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�e purpose of the study was to determine whether there was a di�erence in the length of stay (LOS) for inpatients diagnosed with
intracranial hemorrhage (ICH) or pulmonary embolism (PE) prior to and following implementation of an (AI) triage software. A
retrospective review was performed for patients that underwent CT imaging procedures related to ICH and PE from April 2016 to
October 2019. All patient encounters that included noncontrast head computed tomography (CT) or CTchest angiogram (CTCA)
procedures, identi�ed by the DICOM study descriptions, from April 2016 to April 2019 were included for ICH and PE, re-
spectively. All patients that were diagnosed with ICH or PE were identi�ed using ICD9 and ICD10 codes. �ree separate control
groups were de�ned as follows: (i) all remaining patients that underwent the designated imaging studies, (ii) patients diagnosed
with hip fractures, and (iii) all hospital wide encounters, during the study period. Pre-AI and post-AI time periods were de�ned
around the deployment dates of the ICH and PE modules, respectively. �e reduction in LOS was 1.30 days (95% C.I. 0.1–2.5),
resulting in an observed percentage decrease of 11.9% (p value� 0.032), for ICH and 2.07 days (95% C.I. 0.1–4.0), resulting in an
observed percentage decrease of 26.3% (p value� 0.034), for PE when comparing the pre-AI and post-AI time periods. Reductions
in LOS were observed in the ICH pre-AI and post-AI time period group for patients that were not diagnosed with ICH, but that
underwent related imaging, 0.46 days (95% C.I. 0.1–0.8) resulting in an observed percentage decrease of 5% (p value� 0.018), and
inpatients that were diagnosed with hip fractures, 0.60 days (95%C.I. 0.1–1.2) resulting in an observed percentage decrease of 8.3%
(p value� 0.004). No other signi�cant decrease in length of stay was observed in any of the other patient groups.�e introduction
of computer-aided triage and prioritization software into the radiological work�ow was associated with a signi�cant decrease in
length of stay for patients diagnosed with ICH and PE.

1. Introduction

Radiologists face a demand for improved healthcare e�-
ciency under a simultaneously increasing workload [1].
Arti�cial intelligence (AI), a popular topic within radiology
over the past decade, has shown promising applications for
enhancing radiologist productivity and e�ciency [2, 3]. AI
algorithms used for lesion detection, case triage, and
work�ow management can prioritize critical cases to ac-
celerate diagnosis and reduce study turnaround time (TAT)

[4]. While AI has been shown to improve radiology
work�ow processes, the role AI plays in other healthcare
e�ciency metrics, such as hospital length of stay (LOS), is
unclear.

Hospital LOS is a crucial component of healthcare ef-
�ciency as it directly impacts healthcare costs. Generally,
reduced LOS translates to reduced cost and substantial
hospital savings [5–7]. Excessive LOS, on the other hand,
leads to increased cost and potentially, clinical complications
related to the increased risk of adverse events [8]. Improved
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radiology workflow and efficiency, including decreased
study acquisition and time of interpretation, have been
shown to contribute to reduced hospital LOS [9].

Our institution recently implemented AI triage software
for intracranial hemorrhage (ICH) detection on CT head
(CTH) and pulmonary embolism (PE) detection on the CT
chest angiogram (CTCA). )e purpose of our study was to
determine whether there was a difference in LOS in patients
diagnosed with ICH or PE before and after the imple-
mentation of this (AI) triage software.

2. Methods

A retrospective review was performed for patients that
underwent CT imaging procedures related to ICH and PE
from April 2016 to October 2019. IRB approval was granted,
and the requirement for informed consent was waived.

2.1. AI Implementation and Adoption. Our institution
implemented an AI triage software for intracranial hem-
orrhage (ICH) detection on CT head (CTH) and pulmonary
embolism (PE) detection on a CT chest angiogram (CTCA)
by AidocMedical Ltd (Aidoc). Aidoc provides a cloud-based
AI solution for computer-aided triage and prioritization.
)e solution is intended to assist hospital networks and
appropriately train medical specialists in workflow triage by
flagging and communication of suspected positive cases of
CT studies covering multiple pathologies. )e solution is
based on a proprietary two-stage algorithm: a region pro-
posal stage and a false positive reduction stage.)e first stage
is a 3D deep convolutional neural network (CNN) that was
trained on tens of thousands CTs acquired on a diverse range
of CT scanners from multiple medical centers around the
world. )is network is trained on segmented scans and
produces a 3D segmentation map. From the segmentation
map, region proposals are generated and passed as the input
to the second stage of the algorithm. )e second stage
classifies each region as positive or negative, based on fea-
tures from the last layer of the first stage and traditional
image processing methods. Upon detection of suspected
positive findings, the solution delivers notifications directly
to the radiologist workstation. )e software can be con-
nected in a variety of manners to PACS and all relevant CT
studies are automatically sent for analysis with no manual
trigger. )e software is vendor neutral and is FDA cleared/
CE marked for use on multiple scanners from multiple
manufacturers.

)e Aidoc solution was deployed at our institution in
November 2017 with the ICH and PE modules deployed in
November 2017 and December 2018, respectively. A
workstation application was installed on radiologist
workstations following the November 2017 deployment.
)e workstation application automatically launches at
login with no additional user authentication or input re-
quired. Real-time prioritization alerts are provided directly
in real time to the reading radiologist for potentially acute
cases that require immediate attention. )e alerts appear as
visual pop-up notifications with an optional chime. )e

solution is used by over 100 radiologists across our in-
stitution. Engagement was monitored as a part of the
onboarding process (duration: 2 months for each module
ICH/PE) and was defined as the number of notifications
reviewed by at least one radiologist. Engagement was
measured to be consistently above 99% throughout the
onboarding, demonstrating a successful adoption of AI
alerts in the radiologist workflow.

2.2. ICH Patients. All patient encounters that included
noncontrast head CT procedures, identified by the DICOM
study descriptions, from April 2016 to April 2019 were
included. All patients that were diagnosed with ICH were
identified using ICD9 codes; 430, 431, 432, 852, 853, 851, and
907 (Table 1). A control group was defined as all remaining
patients that underwent related imaging that were not di-
agnosed with ICH.

)e AI solution for ICH was deployed during November
of 2017. Two time periods were defined around the avail-
ability of the AI solution, pre-AI (04/01/2016–04/30/2017)
and post-AI (04/01/2018–04/30/2019). A time period from
05/01/2017 to 03/31/2018 was excluded from the analysis and
defined as an onboarding buffer. )e justification for ex-
cluding this time period was to avoid bias due to user
training and technical stabilization of the AI solution. )e
pre-AI and post-AI months were matched to avoid bias due
to seasonal trends.

A total of 9,552 patient encounters were identified for the
analysis. 1,718 patient encounters were identified as those
diagnosed with ICH and were split into 923 and 795 patient
encounters for the pre-AI and post-AI time periods, re-
spectively. 13,904 patient encounters were identified for
patients that underwent related imaging but that were not
diagnosed with ICH and were split into 6,070 and 7,834
patient encounters for the pre-AI and post-AI time periods,
respectively.

2.3. PE Patients. For PE, the patient encounters were
identified similarly to the ICH patients as described above.
All encounters that included CTCA were identified by the
DICOM study descriptions. Patients diagnosed with PE
were defined using the ICD9 code 415 and ICD10 code I26.
A control group was defined as all remaining patients that
underwent CTCA that were not diagnosed with PE. ICD10
codes were used for PE, as ICD9 codes were phased out mid-
2019 at our institution (Table 1).

)e PE AI solution was deployed during December of
2018 and the pre-AI (01/2018–12/2018) and post-AI (01/
2019–12/2019) time periods were defined around the de-
ployment date similarly to the ICH periods. A smaller
onboarding buffer was used due to a shorter deployment
process and radiologist familiarity with solution workflow.

A total of 5,254 patient encounters were identified for the
analysis. 400 patient encounters were identified as diagnosed
with PE and were split into 230 and 170 patient encounters
for the pre-AI and post-AI time periods, respectively. 4,854
patient encounters were identified for patients who un-
derwent related imaging that were not diagnosed with PE
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and were split into 2,321 and 2,533 patient encounters for the
pre-AI and post-AI time periods, respectively.

2.4. Additional Control Groups. In addition to the relevant
CT imaging control groups, two additional control groups
were investigated. )e first group included patients who were
diagnosed with hip fractures (ICD9: 820, 821). Hip fracture
was chosen as a comparison group due to acuity and treat-
ment-related factors. Patients typically present with an acute
fracture which is diagnosed clinically and radiographically.
)e diagnosis is followed by treatment (operative or con-
servative) and a hospital stay, which was found at our in-
stitution to have similar length to those for ICH and PE. )e
second group included all hospital-wide patient encounters at
our institution. )e justification to include all hospital-wide
patient encounters was to exclude any trends due to shifts in
general hospital policies. For both hip fractures and hospital-
wide patients, the length of stay was evaluated independently
twice across the matching pre-AI and post-AI time periods
defined for the PE and ICH subgroups.

For the ICH time period, 3,058 hip fracture encounters
were identified and were split into 1,397 and 1,661 for the pre-
AI and post-AI time periods, respectively. 257,615 hospital-
wide patient encounters were identified and were split into
123,782 and 133,833 for the pre-AI and post-AI, respectively.

For the PE time period, 2,940 hip fracture encounters
were identified and were split into 1,530 and 1,410 for the pre-
AI and post-AI time periods, respectively. 265,377 hospital-
wide patient encounters were identified and split into 129,417
and 135,960 for the pre-AI and post-AI, respectively.

2.5. Length of Stay. All patient encounters within the
identified groups were exported from the electronic health
record system. )e length of stay per patient encounter was
defined as the time period in fraction of days between the
hospital admission and the hospital discharge. All patient
encounters that were longer than 120 days were excluded
from the analysis as outliers.

2.6. Statistical Analysis. For each patient group and time
period, the mean length of stay and 95% CI of the mean was
calculated. )e mean difference between the post-AI and

pre-AI corresponding groups was calculated and a two-sided
t test was evaluated to reject the null hypothesis.

3. Results

3.1. ICH Patients. For the ICH-diagnosed patients (Fig-
ure 1), a mean LOS of 10.92 and 9.62 days was observed for
the pre-AI and post-AI time periods, respectively. )e mean
difference was 1.30 days (p value� 0.032), which resulted in
an observed percentage decrease of 11.9%. For the group
that underwent related ICH imaging but was not diagnosed
with ICH, amean LOS of 9.19 and 8.73 days was observed for
the pre-AI and post-AI time periods, respectively. )e mean
difference was 0.46 days (p value� 0.018), which resulted in
an observed percentage decrease of 5.0% (Table 2).

For hip fracture-diagnosed patients, a mean LOS of 7.26
and 6.66 days was observed for the pre-AI and post-AI time
periods, respectively. )e mean difference was 0.60 days (p
value� 0.004), which resulted in an observed percentage
decrease of 8.3%. For the hospital-wide patients, a mean LOS
of 5.29 and 5.82 days was observed for the pre-AI and post-
AI time periods, respectively. )e mean difference was 0.54
days (p value < 0.001), which resulted in an observed
percentage increase of 10.0% (Table 2).

3.2. PE Patients. For the PE-diagnosed patients (Figure 2), a
mean LOS of 7.91 and 5.83 days was observed for the pre-AI
and post-AI time periods, respectively. )e mean difference
was 2.07 days (p value� 0.034), which resulted in an ob-
served percentage decrease of 26.3%. For the group that
underwent related PE imaging but was not diagnosed with
PE, a mean LOS of 9.24 and 9.72 days was observed for the
pre-AI and post-AI time periods, respectively. )e mean
difference of 0.49 days (p value� 0.157) was not statistically
significant and resulted in an observed percentage increase
of 5.2% (Table 3).

For hip fracture-diagnosed patients, a mean LOS of 6.90
and 6.69 days was observed for the pre-AI and post-AI time
periods, respectively. )e mean difference of 0.21 days (p
value� 0.083) was not statistically significant and resulted in
an observed percentage decrease of 3.0%. For the hospital-
wide patients, a mean LOS of 6.51 and 6.35 days was ob-
served for the pre-AI and post-AI time periods, respectively.

Table 1: List of ICD codes used and the related pathologies.

Code Description Pathology
ICD9\430 Subarachnoid hemorrhage ICH
ICD9\431 Intracerebral hemorrhage ICH
ICD9\432 Other and unspecified intracranial hemorrhage ICH
ICD9\851 Cerebral laceration and contusion ICH
ICD9\852 Subarachnoid subdural and extradural hemorrhage following an injury ICH
ICD9\853 Other and unspecified intracranial hemorrhage following an injury ICH
ICD9\907 Late effects of injuries to the nervous system ICH
ICD9\415 Acute pulmonary heart disease PE
ICD10\I26 Pulmonary embolism PE
ICD9\820 Fracture of the neck of the femur Hip fractures
ICD9\821 Fracture of other and unspecified parts of the femur Hip fractures
ICD : international classification of diseases. PE : pulmonary embolism. ICH : intracranial hemorrhage.
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Figure 1: Box plots of the ICH-related patient cohorts.

Table 2: Statistical descriptions of the ICH-related patient cohorts.

Pre-AI Post-AI
Patients diagnosed for ICH
Mean (CI 95%) 10.92 (10.05–11.79) 9.62 (8.81–10.43)
Di�erence in means 1.30 (p value� 0.032)
% Di�erence in means 11.9%
Median 6.25 5.12
Standard deviation 13.48 11.62
25th percentile 3.00 2.88
75th percentile 13.88 11.77
99th percentile 75.99 55.97
ICH control group 1—patients that underwent related imaging but were not diagnosed with ICH
Mean (CI 95%) 9.19 (8.90–9.47) 8.73 (8.47–8.98)
Di�erence in means 0.46 (p value� 0.018)
% Di�erence in means 5.0
Median 5.04 4.79
Standard deviation 12.05 12.00
25th percentile 2.79 2.71
75th percentile 10.54 9.38
99th percentile 64.8 63.0
ICH control group 2—patients diagnosed with hip fractures
Mean (CI 95%) 7.26 (6.86–7.66) 6.66 (6.27–7.04)
Di�erence in means 0.60 days (p value� 0.004)
% Di�erence in means 8.3%
Median 5.08 4.75
Standard deviation 7.66 7.91
25th percentile 3.79 3.38
75th percentile 7.83 6.92
99th percentile 35.08 34.29
ICH control group 3—all patients
Mean (CI 95%) 5.29 (5.24–5.33) 5.82 (5.77–5.87)
Di�erence in means −0.54 days (p value < 0.001)
% Di�erence in means −10%
Median 3.17 3.21
Standard deviation 7.47 9.11
25th percentile 2.04 2.04
75th percentile 5.59 5.88
99th percentile 37.59 48.75
ICD : international classi�cation of diseases. PE : pulmonary embolism. ICH : intracranial hemorrhage. AI : arti�cial intelligence. CI 95%: 95% con�dence
interval.
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�e mean di�erence of 0.16 days (p value� 0.656) was also
not statistically signi�cant, resulting in an observed per-
centage decrease of 2.5% (Table 3).

4. Discussion

�epurpose of the study was to determine whether there was
a di�erence in LOS in patients diagnosed with ICH or PE
prior to and following implementation of the AI-based triage
software. �e purpose of the software is to rapidly detect
acute cases containing critical �ndings, such as patients with
PE or ICH, and shorten the time to clinical team noti�cation.
In the absence of such a system, a �rst-in-�rst-out (FIFO)
clinical work�ow is used for the diagnosis and treatment of
patients. Past studies have shown that reducing time to
diagnosis and treatment by notifying the radiologist faster
than the (FIFO) standard of care enables the clinical team to
diagnose and treat the patient earlier, which is important in
both PE and ICH outcomes. For example, a reduction of
even two hours in the time from hospital arrival to the start
of anticoagulation therapy has been shown to signi�cantly
increase PE patient survivors [10]. In the case of ICH, it has
been shown that hematoma expansion occurs typically in the
�rst few hours after bleeding starts and that hematoma
volume is an important early predictor of deterioration [11].
Further studies have shown that early aggressive medical
management can improve outcomes. Similar studies have
been conducted with PE, demonstrating that the timely
treatment of PE has been shown to reduce mortality and
shorten LOS [12–14].

�is study evaluated the impact of implementing an AI-
based triage software into the clinical work�ow by mea-
suring LOS statistics for patient admission at our institution
across two pre-AI and post-AI time periods. Statistics were
compared between patients diagnosed with ICH or PE and

patients not diagnosed with ICH or PE, windowed around
the activation of the respective (AI) triage software. In the
cohort comprising all patient encounters, no statistically
signi�cant reductions in LOS were identi�ed when com-
paring the pre-AI and post-AI period. �erefore, in the time
periods evaluated, LOS broadly did not change across our
hospital system. In contrast, the largest signi�cant reduc-
tions in LOS, 1.30 days (11.9%) in patients diagnosed with
ICH and 2.07 days (26.3%) in patients diagnosed with PE,
were observed among patients diagnosed with ICH or PE
when comparing the pre-AI and post-AI time periods in
each respective group. �ese changes in LOS in the ICH and
PE cohorts from pre-AI to post-AI periods suggest a change
due to the triage software implementation. Smaller mag-
nitude statistically signi�cant reductions in LOS were also
observed in two of the control groups: (a) the ICH pre-AI
and post-AI time period group for patients that were not
diagnosed with ICH, but that underwent related imaging,
0.46 days (5%), and (b) in patients that were diagnosed with
hip fractures, 0.60 days (8.3%). �e reasons for these de-
creases in LOS remain unclear but may have been related to
parallel LOS interventions undertaken during this time by
the Department of Orthopedics (known to have occurred
during the time periods studied in the case of hip fractures)
as well as general e�orts to decrease LOS across the hospital
that were ongoing. It is notable that the absolute and per-
centage decreases in LOS in the ICH and PE groups were
larger than in both the hip fracture and non-ICH-related
imaging groups.

At our institution, the introduction of computer-aided
triage and prioritization appears to have coincided with a
signi�cant decrease in length of stay for patients diagnosed
with ICH and PE. �e absolute and percentage decreases in
LOS in these groups were also greater than the di�erences
observed in other patient groups evaluated. In fact, during
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Figure 2: Box plots of the PE-related patient cohorts.
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the studied time periods, several evaluated patient groups
demonstrated increased LOS, supporting a unique effect in
the patient groups impacted by this intervention. Further
work is required to investigate if the observed link is causal.
)e current study does not explore if there are other reasons
for the reduction, either related or unrelated to the use of AI.
)is remains an unanswered question and an open op-
portunity for future research.

One potential explanation for the observed LOS re-
duction in the ICH and PE groups is that by adopting an
AI-based triage and prioritization system, radiologist
sensitivity to previously undiagnosed small PE/ICH was
augmented. )erefore, increased sensitivity may have led
to an increased prevalence of short LOS encounters in
patients in low-risk or low symptom categories. )e se-
verity of diagnosed PE and ICH was not evaluated in this
study. However, the similarity in the total number of
admissions in the pre- and post-AI periods does not
appear to directly support this hypothesis.

)ere are some limitations of the present study. First,
it would have been interesting to measure the differences
by a comparison control study within the same time
period, where half of the studies got triage and half did
not. )is would have allowed a more direct comparison
over these two groups over time. Unfortunately, such
approaches are not necessarily practical and can introduce
ethical questions concerning patient care. Also, this was
an observational study with direct measurement of in-
dividual radiologist engagement with the software. Lastly,
we do not address whether the length of stay was asso-
ciated with equivalent outcomes. Further investigation is
warranted.

In addition to purely quantitative metrics and clinical
outcomes, the introduction of AI-based triage to the clinical
workflow at our institution raises a number of complex
medicolegal and ethical questions whose full discussion is
beyond the scope of this investigation but worth mentioning
when AI is concerned. In the context of emergent findings

Table 3: Statistical descriptions of the PE-related patient cohorts.

Pre-AI Post-AI
Patients diagnosed for PE
Mean (CI 95%) 7.91 (6.58–9.23) 5.83 (4.44 –7.23)
Difference in means 2.07 days (p value� 0.034)
% Difference in means 26.3%
Median 4.27 3.73
Standard deviation 10.21 9.22
25th percentile 2.49 2.17
75th percentile 9.85 5.99
99th percentile 45.86 44.34
PE control group 1—patients that underwent related imaging but were not diagnosed with PE
Mean (CI 95%) 9.24 (8.77–9.70) 9.72 (9.23 –10.21)
Difference in means −0.49 days (p value� 0.157)
% Difference in means −5.2%
Median 5.04 5.25
Standard deviation 11.90 13.0
25th percentile 2.83 2.96
75th percentile 10.21 10.96
99th percentile 62.00 70.04
PE control group 2—patients diagnosed with hip fractures
Mean (CI 95%) 6.88 (6.45–7.30) 6.93 (6.53–7.33)
Difference in means 0.21 days (p value� 0.083)
% Difference in means 3.0%
Median 4.77 4.92
Standard deviation 8.46 7.59
25th percentile 3.54 3.25
75th percentile 6.88 7.38
99th percentile 42.28 37.17
PE control group 3—all patients
Mean (CI 95%) 6.51 (6.42–6.60) 6.35 (6.28–6.41)
Difference in means 0.16 days (p value� 0.656)
% Difference in means 2.5%
Median 3.21 3.25
Standard deviation 16.15 12.53
25th percentile 2.04 2.08
75th percentile 5.83 6.00
99th percentile 60.15 61.04
ICD : international classification of diseases. PE : pulmonary embolism. ICH : intracranial hemorrhage. AI : artificial intelligence. CI 95%: 95% confidence
interval.
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such as PE and ICH, the clinical workflow is complex and
timing is critical, so it is impossible for a patient to be aware
that an AI tool has been utilized in their care. To date, the
solutions used at our institution have been approved for and
are intended for triage usage only, but the consideration of
usage as a diagnostic tool is important to consider in the
future. )is presents unique challenges to both the radiol-
ogists and downstream clinicians, as discrepancies between
radiologists and AI interpretation are not uncommon,
leading to a question over which is correct. )e somewhat
opaque “black box” nature of the software at our institution
as well as AI products in general confounds the issue, as the
verification of the process behind findings is out of the scope
of most radiologists [7].

5. Conclusion

In conclusion, since hospital utilization is a massive driver of
healthcare system costs and there has been a large push to
drive down hospital length of stay over a wide variety of
conditions, any avenue towards decreasing length of stay
could be beneficial for healthcare systems. )e advent of AI
triage software offers a new path towards such reductions
and we demonstrate an association between the introduction
of triage software and decreased hospital LOS.
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