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An important factor affecting the accuracy of Young’s modulus calculation in Atomic Force Microscopy (AFM) indentation
experiments is the determination of the dimensions of the indenter. This procedure is usually performed using AFM
calibration gratings or Scanning Electron Microscopy (SEM) imaging. However, the aforementioned procedure is frequently
omitted because it requires additional equipment. In this paper, a new approach is presented that focused on the calibration of
spherical indenters without the need of special equipment but instead using force indentation data on soft samples. Firstly, the
question whether it is mathematically possible to simultaneously calculate the indenter’s radius and the Young’s modulus of
the tested sample (under the restriction that the sample presents a linear elastic response) using the same force indentation
data is discussed. Using a simple mathematical approach, it was proved that the aforementioned procedure is theoretically
valid. In addition, to test this method in real indentation experiments agarose gels were used. Multiple measurements on
different agarose gels showed that the calibration of a spherical indenter is possible and can be accurately performed. Thus, the
indenter’s radius and the soft sample’s Young’s modulus can be determined using the same force indentation data. It is also
important to note that the provided accuracy is similar to the accuracy obtained when using AFM calibration gratings. The
major advantage of this paper is that it provides a method for the simultaneous determination of the indenter’s radius and the
sample’s Young’s modulus without requiring any additional equipment.

1. Introduction

Spherical indenters are frequently used in Atomic Force
Microscopy (AFM) indentation experiments on soft biolog-
ical samples [1–6]. They are preferable since they usually do
not cause permanent damage to the abovementioned sam-
ples during indentation (at least in cases that the indentation
depth is not significantly bigger compared to the indenter’s
radius). The data processing when using spherical indenters
is usually performed by fitting the force indentation data to
the classic Hertz equation [7–9]:

F = 4ER1/2

3 1 − v2ð Þ h
3/2: ð1Þ

In equation (1), E and v are the material’s Young’s
modulus and Poisson’s ratio, respectively, and R is the
sphere’s radius. Thus, the Young’s modulus of the sample
of interest can be accurately determined under the condi-
tion that the sample’s Poisson’s ratio and the indenter’s
radius are known. Thus, it is significant to determine the
indenter’s radius in order to accurately calculate the sam-
ple’s Young’s modulus.
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In most of the cases, the radius of the indenter is mea-
sured using an AFM calibration grating [10] or using Scan-
ning Electron Microscopy (SEM) imaging [11].
Subsequently, when R has been determined, the Young’s
modulus of the tested sample can be calculated as a fitting
parameter using equation (1). This is the common approach
in the literature [5, 7]. Alternatively, it is possible to obtain a
force indentation curve on a sample with a well-known
Young’s modulus and then calculate R using equation (1).
However, an interesting question arises: is it mathematically
possible to determine the radius of a spherical indenter using
force indentation data without knowing the sample’s Young’s
modulus? And if yes, is it possible to apply this method in real
indentation experiments for the spherical indenter’s calibra-
tion? It is obvious that if equation (1) is used, then it is
impossible to simultaneously determine E and R using only
equation (1). However, it should be noted that equation (1)
is valid only for small indentation depths compared to the
tip radius (h≪ R) [12]. A typical limit in the literature is h
< R/10 [13]. In other words, equation (1) is just an approx-
imation for spherical indentations since it accurately
describes indentation using a paraboloid of revolution. On
the contrary, regarding spherical indentations, Sneddon’s
equation is valid for every value of indentation depth [14]:

F = E
2 1 − v2ð Þ r2c + R2� �

ln R + rc
R − rc

� �
− 2rcR

� �
: ð2Þ

In equation (2), rc is the radius at contact depth (hc) (i.e.,
the depth at which contact is made between the sample and
the sphere). In addition,

ln R + rc
R − rc

� �
= 2h

rc
: ð3Þ

Nevertheless, equation (2) does not directly relate the
applied force on the sample to the indentation depth since
the contact radius depends on the indentation depth. Thus,
recently, a new equation was derived [15]:

F = 4ER1/2

3 1 − v2ð Þ h
3/2Z: ð4Þ

In equation (4),

Z = c1 +
3
4 c2R

−1/2h1/2 + 3
6 c3R

−3/2h3/2 + 3
8 c4R

−5/2h5/2+⋯+ 3
2N cNR

3/2−Nð ÞhN−3/2,

ð5Þ

or

Z = c1 + 〠
N

M=2

3
2Μ cMR

3/2ð Þ−Mð ÞhM−3/2: ð6Þ

The number and the values of constants c1, c2,⋯, cN
depend on the h/R ratio. For example, if 0 ≤ h/R ≤ 1:1, then
Z = c1 + ð3/4Þc2R−1/2h1/2 + ð3/6Þc3R−3/2h3/2, where c1 =
1:0220000, c2 = −0:1133000, and c3 = −0:0742000 [15].

As it has been previously reported, the applied force on a
half space when using an axisymmetric indenter is directly
proportional to the contact radius rc between the indenter
and the sample for a specific indentation depth [16]. In other
words, F ~ rch. In case of a spherical indenter with radius R
and small indentation depths, rc =

ffiffiffiffiffiffi
Rh

p
; thus, F ~ h3/2. In

case of a flat ended cylindrical indenter with radius Rcyl:, rc
= Rcyl: = const:; thus, F ~ h. As a result, while the indenta-
tion depth increases when using a spherical indenter, the
contact radius tends to a limit value which will be equal to
the indenter’s radius [15, 16]. Thus, the applied force F = f
ðhÞ should be at first proportional to h3/2 (very small inden-
tation depths) and will become linear (i.e., proportional to h)
for very big indentation depths [15, 16]. Hence, the param-
eter Z is a “correction factor” in order to apply the Hertz
equation for big indentation depths (i.e., h > R/10) [15, 16].
In other words, Z is a mathematical quantity that accounts
for the change of the slope of the F = f ðhÞ curve as the
indentation depth increases. Equations (4) and (6) offer a
new perspective in the basic question of this paper. Under
a strict mathematical way of thinking, it has been already
proved that it is theoretically possible to determine simulta-
neously the indenter’s radius and the sample’s Young’s mod-
ulus for very big indentation depths (h/R > 5) [15]. In this
case (h/R > 5), the force indentation data becomes linear F
= ð2ER/ð1 − v2ÞÞh − ðER2/ð1 − v2ÞÞ, and the sphere’s radius
can be calculated as R = 2B/A, where B is the common point
of the linear fit with the F-axis and A is the slope of the lin-
ear curve [15]. Subsequently, the Young’s modulus can be
easily determined from the slope of the linear curve [15].
However, in real experimental procedures for big indenta-
tion depths regarding experiments on soft samples, it is pos-
sible to permanently damage the sample; thus, it is difficult
to use this approach. In addition, when using AFM probes
with the geometry presented in Figure 1, it is impossible to
achieve an indentation depth h > 2R. Thus, the next question
is if it is theoretically possible to determine R using small
indentation depths compared to the indenter’s radius ðh/R
< 1Þ and if this method is accurate for the indenter’s calibra-
tion using real experimental data. In this paper, it is proved
that the accurate determination of the indenter’s radius even
if h < R is possible, and it can be performed with accuracy
when testing samples that can be approximately considered
as homogeneous and isotropic. The new approach provides
similar accuracy as other well-known techniques (e.g.,
indenter’s radius measurement using an AFM calibration
grating).

2. Materials and Methods

2.1. A New Method to Calculate the Indenter’s Radius. Equa-
tion (4) for 0 ≤ h/R ≤ 1:1 can be expressed as follows [15]:

F = c1
4ER1/2

3 1 − v2ð Þ h
3/2 + c2

E
1 − v2ð Þ h

2 + c3
2ER−1

3 1 − v2ð Þ h
3, ð7Þ
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or

F

E∗R2 = c1
4
3

h
R

� �3/2
+ c2

h
R

� �2
+ c3

2
3

h
R

� �3
: ð8Þ

In equation (8), E∗ = E/ð1 − v2Þ is the sample’s reduced
modulus. Subsequently, the ðF/E∗R2Þ = f ðh/RÞ data was
fitted to a function of the form:

F

E∗R2 = a
h
R

� �m

: ð9Þ

It was found that the data provided by equation (8) can
be accurately fitted to equation (9) (i.e., the R-squared coef-
ficient results equal to 1, R2

s:c = 1:0000) only at the domain
0 ≤ h/R ≤ 1:1. In addition, the work done by the indenter
(W) can be easily calculated as follows, using equation (8):

W

E∗R2 =
ðhmax

0

F

E∗R2 dh =
ðhmax

0
c1

4
3R3/2 h

3/2 + c2
R2 h

2 + c3
2
3R3 h

3
� �

dh

= c1
8

15R3/2 h
5/2
max + c2

1
3R2 h

3
max + c3

1
6R3 h

4
max

ð10Þ

Thus,

W

E∗R3 = c1
8
15

hmax
R

� �5/2
+ c2

1
3

hmax
R

� �3
+ c3

1
6

hmax
R

� �4
:

ð11Þ

The same procedure regarding the calculation of the
work done by the indenter can be performed using equation
(9), which is valid at the domain 0 ≤ h/R ≤ 1:1:

W

E∗R2 =
ðhmax

0

F

E∗R2 dh =
ðhmax

0
a

h
R

� �m

dh = a
m + 1ð ÞRm hm+1

max =
Fmaxhmax
m + 1ð ÞE∗R2 ⇒ ,

ð12Þ

W = Fmax
m + 1ð Þ hmax ⇒

W

E∗R3 = Fmax
m + 1ð Þ

hmax
E∗R3 : ð13Þ

The work done by the indenter can be found using equa-
tion (11) or equation (13) (the results will be identical).

Thus, by combining equations (11) and (13), it can be con-
cluded as follows:

c1
8
15

hmax
R

� �5/2
+ c2

1
3

hmax
R

� �3
+ c3

1
6

hmax
R

� �4
= Fmax

m + 1ð Þ
hmax
E∗R3 ,

ð14Þ

m = Fmaxhmax

E∗R3 c18/15 hmax/Rð Þ5/2 + c21/3 hmax/Rð Þ3 + c31/6 hmax/Rð Þ4
h i − 1⇒ ,

ð15Þ

m = Fmaxhmax
W

− 1: ð16Þ

Equation (16) can be also written in the form:

m = Fmax/E∗R2� �
hmax/Rð Þ

W/ E∗R3� � − 1⇒ , ð17Þ

m =
c14/3 hmax/Rð Þ3/2 + c2 hmax/Rð Þ2 + c32/3 hmax/Rð Þ3
h i

hmax/Rð Þ
c18/15 hmax/Rð Þ5/2 + c21/3 hmax/Rð Þ3 + c31/6 hmax/Rð Þ4

− 1:

ð18Þ
Although the aforementioned equation cannot be

inverted, by tabulating ðm, hmax/RÞ, with hmax/R ∈ ½0, 1:1�
and plotting such list, the graph of the inverted function
hmax/R = f ðmÞ can be constructed. In other words, them fac-
tor is calculated using equation (18) at the domain 0 ≤ hmax
/R ≤ 1:1, and a table with two columns is constructed. The
first column consists of the m − values, and the second col-
umn of the hmax/R − values. Subsequently, the hmax/R = f ð
mÞ graph is presented (Figure 2).

Thus, the value of the factor m can be used to reveal the
hmax/R ratio, and as a result, the value of the indenter’s
radius since the maximum indentation depth is a known
parameter. Thus, the determination of the indenter’s radius
depends on the determination of factorm (which can be eas-
ily performed using equation (16)). In equation (16), the
work done by the indenter W can be easily calculated using
the area under the F = f ðhÞ graph. In other words, under a
mathematical point of view, the indenter’s radius can be
accurately determined using typical force indentation data
by solving a simple system of two equations (equations
(16) and (18)) with two unknown parameters to be deter-
mined (m and hmax/R). The applied force, the maximum
indentation depth, and the work done by the indenter can
be easily measured using the experimental data. Subse-
quently, m can be calculated using the simple equation
(16). Then, from equation (18), it is easy to calculate the only
unknown parameter which is the ratio hmax/R (the parame-
ters c1, c2, and c3 are well defined as explained in [15]) and
as a result to determine R. Thus, in case that the force–
indentation curve is obtained on a purely linear elastic sam-
ple, the calculation of R is a simple mathematical problem
which can be performed using equations (16) and (18) and
requires only one force–indentation curve. Nevertheless, in
case that the sample of interest can be approximately

R h

Figure 1: Illustration of a spherical indentation. In an indentation
experiment using the presented cantilever, it is impossible to
achieve a maximum indentation depth h > 2R.
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considered as homogeneous and isotropic over a specific
range of indentation depths, the method can be also applied
by using many force–indentation curves and by finding the
average value of the indenter’s radius as it will be discussed
in the following sections.

2.2. Open AFM Data. Several simulated curves were used for
the first testing of the new method. The AtomicJ repository
[17] was used for obtaining force indentation data and cal-
culate the spherical indenter’s radius.

2.3. Experiments

2.3.1. Sensitivity Calibration and Spring’s Constant
Calibration. The calibration of the probe parameters is
required for accurate quantitative measurements. The
applied force on the sample can be provided through Hook’s
law in relation to the cantilever’s deflection, F = kaV (where
k is the cantilever’s spring constant, a is the deflection sensi-
tivity (that converts cantilever’s deflection from volt to
nanometers), and V is the measured cantilever’s deflection
(in volts)) [18]. The deflection V is measured directly by
the system’s position-sensitive split photodiode detector
[18]. To perform a sensitivity calibration (nm cantilever
deflection per volt signal of the laser detection system), it is
important to acquire a force vs. distance curve on a clean,
hard surface (e.g., mica or glass) [18]. Subsequently, the
deflection sensitivity a is determined by this force vs. dis-
tance curve by simply positioning two cursors on its contact
part [18]. The spring’s constant calibration was performed
using the thermal noise method [18]. Of course, apart from
the previously mentioned techniques, other novel and accu-
rate methods, like the “Standardized Nanomechanical
Atomic Force Microscopy Procedure (SNAP)” can be
applied [19].

2.3.2. Contact Point Determination. When testing soft bio-
logical samples, a significant procedure is the accurate iden-

tification of the contact point between the tip and the
sample. In order to provide accurate results, the AtomicJ
software was used for the identification of contact point;
every point of the curve is assumed as a trial contact point,
a polynomial is fitted to the precontact part, and the appro-
priate contact model is fitted to the force indentation data
[17]. The tested point that resulted in the lowest total sum
of squares is accepted to be as the contact point.

2.3.3. Measurements. The measurements were performed
using colloidal AFM probes (CP-PNPL-BSG-A, sQube,
obtained by NanoAndMore GMBH) with spheres of nomi-
nal radius equal to 1μm. The indenters were firstly cali-
brated using the AFM test grating TGT1 (NT-MDT
Instruments). AFM image processing was performed using
the WSxM software. The experiments were conducted using
agarose gels with a 2:5% concentration in a 35mm petri
dish. Agarose gels were selected since they can be approxi-
mately considered as homogeneous and isotropic. The Pois-
son’s ratio of an agarose gel can be assumed to be equal to
v = 0:5 due to the high-water content. Young’s modulus
maps on agarose gels were obtained using the AtomicJ soft-
ware [17].

3. Results and Discussion

3.1. Application of the New Method on Simulated Curves. To
test the validity of the new method, simulated curves
(obtained from the AtomicJ repository [17] as previously
mentioned in Materials and Methods) were firstly used.
According to the AtomicJ repository, the simulated curves
were generated in Mathematica 8.0 as if they were real force
curves, using a spherical indenter. They were generated
using Sneddon’s relation between force and indentation
depth (equation (2)), and adding random, Gaussian distrib-
uted noise. The tested sample was an elastic half-space with
E = 20 kPa, v = 0:5 and the indenter’s radius was R = 1μm.
The cantilever’s spring’s constant was k = 0:1N/m. A typical
simulated curve is presented in Figure 3(a). The maximum
indentation depth is 400nm, and the maximum applied
force is 8.61 nN. The area under the graph equals to W =
1:3967∙10−15 J; thus, equation (16) results in m = 1:4678.
Using the hmax/R = f ðmÞ data (Figure 3(b)), it can be easily
concluded that:

hmax
R

= 0:4061⇒ R = 0:985 μm: ð19Þ

At this point, it must be noted that the Gaussian noise is
the reason that the indenter’s radius resulted slightly smaller
than 1μm (this result can be easily justified since when using
an indenter with radius R = 1μm in the settings of the
AtomicJ software; the result is E = 20:16 kPa which is slightly
bigger than 20 kPa).

3.2. Application of the New Method on Real Experiments. To
test the validity of the proposed method in real experimental
applications, hundreds of measurements on different aga-
rose gels were obtained. The agarose gel was selected since

1.42 1.44 1.46 1.48 1.5
m

0

0.2

0.4

0.6

0.8

1

1.2

h
m
a
x

/R

Figure 2: The hmax/R = f ðmÞ data. It can be clearly shown that for
hmax/R⟶ 0, m ≅ 1:5. While the ratio hmax/R increases, the
exponent m decreases.
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it is approximately a soft homogeneous and isotropic mate-
rial. The dimensions of a typical AFM spherical indenter
that was used to conduct the experiments is presented in
Figure 4(a). In Figure 4(b), the radius of the indenter is mea-
sured, Rmeas: ≅ 1:01μm. At this point, it is significant to note
that the method presented in this paper can be applied in
cases that equation (4) can be accurately used to describe
the force indentation data. However, in some cases, the force
indentation data may not perfectly follow equation (4). A
typical example is shown in Figure 4(c). In this case, it was
found that the reliability of the method is better if the real
data are firstly fitted to a function of the form:

Ffit = ah3/2 + bh2 + ch3: ð20Þ

Equation (20) has the same form as equation (8) since:

F = c1
4ER1/2

3 1 − v2ð Þ h
3/2 + c2

E
1 − v2ð Þ h

2 + c3
2
3

ER−1

1 − v2ð Þ h
3 ð21Þ

It is also significant to note that since c1 > 0 and c2 < 0,
c3 < 0 it should be a > 0,b < 0, c < 0. Subsequently, the maxi-
mum applied force can be calculated using equation (20),
i.e.,

Ffit maxð Þ = ah3/2max + bh2max + ch3max: ð22Þ

The next step is to calculate the work done by the
indenter (i.e., the area under the Ffit − h data) and finally
the factor m using equation (16). For example, for the case
of Figure 4(c),

Ffit = 280:7093h3/2 − 23340h2 − 1:0190∙1010h3, R2
s:c: = 0:9820:

ð23Þ

Using equation (23), FfitðmaxÞ = 8:499∙10−8N , W =
1:6318∙10−14 J, and m = 1:4630. Thus, R = 0:989μm. In
Figure 4(d), the factor m with respect to the maximum
indentation depth in each case (representative data from
72 measurements which were performed using the indenter
shown in Figure 4(a)) is presented. The maximum indenta-
tion depth for the experiments that were performed was in
the range 440 nm < hmax < 562 nm, and the range of values
of m resulted in 1:457 <m < 1:468. Thus, since the m −
values have been determined the next step was to use the
hmax/R = f ðmÞ data at the domain 1:457 <m < 1:468
(Figure 4(e)).

The data presented in Figure 4(e) was fitted to a linear
equation as follows:

hmax
R

= −14:95m + 22:35, 1:457 <m < 1:468: ð24Þ

The fit was perfect since the R-squared coefficient
resulted equal to R2

s:c: = 1:0000. Finally, using equation (24)
and the data shown in Figure 4(d), it is easy to calculate
the indenter’s radius:

Rcalc: = 1:0257 ± 0:0111 μm: ð25Þ

The histogram displaying the range of the R calculations
is presented in Figure 4(f). The data range is small; this fact
shows the reliability of this method. In addition, it is obvious
that the result was almost identical to the result obtained
using the AFM calibration grating (i.e., Rmeas:). In addition,
using the mean value as calculated by the presented by this
paper method (1.0257μm), a Young’s modulus map which
consists of 16 measurements on the same agarose gel is pre-
sented (Figure 5). Thus, it is significant to pinpoint that it is
possible to determine both the spherical indenter’s radius
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Figure 3: Testing on a simulated curve. (a) A simulated F = f ðhÞ curve (AtomicJ repository [17]). The hmax/R = f ðmÞ data. It can be clearly
shown that for = 1:4678⇒ hmax/R = 0:4061.
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Figure 4: Spherical indenter’s calibration. (a) Spherical indenter’s calibration using an AFM grating. For (a), the PicoPlus (Molecular Imaging-
Agilent, also known as 5500 Keysight Technologies system) was used in contact mode. The representative image (a) is from the topography
channel so as to assess the height profile (b). (b) The sphere’s radius was measured 1.01μm. (c) Force indentation data obtained on an
agarose gel and a fitted curve (equation (23)). (d) The hmax versus m data for the 72 measurements on the agarose gel. (e) The data presented
in Figure 2 at the domain 1:457 <m < 1:468. At the aforementioned domain, the data can be fitted to a linear equation: hmax/R = −14:95m +
22:35. (f) Using the data presented in (d, e), the indenter’s radius was calculated. The range of R values is small.
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and the Young’s modulus of the sample by the same mea-
surement dataset.

In Figure 6, another one set of 16 measurements is pre-
sented which was obtained on a different agarose gel (cre-
ated using the same protocol as the one used for creating
Figure 4) using the same spherical indenter. In this case,
the maximum indentation depth was in the range 445 nm
< hmax < 600 nm. Thus, using the hmax/R = f ðmÞ data at the
domain 1:457 <m < 1:468 (Figure 6(a)), it can be concluded:

Rcalc: = 1:0197 ± 0:0135 μm: ð26Þ

The histogram which shows the R values calculated from
the 16 measurements is also shown in Figure 6(b). The
mean ± standard deviation value is almost identical to the
case of the 72 measurements. This is also a significant result
since it proves that with a small number of measurements
the determination of the indenter’s radius can be accurately
performed.

Lastly, in Figure 6(c), the 88 calculated values of R pre-
sented in histograms of Figures 4(f) and 6(b) and the mea-
sured value using the calibration grating (Figures 4(a) and
4(b)) are presented.

3.3. Reliability of the Method. From a mathematical point of
view, the proposed method is rigorous and accurate, and it
can be applied in every case that a homogeneous and isotro-
pic soft sample is being tested using a perfect spherical
indenter. However, many questions may arise; the first one
is if it is accurate to fit the force indentation data to an equa-
tion of the form F = chm (where c = aE∗R2−m according to
equation (9)) and derive the factor m using this approach.
In theory, this option seems rational; nevertheless, a signifi-

cant problem arises by this approach as it is shown in
Figure 7. In particular, the same force indentation data was
first fitted to equation:

Ffit 1ð Þ = 122:9∙h1:45 S:Ið Þ, R2
sc: = 1:0000: ð27Þ

In this case, using equation (24), Rcalc: = 0:8μm.
Subsequently, the same data was fitted to equation:

Ffit 2ð Þ = 153:2∙h1:465 S:Ið Þ, R2
sc: = 1:0000: ð28Þ

In this case, Rcalc: = 1:2μm.
Hence, it is concluded that there are infinite combina-

tions of the factors c and m in equation F = chm that can
be used to perfectly fit the data. In other words, equations
(27) and (28) are identical at the domain 0 ≤ h ≤ 538nm.
On the contrary, equation (3.2) has the major advantage that
it does not depend on the parameter c; thus, it results in one
solution in every case. For the same reasons, it is impossible
to use equations (21) and (22) for the indenter’s calibration.
For example, a rational thought should be to fit the data to
equation (20) (see the example presented in Section 3.2).
Using this approach, b = c2ðE/ð1 − v2ÞÞ and a = c1ð4ER1/2/3
ð1 − v2ÞÞ. Thus, it seems that E and R can be easily calculated
by solving the abovementioned set of equations. However,
this is not possible since there are infinite combinations of
a, b, and c values that could result in the exact same curve
at a specific domain.

Another significant point to discuss is the selection of the
maximum indentation depth. For example, for low hmax/R
values (e.g., hmax/R = 0:1), the factor m will result very close
to 1:5; thus, the method may not be accurately applied.

On the other hand, for very big indentation depths (e.g.,
hmax/R > 1:1), the force indentation data cannot be accu-
rately represented by a function of the form F = chm; since
as it has been previously reported when increasing the h/R
ratio, the area at contact depth increases but not proportion-
ally [15]. If h/R > 5 then, the area at contact depth is approx-
imately equal to Ac = πR2, and the F = f ðhÞ data become
linear. In other words, the slope of the F = f ðhÞ curve
decreases as the h/R ratio increases [15]. It was found that
only at the domain 0 ≤ h/R ≤ 1:1 the whole data range can
be represented by the function (9) with accuracy. However,
this is not a significant problem in most of the cases since
there is no reason of conducting an indentation experiment
using such big maximum indentation depths.

Following an extensive search in the literature, it was
found that in practical applications, even when the indenta-
tion depth is considered to be relatively “big,” usually the
case is hmax < R. A typical example is presented by Guo
et al., who performed nanoindentation experiments on can-
cerous and noncancerous human mammary epithelial cells
[20]. They used a spherical indenter with radius 2.65μm,
and the maximum indentation depth in their experiments
was 1.5μm (hmax/R = 0:57). Another example is the Shimizu
et al. publication who performed nanoindentation experi-
ments to measure the Young’s modulus of mesenchymal
stem cells and HEK293 cells in the floating state [21]. In this
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Figure 5: A Young’s modulus map consisting of 16 measurements
on an agarose gel. The Young’s modulus map was created using
some of the curves that were used to calculate the indenter’s
radius in Figure 4. Thus, it is possible to calculate the indenter’s
radius and the Young’s modulus of the sample of interest using
only a set of force indentation data. In particular, the indenter’s
radius can be first calculated and subsequently used to create a
Young’s modulus map.
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case, R = 2μm and the maximum indentation depth resulted
in the range 1-2.5μm. Furthermore, Sajeesh et al. calculated
the Young’s modulus of fibroblasts [22]. The spherical probe
that was used had a radius equal to R = 5μm, and the max-
imum indentation depth in the experiments was only hmax
= 1μm. The abovementioned examples indicate that there
is no technical need for performing indentation experiments
using very big hmax/R ratios; even when nonhomogeneous
samples are tested hmax/R < 1 in most of the cases (other
examples can be also found in [23–25]). In addition, a ques-
tion that will probably arise is why a new method for the

indenter’s calibration is needed since the cost for acquiring
a tip calibration grating is not very high. Assume that two
different regions on the same agarose gel (e.g., region 1
and region 2) should be tested. Each individual experiment
will probably alter the initial shape of the indenter (this
could also happen during the indenter’s calibration using
the grating). Thus, when testing region 2, the indenter’s
radius will probably be different compared to the experiment
on region 1. Thus, the tip radius should be retested prior
experiment 2 which is of course very time consuming. In
addition, the second measurement using calibration grating

0.6

0.58

0.56

0.54

0.52

0.5

0.48

0.46

0.44

h m
ax

/R

1.4561.454 1.458 1.46 1.462 1.464 1.466 1.468
m

(a)

N
um

be
r o

f o
cc

ur
re

nc
es

10

8

6

4

2

0
1 1.02 1.04 1.06 1.08

×10–6R (m)

(b)

Number of measurements
0 20 40 60 80

1.08

1.06

1.04

1.02

1

0.98

0.96

R 
(μ

m
)

Rcalc.
Rmeas.

(c)

Figure 6: (a) The hmax/R versus m data for the 16 measurements on a different agarose gel compared to Figure 4, using the same spherical
indenter. (b) A histogram showing the R values. The mean value resulted almost identical to the case presented in Figure 4. (c) The 88
calculated values of R presented in histograms Figure 4(f) and (b) (blue points). The measured value using the calibration grating is also
presented for comparison (red line).
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will probably alter (or contaminate) the indenter. However,
using the proposed by this paper method, it is possible to
recalculate R using only the force curves obtained on region
2 without remeasuring the tip radius using conventional
techniques. This is very important since when testing biolog-
ical samples at the nanoscale, usually 2 or 3 different regions
within the same sample are being tested, with the same
indenter. It is extremely time consuming to remeasure the
tip radius every time.

A final test that was performed to test the reliability of
this method is provided as follows. Firstly, 30 randomly
selected force indentation curves were obtained on one aga-
rose gel, and then, 30 randomly selected curves were
obtained on a different agarose gel prepared with the same
protocol and using the same indenter. The R-values which

were calculated are presented in Figure 8. The null hypothe-
sis that the two data samples are from populations with
equal means was tested using a ttest2 in MATLAB. The
returned value of h = 0 indicated that ttest2 did not reject
the null hypothesis at the default 5% significance level.

It must be also noted that the proposed method can be
applied to any sample regardless its stiffness under the con-
dition that it presents approximately a linear elastic
response. Despite the fact that biological samples are highly
inhomogeneous, in many cases, they present a linear elastic
response for a specific data range (e.g., cells) [6, 23, 26, 27].
Thus, in order to apply the proposed method for the simul-
taneous calculation of the sample’s Young’s modulus and the
indenter’s radius, the range of indentation values for which
the sample approximately can be considered as homoge-
neous should be firstly determined. Subsequently, it is easy
to apply the proposed method within the aforementioned
data range.

3.4. The Effects of Errors in Spherical Indenter Calibration in
Young’s Modulus Determination. Since the AFM indentation
method is usually used for the determination of the distribu-
tion of the Young’s modulus of a soft sample, a significant
point to also discuss is the effect of the possible errors in R
calculations. For example, the presented method with
respect to the 72 measurements showed in Figure 4(f)
showed a 1:5% percentage difference compared to the mea-
surement using the AFM calibration grating. Despite the fact
that the measurements using the AFM grating are also not
100% accurate, assume that the real value of the indenter’s
radius is 1.01μm and the presented by this paper calcula-
tions resulted in 1.0257μm. The error in Young’s modulus
calculation in this case can be calculated using equation (8)
in the following form:

E = F 1 − v2
� �

R2 c14/3 h/Rð Þ3/2 + c2 h/Rð Þ2 + c32/3 h/Rð Þ3
h i : ð29Þ

In particular, assuming that E1 is the Young’s modulus
using Rmeas: = 1:01μm and E2 is the Young’s modulus calcu-
lation using Rcalc: = 1:0257μm, the ratio jE1 − E2j/E1 is pre-
sented as follows:

In Figure 9, the percentage error as calculated using
equation (30) is presented. The domain that was used was
300 nm ≤ h ≤ 1100 nm. The error was calculated at the
domain:

0:768315% ≤
E1 − E2j j
E1

100% ≤ 0:768348%: ð31Þ
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Figure 7: Force indentation data on an agarose gel. The data can be
accurately fitted to equation (27) or equation (28). Thus, fitting the
data to equation F = chm and determining this way, the factor m
could result in significant errors with respect to the indenter’s
radius calculation. On the contrary, equation (16) provides
accurate results.

E1 − E2j j
E1

100% =
1/R2

meas: c14/3 h/Rmeas:ð Þ3/2 + c2 h/Rmeas:ð Þ2 + c32/3 h/Rmeas:ð Þ3
h i	 


− 1/R2
calc: c14/3 h/Rcalc:ð Þ3/2 + c2 h/Rcalc:ð Þ2 + c32/3 h/Rcalc:ð Þ3

h i	 


1/R2
meas: c14/3 h/Rmeas:ð Þ3/2 + c2 h/Rmeas:ð Þ2 + c32/3 h/Rmeas:ð Þ3

h i 100%:

ð30Þ

9Scanning



For small indentation depths ðhmax ≪ RÞ,

E1 − E2j j
E1

100% = 1/R1/2
meas:

� �
− 1/R1/2

calc:
� �

1/R1/2
meas:

100% = 0:7683%,

ð32Þ

according to equation (1). Thus, for big hmax/R ratios, the
percentage error is slightly bigger. An error at the range
0.7%-0.8% is negligible since it is smaller compared to the
error provided in Young’s modulus calculation if the Hertz
equation (1) is used for an indentation experiment using a
spherical indenter for hmax/R = 0:1 (which is the generally
accepted limit for using equation (1) [11]). In this case
(i.e., hmax/R = 0:1), the factor Z in equation (6) results in

[13]:

Z = 0:9905: ð33Þ

Thus, the percentage error in this case is:

Ehertz − Eaccuratej j
Eaccurate

100% = 1 − 1/Zð Þj j
1/Z 100% ≈ 1%: ð34Þ

3.5. Summarizing the Steps of the Method. In this paper, a
new method for the calibration of spherical indenters,
directly from force–indentation curves, was presented and
discussed. The major advantage of this method is that it
can be used to simultaneously calculate the spherical
indenter’s radius and the sample’s Young’s modulus (in the
case that the sample can be considered as homogeneous
and isotropic) using a typical set of force–indentation
curves. In addition, it can be used even if the data do not
perfectly follow equation (4). In this case, the data can be
fitted to equation (20), and the method can be equally
applied using the fitted curve without reducing the accuracy.
The steps that should be followed for the determination of
the indenter’s radius with accuracy are summarized as
follows:

(i) An approximately homogeneous and isotropic mate-
rial (with unknown Young’s modulus) such as an
agarose gel should be used as a reference sample.
Since the range of R was relatively small as presented
in Figure 4(f), there is no need for processing hun-
dreds of force indentation curves. Probably, 15-20
curves are enough to conclude in an accurate calcu-
lation. However, the range of R should be tested to
conclude if the result is accurate; the standard devia-
tion should be small. A standard deviation equal to
the 10% of the average value should be acceptable
(i.e., Rcalc: = Rave ± ð10/100ÞRave). In this case, the
error regarding R calculation should be
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Figure 8: R measurements on two different agarose gels: (a) 30 measurements of R on agarose gel 1 and (b) 30 measurements of R on
agarose gel 2.
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calculated using the AFM calibration grating).
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Figure 10: The steps for the indenter’s calibration. The 5 basic steps towards the calculation of a spherical indenter’s radius are presented.
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approximately up to 10%. Assume for example a
10% error in the indenter’s radius compared to the
real value (i.e., Rcalc: = 1:1μm, assuming that the real
value is 1μm). In this case, the percentage error in
the Young’s modulus calculation according to equa-
tion (30) will be approximately 4.65% (for 0 ≤ h ≤
1:1 μm) which is comparable to other systematic
errors regarding AFM experiments [28]

(ii) The data should be fitted to the following equation
(in case that the data do not accurately follow equa-
tion (4)):

Ffit = ah3/2 + bh2 + ch3, a > 0, b < 0, c < 0: ð35Þ

(iii) Using the area under the fitted curve (which equals
to the work done by the indenter), the maximum
force (i.e., FfitðmaxÞ) and the maximum indentation
depth in the experiment, the factor m can be
calculated:

m = Fmaxhmax
W

− 1: ð36Þ

In case that m < 1:41 or m is close to 1:5, the measure-
ment should be repeated since for very big indentation
depths the method is not valid, and for small indentation
depths, the accuracy is low

(iv) Using the data presented in Figure 2 (resulted using
equation (18)), for each value of the factor m, the
hmax/R ratio can be easily calculated. Thus, since
hmax is a known parameter in each case, R can be
calculated

(v) The mean ± standard deviation of R is calculated,
and the histogram of R values should be also con-
structed to evaluate the range of R values. The mean
R equals to the indenter’s radius. The histogram
should be also used to conclude whether the range
of values is small or not. In case of extensive range
of R values, the calibration should be repeated

The steps of the method are also summarized in
Figure 10. The significance of the presented work has many
different aspects. Firstly, the interesting mathematical ques-
tion whether it is theoretically possible to calculate E and R
using the same force indentation data (regarding spherical
indentations) was answered. In addition, it was shown that
this method can be applied easily in real AFM experiments.
This fact is extremely important since it reduces the required
equipment to perform an AFM indentation experiment (cal-
ibration gratings or SEM imaging is no longer required). Fur-
thermore, the ability to simultaneously calculate the
indenter’s radius and the Young’s modulus of a homoge-
neous and isotropic soft material is also important since it

significantly reduces the time, the experimental effort, and
the budget of the experiment. AFM indentation is a powerful
method for the mechanical characterization of biological
samples at the nanoscale. The applications of the method
are numerous especially in medical diagnosis (e.g., cancer
diagnosis) [29–31]. Thus, the ability to simplify the experi-
mental procedures may increase the possibility of applying
the method in real clinical applications.

4. Conclusion

A method for calibrating spherical indenters used in AFM
indentation experiments regarding soft biological samples
was presented and discussed. Firstly, it was shown that it is
mathematically possible to simultaneously calculate the
indenter’s radius and the Young’s modulus of a sample that
behaves like an elastic half space. In addition, it was also
shown that the presented method can be used in real inden-
tation experiments. The results obtained by measurements
on agarose gels showed that the accuracy of the method is
comparable to the accuracy provided by calibration using
AFM gratings.
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