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Structural health monitoring (SHM) can continuously and nondestructively evaluate the state and performance of structures
using the structural responses to external loads or environmental conditions. Moreover, online or real-time SHM of civil
structures provides signifcant advantages over periodic or manual inspection methods, especially under disaster loadings, where
the consequences of failure can be severe. To achieve it, performing system identifcation and damage detection recursively, said
recursive subspace identifcation (RSI), is a promising solution, and SHM based on the algorithms can evaluate damage or
deterioration of civil structures, give insight into the health and performance of a structural system, and provide valuable
information for decision-making on maintenance and repair. However, the time-consuming decompositions frustrate these
algorithms. As a compromise, additional processing is required to implement online and real-time applications. Tis study
demonstrates a modifed algorithm that takes advantage of the projection approximation subspace tracking (PAST) algorithm and
the repeated system matrices in the extended observability matrix. Te modifcation can reduce numerical decompositions and
improve important timeliness for online or real-time SHM of civil structures. Both the numerical simulation and experimental
investigation have been used to verify the proposed method, and the results show its capability to determine the changes in the
dynamic characteristics of a structure in either the laboratory experiment or in the feld application. In the last place, the
discussion and some conclusions are also drawn in this paper.

1. Introduction

Structural health monitoring (SHM) is a process to con-
tinuously and nondestructively evaluate the state and per-
formance of structures, such as bridges and buildings, and
detect any damage and deterioration that may afect their
safety, reliability, or lifespan. It utilizes various types of
sensors to collect the structural responses to external loads
or environmental conditions and then analyzed them using
advanced algorithms to identify any changes in the struc-
tural behavior that may indicate damage or degradation. For
example, many research works tried to quantify the beneft
of SHM on structural life-cycle costs through the value of
information (VoI) from Bayesian decision theory [1–5].
Accordingly, SHM is a valuable tool for ensuring the safety,
reliability, and longevity of structures and has increasingly

been implemented to improve the efciency and efective-
ness of structural monitoring and maintenance, especially
for seismic hazard areas.

With advancements in technology over the past decade,
including sensing networks, data acquisition, communica-
tion, signal processing, information management, the in-
ternet of things (IoT), and intelligent algorithms, there has
been a growing interest among scientists and engineers in
applying real-time SHM to civil structures [6]. It can provide
several benefts over periodic or manual inspectionmethods,
and, therefore, it is often necessary for specifc applications
where safety and reliability are critical, especially under
disaster loadings. Other advantages include early detection
of damage, continuous monitoring, cost savings, improved
safety, etc. Overall, real-time SHMhas a signifcant beneft in
constantly monitoring the structural performance and
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continuously tracking the structural state during natural
disasters, especially in critical applications where the con-
sequences of failure can be severe.

One promising way to provide online or real-time SHM
is to perform system identifcation of time-varying dynamic
characteristics and damage detection of the structural system
[7, 8]. System identifcation involves analyzing the dynamic
behavior of a structure under various loading and envi-
ronmental conditions and using this information to develop
models that can accurately predict its responses to future
conditions. In addition, damage detection involves de-
termining the changes in the dynamic characteristics of
a structure, such as natural frequencies and damping ratios,
and using this information to detect, localize, and quantify
the structural damage. Both of them can be performed in
diferent domains; for example, Civera et al. recently pro-
posed frequency-domain techniques [9, 10], and Dessena
et al. recently developed time-domain techniques for SHM
[11, 12]. Most importantly, online or real-time SHM
combining these approaches can evaluate the damage or
deterioration of civil structures, give insight into the health
and performance of a structural system, and provide valu-
able information for decision-making on maintenance and
repair.

To accurately assess the dynamic behavior of a structure
during natural disasters, such as strong earthquakes, con-
sidering the time-dependent dynamic characteristics, the
focus should be placed on system identifcation and damage
detection methods that can efectively identify time-varying
modal parameters. During the past two decades, time-
domain methods based on subspace state-space system
identifcation (4SID), or subspace identifcation (SI) in short,
have attracted a great deal of interest in the control and
monitoring community because they can identify the system
matrices of a state-space model directly from the input and
output data. Except for the original 4SID derived by Van
Overschee and De Moor [13, 14], a lot of well-developed
algorithms were proposed in the 1990s, such as CVA (ca-
nonical variate analysis) [15–17], PI/PO-MOESP (past in-
put/past output multivariable output error state-space)
[18–20], IV-4SID (instrumental variable 4SID) [21–23], PC
(principal component) algorithm [24, 25], UPC (unweighted
principal component) algorithm [25], and so on. Un-
fortunately, those algorithms are not suitable for online or
real-time implementation due to the large computational
efort of some numerical tools, such as decompositions, and
the ability to detect the time-varying modal parameters.

In the 2000s, several recursive algorithms have been
developed to provide tracking capability. For example, Oku
et al. and Tamaoki et al. try to recursively update the pro-
jection matrix used in SI with a similar lemma [26, 27].
Mercère et al. focus on IV-based recursive algorithms and
develop various variants [28, 29]. Kameyam et al. rederives
the decomposition to a recursive form [30, 31]. Moreover, in
the past decade, recursive subspace identifcation (RSI) al-
gorithms have been successfully applied to detect the time-
varying dynamic characteristics under earthquake excita-
tions [32–34]. However, the algorithms still need extra

processing, like down-sampling, to secure online and real-
time implementation [35].

Te aim of this paper is to develop an RSI algorithm with
a limited computational complexity for online and real-time
SHM. In the following sections, SI is frst introduced, as are
the overall procedures for extracting the dynamic charac-
teristics of a system from the dominant subspace of geo-
metric projection. Subsequently, RSI is reviewed to reveal
the computational bottleneck, which is the large number of
input/output data and the need for numerical de-
compositions. Terefore, a modifed algorithm is proposed
by using the tools from signal processing techniques and the
repeated system matrices in the extended observability
matrix. Te proposed method is elaborately derived and
preliminarily exanimated using a numerical simulation.
Following the numerical study, two datasets are collected to
verify the method; one is from a full-scale specimen which is
experimentally tested using a shaking table, and the other
one is from a feld frame which is installed with an ofine
SHM system.Trough the experimental study, the proposed
method shows its capability to determine the changes in the
dynamic characteristics of a structure in either the labora-
tory experiment or in the feld application. Last of all, a brief
conclusion is drawn, and it may still need a cross-verifcation
from a long-term monitoring system.

2. Introduction to Subspace Identification (SI)

SI is frst described as the foundation of the proposed
method. Considering that a linear n degree-of-freedom
(DOF) structure is subjected to an earthquake excitation,
the motion equation can be expressed as a discrete-time
state-space equation as follows:

xk+1 � Axk + Buk + wk, (1)

yk � Cxk + Duk + vk, (2)

where xk is state vector with 2n states; yk is measured output
vector with m measurement; uk is input vector with l ex-
citations; wk and vk are the process and measurement noise,
respectively; the subscript k denotes k-th step which in-
dicates t � k∆t and Δt is the sampling interval of mea-
surement; A is linear elastic system matrix; B and D are
excitation infuence vector; C is the output (or observer)
matrix. Among those matrices, A and C are generally
identifed by SI because they are particularly important for
the applications of structural control or health monitoring.

2.1. Matrix Input-Output Equations. To derive SI, the state-
space equations can be transformed into matrix input-
output equations [14] as follows:

Yp � ΓiXp + HiUp + GiWp + Vp, (3)

Yf � ΓiXf + HiUf + GiWf + Vf, (4)

Xf � AiXp + ∆iUp, (5)
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where Yp and Up are past output and input data Hankel
matrices; Yf and Uf are future output and input data Hankel
matrices, respectively. All those Hankel matrices have i rows
and j columns (both in samples) as

Yp � y1|i y2|i+1 · · · yj|i+j−1  and

Yf � yi+1|2i yi+2|2i+1 · · · yi+j|2i+j−1 ,
(6)

where yj|i+j � yT
j yT

j+1 · · · yT
i+j 

T
; Up and Uf are defned

similarly as Yp and Yf, respectively. As a result, the di-
mension of Yp and Yf is im by j, and the dimension ofUp and
Uf is il by j. Similarly, Wp, Wf, Vp, and Vf are the Hankel
matrices of the process and measurement noise in the matrix
input-output equations. Furthermore, Xp and Xf are past
and future state sequences (in column); Δi is the reversed
extended controllability matrix; Hi and Gi are the lower
block triangular Toeplitz matrices; and Γi is the extended
observability matrix.

Γi � CT (CA)T CA2( 
T

· · · CAi− 1( 
T

 
T
. (7)

Te extended observability matrix is composed of the
information of system matrices (A and C) which are the
primary outcome of SI. Details about these matrices can also
be found in the literature [14].

2.2. Geometric Projections. A geometric tool called pro-
jection in the feld of linear algebra is utilized to obtain the
extended observability matrix from the matrix input-output
equations. Hence, two diferent geometric projections can be
implemented: (a) orthogonal projection, Oorth, and (b)
oblique projection, Oobl. One can choose either orthogonal
or oblique projections for extracting the extended observ-
ability matrix. Actually, there are many methods to achieve
the projections such as N4SID (numerical algorithms for
subspace state-space system identifcation) [13, 14], CVA
(canonical variate analysis) [15–17], PI/PO-MOESP (past
input/past output multivariable output error state-space)
[18–20], IV-4SID (instrumental variable 4SID) [21–23], PC
(principal component) algorithm [24, 25], UPC (unweighted
principal component) algorithm [25], and so on.Te general
form of the projections is written as follows:

O � WLYfWR, (8)

where WL and WR are the left and right nonsingular
Hermitian weighting matrices that are possibly data de-
pendent. For example, PO-MOESP computes the projection
using QR decomposition and eventually produces the results
with WL � I and WR � Π⊥Uf

, where Π⊥Uf
denotes the oper-

ation that projects the row space of the matrix into the
orthogonal complement of the row space of Uf.

Te most important observation about the projection is
that the extended observability matrix lies in the column
space of the projection matrix. One can use singular value
decomposition (SVD) to decompose the projection matrix
as follows:

O � USVT

� U1 U2 
S1 0

0 S2
 

VT
1

VT
2

⎡⎢⎣ ⎤⎥⎦ ≈ U1S1V
T
1 ,

(9)

where U, S, and V are left singular vectors, diagonal singular
value matrix, and right singular vectors, respectively.
S1 ∈ R2n×2n and S2 ≈ 0 can be separated from the diagonal
singular value matrix. Te extended observability matrix can
be obtained as follows:

Γi � W−1
L U1S

1/2
1 . (10)

Te small singular values in S2 induced by noise data are
meant to be neglected, and a truncated SVD is described,
although DOF might be infnite or remain unknown for
a feld structure and only a few modes can be identifed from
the measurements.

2.3. Modal Parameters. Once the extended observability
matrix is obtained, modal parameters such as modal fre-
quencies, damping ratios, and mode shapes can be de-
termined by the following procedures. First, the discrete-
time version of the linear elastic system matrix, A, can be
evaluated as follows:

A � Γi
†

�

Γi, (11)

where Γi
�

∈ Rm(i− 1)×2n denotes Γiwithout the lastm rows and

Γi∈ Rm(i− 1)×2n denotes Γiwithout the frstm rows.Moreover,
output (or observer) matrix, C, can be retrieved from the
frst m rows of Γi, as shown in equation (7).

Ten, the eigenvalues and eigenvectors can be generated
using the eigenvalue decomposition (ED) as follows:

A � ΨΛΨT
, (12)

where Λ is the diagonal eigenvalue matrix which is com-
posed of eigenvalues, and Ψ is the eigenvector matrix. Fi-
nally, the natural frequencies and damping ratios can be
extracted from the eigenvalues. It is noticed that the ei-
genvalues and eigenvectors appear in complex conjugated
pairs, and a pair of conjugated eigenvalues is associated with
the same natural frequency and damping ratio.

Furthermore, the mode shapes

Φ � CΨ, (13)

whereΦ is the matrix of mode shapes.Te above-mentioned
procedures clearly demonstrate how the dynamic charac-
teristics of the structural system can be determined from the
extended observability matrix and the extended observ-
ability matrix is estimated by dominant subspace computed
from projection matrix.

3. Implementation of Recursive Subspace
Identification (RSI)

Tere are several ways to implement SI recursively, and most
of them maintain the same procedure as the one in SI. To
move the time step forward, these methods try to avoid the
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construction and projection of Hankel matrices. To be
specifc, RSI updates the future output and input data vectors
instead of constructing Hankel matrices. For example, the
future output data vector in k-th time step is
yk−i+1|k � yT

k− i+1 yT
k− i+2 · · · yT

k 
T
. Furthermore, RSI re-

news the projection with successive computations instead of
multiplying the Hankel matrices. Tree main streams are
available: one is sophisticatedly derived via matrix inversion
lemma [26, 27, 36, 37], the other is accomplished by the
cross-multiplication of matrices from QR decomposition
[30, 31, 38, 39], and the last one rotates the newest vector in
QR decomposition to update the projection [28, 29, 40, 41].
Some comparative studies of these two methods can be
found in the literature [32–35, 42].

Despite the success brought by those methods, the same
procedure with SI produces inevitable decomposition steps.
Every method needs both SVD and ED for the estimation of
the extended observability matrix and the modal parameters,
respectively. Te last two streams even need QR de-
composition to get the initial matrices at the 1-st time step.
Admittedly, the larger the input and output data, the more
computational complexity is required to perform these
decompositions. For online or real-time SHM, the com-
putation of decompositions has been a bottleneck in RSI. To
reduce laborious computation, save precious time, and se-
cure timeliness, one can avoid estimating the extended
observability matrix using SVD by introducing additional
algorithms from diferent felds. Fortunately, from a signal
processing point of view, the projection approximation
subspace tracking (PAST) algorithm is another way to
implement subspace identifcation recursively. Furthermore,
taking advantage of the repeated system matrices (A and C)
in the extended observability matrix can also reduce the
computational efort.

3.1. Transformation Matrix for Extended Observability
Matrix. First, an alternative to the extended observability
matrix is proposed to avoid the decomposition. Considering
the projection illustrated by PO-MOESP in equation (8), the
orthogonal projection can be expressed as follows:

O � YfΠ
⊥
Uf

� Yf − YfU
T
f UfU

T
f 

− 1
Uf.

(14)

Te orthogonal projection keeps its row number but
increases its column number as time moves. For example,
the projection in the k-th time step is

Ok � Ok−1 ok . (15)

Te orthogonal projection vector, ok, is reclusively
computed in the proposed method instead of the projection
matrix to avert increasing matrix size and computational
efort. According to equations (14) and (15), the most
updated vector can be computed as follows:

ok � yf,k − QkRkuf,k, (16)

where yf,k � yk−i+1|k, uf,k � uk−i+1|k, Qk � Yf,kUT
f,k, and

Rk � (Uf,kUT
f,k)− 1 is recursive matrices. Tese matrices can

be sophisticatedly derived using matrix inversion lemma as

Qk � λQk−1 + yf,ku
T
f,k, (17)

Rk �
1
λ

Rk−1 − ρkRk−1uf,ku
T
f,kRk−1 , (18)

ρk �
1

λ + uT
f,kRk−1uf,k

, (19)

where λ is the forgetting factor used to eliminate the in-
fuence of previous steps so as to identify the latest state of
the system [32, 42]. From the SI point of view, the input and
noise Hankel matrices are canceled out after the orthogonal
projection, meaning that the extended observability matrix
is still lying in the column space of the orthogonal projection
vector as ok � Γixf,k.

By observing the extended observability matrix in
equation (7), one can see that system matrices; A and C is
repeatedly occurring in each row, so it is unnecessary to
collect the full column space of the orthogonal projection
vector. Terefore, the extended observability matrix is di-
vided into the upper part and the lower part to reduce the
dimension of the vector as follows:

ok,u

ok,l

  �
Γi,u
Γi,l

 xf,k, (20)

and a transformation matrix, T, can be used to transfer
between two parts.

Γi,l � TΓi,u. (21)

Notably, the row number of the upper part (as well as the
lower part) cannot be an arbitrary number. Considering the
repeatability, the row number of the upper part should be
αm where α ∈ N; in other words, the row number of the
lower part is (i − α)m where α is denoted as a dividing factor.
Details about the dividing factor are discussed in the nu-
merical study. According to equations (20) and (21), the
following equation can be derived

ok,l � Tok,u, (22)

and serves as the target equation for the PAST algorithm.

3.2. Projection Approximation Subspace Tracking (PAST).
PAST algorithm is one of the successful examples for sub-
space tracking [43, 44]. It uses a projection-like un-
constrained criterion (known as Yang’s criterion) as follows:

J(H) � E z − HHTz
����

����
2
, (23)

where z is a signal vector and a matrix argument H;
moreover, H is expected to be full rank without loss of
generality. Te global minimum of equation (23) is attained
if and only if H is full of the dominating eigenvectors (with
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similarity transformation) of E[zzT]. Similar RSI algorithms
have been developed based on the criterion, including
IV-PAST (instrumental variable PAST), 2IV-PAST (second-
order IV-PAST), and EIV-PAST [45–47].

Furthermore, taking equation (22) as a target equation
and implementing PASTrecursively, the criterion is replaced
by a series summation with the exponentially forgetting as
follows:

J Tk(  � 

k

i�1
λk−i oi,l − TiT

T
i oi,l

����
����
2
. (24)

By using the matrix inversion lemma, the minimization
of equation (24) approximates the criterion, which leads to
a recursive least squares (RLS)-like algorithm for tracking
the signal subspace [43].

Tk � Tk−1 + ok,l − Tk−1ok,u Kk, (25)

Lk � ok,uo
T
k,u

�
1
λ

Lk−1 − Lk−1ok,uKk ,
(26)

Kk �
oT

k,uLk−1

λ + oT
k,uLk−1ok,u

. (27)

Note that the recursive computation keeps updating the
window from 1-st step to k-th step while forgetting memory
so that the latest subspace can be tracked.

After the transformation matrix, T, is calculated re-
cursively, the modal parameters can be extracted from
equations (11) to (13) by replacing the extended observability
matrix with the transformation matrix. As a result, the
dynamic characteristics of the structural system can be
determined from the dominant subspace. Te above-
mentioned method has several novelties and can be high-
lighted herein. First, the projection illustrated by PO-
MOESP is approximated by the PAST algorithm to save
computation in this study. Ten, a dividing factor and
a transformation matrix are proposed to perform system
identifcation. Te advantages of using dividing factors in-
clude increasing the identifed accuracy and enhancing the
robustness against noise, which will be examined in the
following sections. Te equivalence of extracting modal
parameters from the extended observability matrix and
transformation matrix is also demonstrated in this study.

Generally, implementing RSI with the proposed method
consists of four steps, as shown in Figure 1. Te frst step
carries out the initial window; all those Hankel matrices are
constructed similarly to SI as well as the user-defned pa-
rameters [14]. Meanwhile, the other matrices are assumed
according to their defnitions.Te second step constructs the
projection matrix, and, afterward, the projection vector, ok,
is reclusively computed from equations (16) to (19) once yf,k
and uf,k are measured. Ten, the projection vector can be
divided according to equations (20) and (22). In the third
step, the transformation matrix can be computed or updated
from equations (25) to (27). Finally, the continuous-time

and discrete-time system matrices can be evaluated via
equation (11) and, therefore, the modal parameters can be
estimated. After the new measurement is acquired for the
next step, reiterating from the second step to the fourth step
produces a closed-loop recursion. Although ED is still in-
evitable for the extraction of the linear elastic system matrix,
no SVD or QR decomposition is needed in the above-
mentioned procedures, and the bottleneck in RSI is there-
fore eased. Furthermore, the computational complexity is
reduced, and the computation time is saved for the appli-
cation of online or real-time identifcation.

4. Numerical Study for the Proposed Method

Diferent from other RSI algorithms, the proposed method
avoids using SVD and solves the time-consuming compu-
tation involved in online or real-time identifcation. In the
numerical study, a 10-story shear-type frame is excited by
the earthquake, El Centro Earthquake (May 18, 1940) in the
north-south direction to illustrate the efectiveness of the
proposed method. Te schematic diagram of the simulated
frame is shown in Figure 2(a). Te numerical simulation can
be done by constructing the motion equation with the
following structural parameters. Temass is assumed to be 1
ton and lumped at the center of each story. Te stifness is
specifed as 20,00 kN/m for each story. Te damping ratio is
assumed to be 2% for each mode, and the damping matrix is
calculated using modal damping. With this confguration,
the structural responses are easily evaluated under the 1-
dimensional earthquake excitation. Accordingly, the 10
modal frequencies range from 1.06Hz to 14.08Hz, as listed
in Table 1. Te measurement is assigned to be the 10 ac-
celeration responses of all stories, and an additional mea-
surement is taken from the ground acceleration. All the
simulation is done with 1 kHz sampling rate via the software,
MATLAB, from Math-Works.

4.1. Preliminary Verifcation Using Numerical Simulation.
For the numerical simulation, it is assumed that the response
of each story and the ground excitation are measured by the
sensors. To study the robustness of the proposed method,
a white Gaussian noise with a 120 signal-to-noise ratio
(SNR) is artifcially added to each sensor to introduce
measurement contamination. Hence, the number of mea-
sured responses, m, is 10, and the number of measured
excitations, l, is 1. Although the numerical simulation is
taken using a high sampling rate, the measurement is down-
sampled to 100Hz for efcient computation. Considering
the highest modal frequency is less than 15Hz, a 100Hz
sampling rate (with a 50Hz Nyquist frequency) is quite
sufcient to extract all modes.

Before implementing SI or RSI, the size of Hankel
matrices, including i and j, needs to be determined. Once i
and j are assigned, the length of initial window, lw, can be
uniquely determined as follows

lw � 2i + j − 1. (28)

Structural Control and Health Monitoring 5
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Figure 1: Te fowchart for implementing RSI with the proposed method.
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Figure 2: Continued.
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Te length of the initial window is very important be-
cause the product of the length of the initial window and the
sampling interval is the time for providing the frst iden-
tifcation result. It should be small enough, meaning that the
size of Hankel matrices should be small enough, to provide

a timely warning in the feld application [35]. In the
meantime, i needs to be larger enough to consider the
fundamental period, which is usually the frst modal period
of the target structure. Te minimum requirement can be
estimated by the fundamental period, the number of
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Figure 2: Te schematic diagram of the 10-story shear-type frame and the identifed modal parameters under the seismic excitation.
(a) 10-story shear-type frame for numerical simulation. (b) Identifed the frequency over time. (c) Identifed the damping ratio (multiplied
by mode number) over time.

Table 1: Te modal frequencies and damping ratios of the numerically simulated structure.

Modes Frequency (Hz) Damping ratio (%)
1st mode 1.0638 2
2nd mode 3.1676 2
3rd mode 5.2007 2
4th mode 7.1176 2
5th mode 8.8755 2
6th mode 10.4352 2
7th mode 11.7617 2
8th mode 12.8255 2
9th mode 13.6028 2
10th mode 14.0763 2
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measurements (both input and output), and Nyquist fre-
quency [35, 42]. In the numerical verifcation, 100 is adopted
for both i and j.

To eliminate the spurious modes identifed by subspace
methods, the modal assurance criterion (MAC) is needed
while implementing SI or RSI [48–51]. It is defned as the
coherence between two vectors, φ and φ, as follows:

MAC �
φH φ

����

φHφ
 ����

φH φ
 , (29)

where the superscriptH is Hermitian transpose. Generally,
those vectors are the mode shapes taken out from a stabi-
lization diagram generated over various i, but RSI has no
stabilization diagram and uses a consistent value during
online or real-time identifcation. In the proposed method,
one of the vectors can be the column space of the extended
observability matrix, and the other one can be the recon-
structed column space from the eigenvalues and eigenvec-
tors [35]. For example, at each step, each column of the
extended observability matrix obtained from equation (21)
can be one vector for calculating MAC. Te eigenvalues and
eigenvectors can also be used to reconstruct the system
matrices (A and C) as well as the extended observability
matrix according to their defnitions shown in equation (7);
each column can be the other vector, too. Most spurious
modes cannot keep their shapes after reconstruction and,
therefore, have a very small coherence. By choosing an
adequate threshold, CMAC, MAC can sieve these vectors and
remove the spurious modes during the recursive steps. In the
numerical verifcation, 0.98 is adopted for CMAC.

For the other user-defned parameters, the forgetting
factor, λ, and the dividing factor, α, are set as 0.95 and 2,
respectively, and the identifcation result is shown in Fig-
ure 2. Obviously, RSI with the proposed method gives an
excellent estimation of the modal parameters. Te grids in
Figure 2 are drawn according to the correct modal fre-
quencies and damping ratio. It is noteworthy that the
identifed damping ratio is multiplied by the mode number
for concise separation, avoiding overlap surrounding 0.02.
Terefore, the values evenly distributed from 0.02 to 0.2
illustrate that the damping ratios over 10 modes are all 0.02
(2%). Tis result well demonstrates that the diferent modes
can be successfully identifed at each step once the mea-
surement is noise-free, which is represented by the black
circles. Certainly, the identifed result is deteriorated by
contaminated measurements; the higher modes cannot be
extracted under these noise conditions, as shown by red
crosses. Furthermore, those modes could be again identifed
by decreasing the MAC threshold, CMAC. For example,
adopting a value of 0.95 for CMAC retrieves the eighth mode.
However, this choice creates a trade-of between noise and
spurious modes, suggesting that the user’s experiences may
infuence the fnal performance. Besides, the identifed mode
shapes are also correct but not shown here due to limited
space. Overall, RSI with the proposed method is capable of
providing correct modal parameters during the seismic
excitation.

4.2. Study on Dividing Factor. In the proposed method, the
extended observability matrix is divided into upper and
lower parts by the dividing factor, α. Te row numbers of the
upper and lower parts is αm and (i − α)m, respectively, and
the dividing factor can be assigned by any positive integer
smaller than i. Terefore, 6 diferent values are selected to
study the performance numerically. By setting the dividing
factors as 1, 2, 3, 4, 6, and 8, the 10 modal frequencies are
identifed, and the errors are then calculated, as shown in
Figure 3. Te horizontal axis in the bar chart represents the
errors in percentage and is limited only to ±3%. Te vertical
axis is the cumulative numbers of the identifed frequencies,
and the number are listed on the top of the bar.

Clearly, the identifed modes demonstrate high accuracy
in Figure 3; most of the results are located within ±1% error.
To be specifc, the overall accuracy within ±1% error is
91.06%, 91.25%, 91.38%, 92.16%, and 92.36% when α set as 2,
3, 4, 6, and 8, respectively. Te percentage slightly increases
as α increases although the variation is minute. It should be
noted that PAST is a RLS-like algorithm so it is hard to
obtain reliable solutions in the frst few recursive steps.
Consequently, the frst results only appeared after 5 seconds
in Figure 2. If the gap before the frst identifcation result is
ignored, the overall accuracy within ±1% error is boosted to
97.97%, 98.17%, 98.31%, 99.15%, and 99.37%. Moreover, the
accuracy of lower modes is higher than that of high modes.
For example, around 99.45% to 100% of the frst modal
frequency can be correctly identifed (with ±1% error), but
only 96.8% to 97.73% of the tenth modal frequency can be
found with the same deviation. Te diference comes from
the vibration energy; lower vibration modes carry more
energy so that it is easy to be identifed.

To further study the dividing factors, contaminated
measurements are again considered, and the errors of the
modal frequencies are shown in Figure 4. Most of the results
are still located within ±1% error, indicating that the
identifed values are unrelated to noise. Te overall accuracy
within ±1% error is 37.95%, 46.36%, 50.42%, 53.91%, and
55.13% when α set at 2, 3, 4, 6, and 8, respectively. Te
percentage signifcantly increases as α increases since the
transformation matrix has enough column and row spaces
to against the noise efect. Fortunately, the frst three fun-
damental modes are more robust to noise and can be
correctly identifed with various α. Te identifcation from
the fourth to eighth mode may sometimes be lost under
noise conditions, and the modes are relatively hard to extract
in the higher modes. Te ninth and tenth modes are barely
reported because of weak energy compared to noise.

Despite the accuracy of the various dividing factors,
Figure 3 (as well as Figure 4) also reveals that α � 1
produces the worst performance and the diference is
signifcant. Te frst mode can only be identifed over 823
steps (23.92% accuracy) with this factor, and no frequencies
can be extracted from the third mode to the tenth mode.
Considering the dimensions of the transformation matrix
(T ∈ R(i− α)m×mα), and the linear elastic system matrix
(A ∈ R2n×2n), the dynamic characteristics of the structural
system can be fully extracted if and only if 2n≥ αm and
2n≥ (i − α)m. In other words, the transformation matrix
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needs to provide enough column and row spaces (as well as
ranks) to solve every mode in a dynamic system otherwise,
some of them would be lost. In the numerical verifcation
studied with α� 1, αm is equal to 10 which is smaller than
2n (20), leading the poor identifcation. To further exan-
imate the inference, a 1 DOF simulation is conducted, both
the acceleration and displacement responses are collected,
and the proposed method is again used to identify the
modal parameters. In this simulation, the modal frequency
and damping ratio can be successfully identifed at each
step. Admittedly, even though the dividing factor is set to 1,
the mode can be perfectly identifed once the trans-
formation matrix has enough ranks.

4.3. Study on Time Efciency. Te consumption of compu-
tation time is an important issue in feld applications, es-
pecially if SHM systems are designed for an online or real-
time application. To study the computation time, RSI is
conducted using the proposed method with diferent di-
viding factors, α, and sampling rates. To examine the ef-
ciency of the proposed method, diferent methods are also
conducted with similar user-defned parameters for com-
parison. Moreover, all the study is done in the same com-
puter environment and platform. For the hardware
environment, the CPU is Intel(R) Core(TM) i7-4790K and
the RAM is 32.0 GB. For the software environment, the OS is
64bit Windows, and the platform is MATLAB R2022b (Te
Math Works, Inc., 2022). Te detailed parameters and the
results of the computation time are listed in Tables 2 and 3.

To study efciency, the efect of diferent dividing factors
on the time consumption is frst investigated, and it has been
set as 1, 2, 3, 4, 6, and 8 while the other confgurations and
the other user-defned parameters are identical, as shown in
Table 2. Apparently, because of the matrix sizes in the re-
cursive steps, the diference is observable, and the compu-
tation time is increased as the dividing factors. In this study,
it shall be smaller than 4 since the 100Hz sampling rate bring
us only 10milliseconds sampling interval. However, it is still
free to use a larger factor if the sampling rate is lower in
another case. Noteworthily, the computation time of the case
α� 1 is conducted using only acceleration responses,
meaning that the results are in accurate (as shown in the
above subsection). Once the 10 displacement responses are
included for better identifcation, the computation time for
each step is escalated to 14.53milliseconds and eventually
goes beyond the sampling interval. To end up, α is set as 2 for
all analyses in the numerical study.

For the study of sampling rate, the acceleration responses
are successively down-sampled to several sampling rates,
such as 250, 200, 100, 50, 40, and 20Hz, as the measurement.
Corresponding i and j are selected, and RSI is individually
conducted with other user-defned parameters the same.Te
details and the computation time are listed in Table 3.
Doubtless, a high sampling rate increases computation time
and may be disadvantageous to SHM. Te ftting result is
shown in Figure 5 where an overhead time can be estimated
at 3.19milliseconds. Te curve clearly reveals the expo-
nential increase in the computation time and eventually
surpasses the sampling interval before the 150Hz sampling
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rate. Terefore, the sampling rate should be equal to or
smaller than the 100Hz numerical study so that the pro-
posed method can be fnished within each sample. Although
the computation time varies with diferent computer en-
vironments, the down-sampling processing could be
a common solution for an online or real-time application. It
can be noted that, on the other hand, the sampling rate needs
to be large enough to see those signifcant frequencies.

To compare the efciency of the proposed method, three
convention methods are implemented using similar user-
defned parameters.Te frst one is moving window SI which
successively performs SI in each time window. For com-
parison, the orthogonal projection is selected to extract the
extended observability matrix. Te second one is the RSI
method proposed by Tamamoki et al., and the recursive
formulation is also developed based on the orthogonal
projection [27]. Te last RSI method was proposed by Oku
et al. and is derived from oblique projection [26, 36, 37]. All
the cases are applied with the same confgurations, and the
results are displayed in Table 4. Obviously, all these three
methods need extensive time to complete the computation
in each step. Te second method proposed by Tamamoki
et al. uses less time compared to the moving window SI, but
the last method needs even more time to complete the
computation because its formulation for oblique projection
is built on the orthogonal projection. Te computation time
of the three methods confrms the efciency of the proposed
method (which needs only 5.1milliseconds in each step); the
orthogonal projection vector, the transformation matrix,
and the PAST algorithm dramatically reduce laborious
computation, save precious time, and secure timeliness.

5. Experimental Study and Verification

Te efectiveness of the proposed method has been in-
vestigated through a numerically simulated 10-story frame
under earthquake excitation. Meanwhile, the correctness of
various dividing factors and the potential for efcient

identifcation have been studied to support practical usage.
To further demonstrate the proposed method, two datasets
are collected and analyzed: one is from a full-scale specimen
which is experimentally tested using a shaking table, and the
other is from a feld frame which is installed with an ofine
SHM system. Both datasets contain acceleration responses
with a 200Hz sampling rate, and they are down-sampled to
100Hz to consider the processing time for online or real-
time applications.

5.1. Experiment with a 3-Story Steel Frame. To experimen-
tally study the proposedmethod, a full-scale steel specimen 3
stories was designed and constructed at the National Center
for Research on Earthquake Engineering (NCREE) in Taipei,
Taiwan. Te 3-story steel frame is a single-bay structure with
2.15meters wide, 3.15meters long, and 3.0meters height. In
each story, both the beams and columns are made by wide
fange H-beams (H150×150), and they are all connected
using bolts. Mass blocks are added to each story to adjust the
dynamic characteristics so that the fnal weight is increased
to 6 tons per story. Ten, the full-scale 3-story steel frame
was bolted to the shaking table and tested using the white-
noise and earthquake excitation. Hence, the modes identi-
fed using the white noise excitation are 1.23, 3.66, and
5.33Hz initially [35]. Moreover, the El Centro earthquake is
normalized to 100 gal and then inputted 468 into the ac-
tuator system for earthquake excitation.

It is important to note that the frst story has an extra
brace, as shown in Figure 6(a). Te approximate stifness of
the frst story is doubled due to the brace, and the original
stifness of all the stories is 1346 kN/m. Tis extra brace is
used to generate a stifness change as well as structural
damage. A lock-up system is attached to the brace and the
base foor to connect or release the brace, as shown in
Figure 6(b). A trigger signal can be sent to the system by the
technician at any instant during the shaking table test. Once
the signal is sent, the lock-up system releases the brace, and

Table 2: Te computation time over various dividing factors.

Sampling rate (Hz) 100
i 100
j 100
CMAC 0.98
α 1 2 3 4 6 8
λ 0.95
Total time (seconds) 11.11 18.88 23.94 28.42 37.91 57.97
Computation time (milliseconds) 3.00 5.10 6.47 7.68 10.24 15.66

Table 3: Te computation time over various sampling rates.

Sampling rate (Hz) 20 40 50 100 200 250
i 20.00 40.00 50.00 100.00 200.00 250.00
j 20.00 40.00 50.00 100.00 200.00 250.00
CMAC 0.98
α 2.00
λ 0.95
Total time (seconds) 2.46 5.45 7.32 18.88 71.78 119.77
Computation time (milliseconds) 3.32 3.68 3.95 5.10 9.70 12.94
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the abrupt change in stifness is immediately simulated by
reducing the interstory stifness. In the El Centro earth-
quake, the technician released the lock-up system (and the
brace) around 15 seconds after the earthquake starts. In
addition, the lock-up system is installed with an additional
displacement meter, and the relative displacement between
the brace and the base foor can be determined to confrm
the true releasing time.

To verify that the proposed method is capable of tracking
themodal parameters, the specimen is excited by the shaking
table, and the acceleration responses are measured by ac-
celerometers installed on each foor. An additional accel-
erometer is mounted on the shaking table to measure the
ground acceleration. Te above measurement is used to
implement RSI. For the user-defned parameters, the size of
Hankel matrices, i and j, is set as 100, the threshold of MAC,
CMAC, is set as 0.9, the dividing factor, α, is set as 8, and the
forgetting factor, λ, is set as 0.95. Te total computation time
is 20.46 seconds, which is only half of the 46 seconds long
measurement. If the identifcation is done by moving
window SI, recursive orthogonal projection, or oblique
projection, the total computation time is increased to 56.23,
73.14, and 77.75 seconds, respectively. As a result, the modal
frequencies identifed by RSI are shown in Figure 7. Te
structural damage represented by the stifness change can be
easily observed as the three modal frequencies decline after
15 seconds in Figure 7(b). Notably, the proposed method
captures an additional frequency (16.25Hz) that has not
been observed before 15 seconds. After conducting a thor-
ough investigation, the mode belongs to the brace fxed
below the foor of the second story.

To investigate the efect of the forgetting factor, the
modal frequencies identifed using diferent forgetting fac-
tors and the relative displacement measured by the dis-
placement meter are shown in Figure 8. Defnitely, the
relative displacement provides an accurate releasing time. In
Figure 8(c), the brace is frmly locked until 14.74 seconds,
generating no displacement at all. After this moment, the
trigger is set, the brace is released, and the relative vibration
is generated between the brace and the base foor at
a 16.25Hz natural frequency. All modal frequencies are
clearly decreased from 15 to 19 seconds, which points out
that the dynamic behaviors of the frame have been changed
during these 4 seconds. Four forgetting factors are used to
compare the results. Considering the changing trend,
a smaller forgetting factor can detect the damage more
rapidly. For example, the frst modal frequency identifed by
λ� 0.99 keeps time-delayed tracking before 19 seconds;
however, the ones identifed by λ� 0.95 and λ� 0.93 is
already stabilized after 17 seconds in Figure 8(b). Admit-
tedly, the proposedmethod with a small forgetting factor can
immediately detect the damage although the results iden-
tifed by a larger forgetting factor are more stable.

5.2. Field Measurement under Seismic Event. To further
verify the proposed method, a dataset collected from an
ofine SHM system during Chi-chi Earthquake (September
21, 1999) is utilized. Te SHM system is installed on the 7-
story reinforced concrete (RC) frame of the National Chung
Hsing University in Taichung, Taiwan. Te frame was
constructed in 1992 and was strongly impacted by the
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Figure 5: Te computation time with various sampling rates.

Table 4: Te computation time of conventional methods.

Method Orthogonal projection (moving
window)

Orthogonal
projection (recursion)

Oblique
projection (recursion)

Sampling rate (Hz) 100 100 100
i 100 100 100
j 100 100 100
CMAC 0.98 0.98 0.98
λ None 0.95 0.95
Total time (seconds) 616.40 605.33 852.01
Computation time (milliseconds) 166.51 163.51 230.15
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earthquake in 1999. From the Chi-Chi earthquake re-
connaissance report, it is identifed as moderate damage
after the seismic event. Fortunately, the building is equipped
with 29 accelerometers, and the sensors recorded all the
acceleration responses during this earthquake excitation.
Figure 9(b) demonstrates the side view and (frst foor) plan
view of this building and the locations of all the acceler-
ometers with their channel numbers; meanwhile,
Figures 9(a) and 9(c) show the ground acceleration mea-
sured from the basement in the longitudinal direction, said
channels 4 and 8, and the acceleration responses measured
from the roof, said channels 18 and 21. It can be observed
that the peak ground acceleration (PGA) is over 250 gal and
the peak acceleration response is almost 650 gal.

Considering that the feld seismograph is unaligned with
the building, the ground acceleration measured from the
basement is taken as input data, while acceleration responses
on the fourth foor and roof are used as output data for
implementing the proposed method. In this example, the
size of Hankel matrices, i and j, is set as 100, the threshold of
MAC, CMAC, is set as 0.9, the dividing factor, α, is set as 2,
and the forgetting factor, λ, is set as 0.98. Te total com-
putation time is 29.41 seconds, around one-third of the
90 seconds long measurement. If the identifcation is done
by moving window SI, recursive orthogonal projection, or
oblique projection, the total computation time is increased
to 94.94, 122.31, and 122.01 seconds, respectively; those
results again confrm the timeliness for online and real-time

(a) (b)

Figure 6: Te photograph of the full-scale specimen and the close-up of the lock-up system. (a) Full-scale specimen. (b) Lock-up system.
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applications. Only longitudinal modes are identifed by RSI,
and the modal frequencies are displayed in Figure 10. Two
modes can be identifed, and they have apparently decreased
from 40 seconds to 70 seconds, which corresponds to the
major part of the seismic event. Te frst modal frequency is
reduced from 2.98Hz to 2.09Hz and, despite the scattering,
the second mode changes from 8.52Hz to 6.39Hz. It is

believed that moderate damage lowers the modal frequency
by at least 25%. Moreover, the time-varying dynamic
characteristics just happened in between the major seismic
waves, and the identifed results are relatively stable either
before 40 seconds or after 70 seconds. Consequently, the
proposed method is able to identify the changes in structural
behavior and track the time-varying modal parameters.
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Figure 9: Te 7-story RC building excited by the Chi-chi earthquake on September 21, 1999. (a) Measured acceleration responses from the
roof in the longitudinal direction. (b) Side view and (frst foor) plan view of the feld frame installed with an ofine SHM system. (c)
Measured acceleration responses from the basement in the longitudinal direction.

16 Structural Control and Health Monitoring



5.3. Potential Challenges and Limitations of the Proposed
Method. Te proposed method has been used to demon-
strate the system identifcation of time-varying dynamic
characteristics and the damage detection of the structural
system. Te results have shown that the developed RSI al-
gorithm is suitable for online and real-time SHM. However,
there are some potential challenges and limitations that
should be highlighted and addressed before practical
implementation.

(i) Although the performance of the proposed method
under noise conditions has been roughly in-
vestigated through numerical simulation, the
identifcation results could be worse if signifcant
noise is present. As a potential extension, the signal
vector in equation (20) could be replaced by the
cross-covariance, known as IV-PAST, 2IV-PAST,
or EIV-PAST, to enhance the robustness of the
proposed method.

(ii) Another limitation of the proposed method is the
assumption of linear behaviors shown in the deri-
vation. When civil structures exhibit non-linear
behaviors, the proposed method generates an
equivalent linear model that averages the modal
parameters over a short period of time. Tose
identifcation results may sometimes be confused
with the structural damage.Te hysteretic behaviors
could be helpful in diferentiating them if hysteresis
loops are available.

(iii) Obviously, the proposed method extracts the modal
parameters from the input-output relationship
under seismic events. It indicates that ground ex-
citations must be measured during earthquakes.
Considering that ground motions do not vary
signifcantly in a small area, the use of free-feld
seismometers near structures or accelerometers
installed in lower-level basements could be con-
sidered as an alternative if SHM systems are unable
to measure earthquake excitations.

(iv) So far, this study has demonstrated the system
identifcation and damage detection of building
structures. Te proposed method, however, can be
applied to various civil infrastructures such as
bridges, tunnels, dams, and more. Tis is because

the derivation does not require any specifc ge-
ometry or input form. Te investigation can be
continued for further verifcation.

6. Conclusion

Online or real-time SHM of civil structures provides sig-
nifcant advantages under disaster loadings. As a promising
solution, RSI can perform system identifcation and damage
detection recursively to detect the deterioration of a struc-
tural system. In this study, a modifed algorithm is proposed
that takes advantage of the PASTalgorithm and the repeated
system matrices in the extended observability matrix. Te
recursive formulation is frst derived with great detail, and
the user-defned parameters are studied to provide selection
guidance while online or real-time implementation. Addi-
tionally, both the numerical simulation and experimental
investigation have been presented, and the following con-
clusion can be obtained accordingly:

(i) Either with numerically simulated or experimen-
tally measured responses, RSI with the proposed
method is capable of extracting modal parameters
during the seismic excitation, even if the parameters
are time-varying ones.

(ii) Te identifed accuracy from the proposed method
is high, and it slightly increases as the dividing factor
increases; however, more computation time is re-
quired with a larger factor.

(iii) Te proposed method with a small forgetting factor
can immediately detect the damage although the
results identifed by a larger forgetting factor are
more stable.

(iv) Although down-sampling processing is a common
solution for online or real-time applications, the
proposed method shows its potential for providing
identifcation with the original sampling rate and is
suitable for the practical implementation of the
SHM system.

(v) Te computation time of the convention methods
confrms the efciency of the proposed method, and
the diference demonstrates that timeliness can be
secured even with 100 sampling rate measurement,
which is common in the SHM system.
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Figure 10: Te identifcation result of the RC frame during the earthquake excitation.
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Te RSI with the proposed method is able to continu-
ously identify changes in the structural behavior, track the
structural state, and monitor the structural performance.
Te evaluation of damage or deterioration of civil structures
gives valuable information for decision-making on main-
tenance and repair. However, some further verifcation is
still recommended, especially a real-time example in feld
applications to demonstrate the timely performance of SHM
in civil structures.
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