; + ¢, + (—1)g3)-constacyclic code of
length 3 over R,. Let g(x) = ¢, g, (x) + 6,9, (x) + 6395 (x),
where g, (x) = g,(x) = w*x + w?, g;(x) = x+ w. Then,
C, =<g;(x)) and C, = (g, (x)) are skew negacyclic codes
of length 3 over [F,,. C; = (g5 (x)) is a skew cyclic code of
length 3 over F,,. By Theorem 4, ¢, (C) = [9,6, 3],,. Using
Theorem 7, C*<C. So, we can get a quantum code
[[9,3,3]],; such that n —k +2 —2d = 2.

Example 2. Let n=8 and R; = Fy[uy,uy, u3]/ uf = —u;,
wid; = uj; = 0),6) = —Uy, G = —Uy, 63 = —Us, G =1+u +
U, +uy,Va € Fy and 0,: Fy — [y is defined by 6, (a) = a°,
and V(ay+a,u, +au,+ asu;) € Ryando(ap +au;+

) 0 0 )
ayuy+ asuz) = (ag)” + (a,)"u; + (a,)"u, + (a3) *us. Then,
lol = 2,0rd (0)|n.

P | :(w2x5 +wixt + wx® + ox +2x + 2)

23, 2.2 8
(0’ + w’x +2x+1)e[F9[x,9t],x +1
7 6 3.5 5 4 7 3 6 2 7
:(wx twx +twx twx +twx +wx+1)
2 3
(wx® + 0 x+1)eﬂf9[x,9t].

(16)

Let C be a skew g-(¢; +¢, + (=1)¢3 + (~1)g,)-con-
stacyclic code of length 8 over R;. Let g(x) = ¢, g, (x) +
6295 (%) + 6395 (%) + 6,9, (x), where g,(x) = g,(x) = &
X+ wrx? +2x+ 1,95 (x) = g4 (x) = wx* + @’x + 1. Then,
C, ={g,(x)) and C, = (g, (x)) are skew cyclic codes of
length 8 over Fy. C; = {g; (x)) and C, = (g, (x)) are skew
negacyclic codes of length 8 over Fy. By Theorem 4, ¢, (C) =
[32,22,4]y. By Theorem 7, C*cC. So, we can get a quantum
code [[32,12,4]],.

Example 3. Let n=12 and Ry =Foluy,uy,us]/{uf =
—Up Uit = Uiy = 0,6 = —Uy, G = —Uy, 63 = —U3, G4 = 1+
U +u, +u;, Yael, and 6,: Fg — Fy is defined by
6, (a) = a’, and V(a, + Aty + Ayl -ga3u3) € 2{3 andg(%0
+a,uU; + ayuy +asuz) = (ag) + (a) " uy + (a,)"uy + (as)”
u,. Then, |o| = 2, 0rd (9)|n.

2_10

2.8 2.6 2.4 22 2
x —l=lo"x +0'x +0'x +wx +wx +a))

w’x* + wz) eFy[x, 6], %" +1

6 2 4 2 6
X +twx +2x +wx +x +w)

(
(
( 10 6. 8
(x% +w’) € Fo[x,6,].

(17)

Let C be a skew g-(¢; + (-1)g, + 63 + (—1)g,)-con-
stacyclic code of length 12 over R;. Let g(x) = ¢, g, (x) +
6295 (X) + 6395 (x) + 649, (x),  where g,(x)=g;(x) =
w®x? + w?and g, (x) = g4 (x) = x> + w>. Then, C, = (g,
(x)y and C; = {g5(x)) are skew cyclic codes of length 12
over Fy, and C, ={g,(x))andC, = {g,(x)) are skew
negacyclic codes of length 12 over Fy. By Theorem 4,
¢5(C) = [48,40,3]y. By Theorem 7, C*cC. So, we can get
a quantum code [[48, 32, 3]]y, which has larger dimension
than [[48,24,3]], in [21].

In Table 1, some new quantum codes are given from
skew g-1 constacyclic over R,. Our quantum codes
[[18> 12, 3]]27’ [[9a 3 3]]27’ [[18, 12, 3]]47’ [[18> 12, 3]]169a
[[28,22,3]],4 have the parameters such thatn —k — 2d + 2 =
2. These codes are approached quantum MDS codes (sat-
isfying quantum singleton bound #n-k-2d+2=0).
Moreover, our obtained quantum codes [[48,32,3]],,
[[40, 30, 3]],5, [[56,46,3]],, have larger dimensions than
the quantum codes  [[48,24,3]]y,  [[40,24,3]],s,
[[56,40, 3], in [21].
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TaBLE 1: Quantum codes from skew g-A-constacyclic over R,.

q n k A5 M) <G1 (%), G (%) > $, (C) [[n1,d]], [[n',k')d']]q

49 6 2 (1,-1,-1) (31, wl, wl) [18,15,3] [[18,12,3]],0 n-k-2d+2=0
27 3 2 (1,1,-1) (1w, 1w, w?w?) [9,6,3] [09,3,3]],, n-k-2d+2=0
49 6 2 (1,-1,-1) (31, w1, wl) [18,15,3] [[18,12,3]], n-k-2d+2=0
169 6 2 (1,-1,1) (01, w*®1, w'®1) [18,15,3] [128,22,3]],9 n-k-2d+2=0
49 14 1 (1,-1) (10*1, 1) [28,25,3] [[48,32,3]], n-k-2d+2=0
9 12 3 (1,-1,1,-1) (w®0w?, 1002, w®0w?, 10w?) (48,40, 3] [[48,32,3]], [[48,32,3]], [21]
25 10 3 (1,1,-1,-1) (0¥ w?l, w*l, w1, w'°1) [40, 35, 3] [[40, 30, 3]],5 [[40, 24, 3]],5 [21]
49 14 3 (1,-1,-1,1) (10**1, 0?1, w*1, w°1) [56,51,3] (56,46, 311,40 [[56,46,3]],, [21]

5. Conclusions

In this article, we construct quantum codes by studying the
structure of skew g-A-constacyclic codes over a finite non-
chain ring Ry = F,luy, vy, - -, )/} = o uu; = uju; =
0y, where g = p™, p is an odd prime, and «; is a unit over
F, i j=1,2,---,k The major contributions are as follows:
we study the structure of skew g-A-constacyclic code of
length n over R, and give the necessary and sufficient
conditions of dual-containing skew constacyclic codes. Our
results will enrich the code source of quantum codes. Be-
sides, we obtain some new quantum codes from skew g-A
-constacyclic over R, by using the CSS construction. Our
obtained quantum codes are approached quantum MDS
codes or have larger dimensions than [21].
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