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Te hysteretic damping tunedmass damper (HD-TMD) is composed of a spring element, a hysteretic damping (HD) element, and
amass.TeHD force is proportional to the displacement of the tunedmass damper (TMD). Recently, the application of HD-TMD
has emerged, but its optimal design is still lacking. To fll this academic gap, numerical solutions for optimal parameters of
HD-TMD subjected to white-noise excitation were obtained based on the H2 optimization criterion. Performance balance
optimization with a weighting factor was carried out to improve the response of a structure with the HD-TMD system. A set of
earthquake records and harmonic excitations were conducted to prove the efectiveness of the optimal numerical solutions and the
performance balance design. It was found that the performance of the HD-TMD is slightly better than that of the traditional
optimized TMD. As a real TMD application of HD-TMD, the variable friction pendulum TMD (VFP-TMD) was selected to
experience earthquakes with the proposed optimal methods. Results showed that the optimal solutions provided the best
performance but raised the problem of difculty in maintaining linearity with a large displacement. Nevertheless, the performance
balance design helped reduce this defect and provided impressive seismic mitigation capacity. Compared with the optimal
numerical solution results, the performance balance design demonstrated 2.847% of loss in the maximum structural displacement
reduction rate and 3.709% of loss in the root mean square reduction rate during the earthquake-excited period, respectively.

1. Introduction

Structural control has been studied and applied in many
engineering felds [1–3], such as mechanical, civil, and
aerospace, to mitigate structural response against external
loads. In civil engineering, the tuned mass damper (TMD) is
well recognized as one of the most efcient and reliable
passive control strategies. First-born TMD is known as the
dynamic vibration absorber which was initially intended to
suppress the vibration of watercraft during sailing [4]. In-
stead of the series connection of the spring and damping
element, Ormondroyd and Den Hartog [5] improved the
above elements into parallel settings which broaden the
bandwidth of the frequency response function (FRF). To
provide the optimal parameters with diferent

circumstances, several typical closed-form solutions of
traditional viscous TMD were summarized and derived by
Warburton [6].

As one of the classic optimization, Crandall andMark [7]
proposed the H2 optimization theory to minimize the vi-
bration energy of the system in the frequency domain. In this
optimal criterion, the area under the frequency response
curve of the system is minimized. Optimal solutions based
on H2 optimization for TMD of the undamped and damped
structures were derived by Asami et al. [8, 9]. Bakre and
Jangid [10] developed the optimal parameter solution
through numerical optimization and curve-ftting tech-
niques based on H2 optimization theory for damped
structures. Analytical studies of TMDwith nonlinear viscous
damping subjected to white-noise excitation were conducted
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by Chung et al. [11]. Tigli [12] derived the H2 optimal pa-
rameter solutions targeting the optimization of velocity and
pointed out that the velocity criterion provides the best
overall performance with the least complexity in the design
equations. As the extension application of H2 optimization,
a three-element TMD was proposed and the closed-form
solutions were derived [13].Te optimal parameter formulas
of a nonlinear tuned viscous mass damper (TVMD) under
white noise were derived by Chen and Tan [14]. Closed-form
solutions for TVMD acceleration control under white-noise
seismic excitation of the undamped structure were obtained
and proven to be efective in the mitigation of lightly
damped structures [15].

Instead of the high cost, high maintenance, and short
servicing time for viscous dampers of traditional TMD,
HD-TMD presents stable mitigation capacity for various
excitation amplitudes with the benefts of easy-replacement
and low cost. From the perspective of the diferential
equations of motion, the damping force of the HD-TMD is
related to the variate of diferential equations of motion,
which had resulted in the widened efective control band-
width and the increased of robustness. Hysteretic damping
(HD) was proposed to describe the mechanism of materials
[16], in which the damping force is proportional to the
displacement of the mass and is in phase with its velocity
[17–19]. Modifed hysteretic models were proposed by
Muravskii [20] to investigate the frequency-independent
characteristics of a single degree of freedom (SDOF) sys-
tem. Later, Liu [21] provided Reid’s hysteretic oscillators
with friction force dependence on displacement to state the
HD mechanism. Nevertheless, previous works of HD were
mainly focused on theoretical study. Recently, Kang et al.
[22] and Matta et al. [23–25] proposed Reid-TMD and
homogeneous tangential friction bidirectional TMD (HT-
BTMD) to realize the physical form of HD-TMD device.
Rate-independent damping mechanism was studied by
Nagarajaiah et al. [26] to further reveal the mitigation ca-
pacity of TMD-NSD [27]. Furthermore, the experiments
[24] and numerical analysis [28] were conducted to illustrate
the efectiveness of the HD-TMD by HT-BTMD. However,
the optimal seismic designs of HD-TMD subjected to white-
noise excitation are still lacking.

In reality, the movement conditions of TMD have
limited in a certain range of space thanks to the limitation of
the installation site of TMD, the requirement of space
utilization rate, and the actual mechanical deformation limit
requirements. Te optimal design procedure and experi-
ments for TMD were proposed and conducted to reduce
structural dynamic responses with the limitation of its stroke
[29–31]. Te fragility was found to be signifcantly infu-
enced by the TMD stroke and structural acceleration [32]. A
lifecycle cost optimization considering the correct quanti-
fcation of the costs and stroke of TMD was provided for
proftable investment [33]. Furthermore, the meaning of
controlling the stroke of TMD can be widespread to the
other important academic felds of structure control, for
example, for the interstory isolated system to control the
simplifed upper structure. Terefore, it is necessary to
construct a performance balance design for the HD-TMD

that achieves the destination of providing the desired dual-
target control performance by the actual needs.

To bridge the mentioned gaps, in this study, the optimal
design and control performance of HD-TMD subjected to
white-noise excitation were investigated. In the derivation of
the optimal solutions of the HD-TMD, the H2 optimization
criterion was applied, and the performance of the optimal
solutions was successfully assessed. To improve the per-
formance of the structure with the HD-TMD system, the
performance balance optimization was proposed with
a weighting factor that depends on the tolerance ratio. Fi-
nally, verifcations were taken to examine the efectiveness of
the proposed optimization methods with the specifc
available HD-TMD device.

2. Analysis Model for Structure with HD-TMD

It should be noted that the HD-TMD represents a type of
practical TMDs, whose absolute value of the damping force
is linear with the stifness force as shown in the following
equation:

FD � sign _xt( 􏼁ηkt xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (1)

where sign() represents the signum function; xt denotes the
relative displacement of TMD; η denotes the HD ratio; and
kt means the stifness of the TMD. Te signum function
reveals that the HD-TMD damping force is perpendicular to
the stifness force in the complex feld.

Te hysteretic damping loop of HD-TMD is illustrated
in Figure 1. As shown in Figure 1, the absolute value of the
damping force increases proportionally with the relative
displacement of the TMD. Te HD-TMD can be described
as a displacement-dependent TMD that can be achieved by
altering the friction damping output, where the range of
applications for the model of HD-TMD can be simply found
with the damping behavior that is caused by the variable
friction settings. For example, Reid-TMD [22], variable
friction pendulum tunedmass damper (VFP-TMD) [23, 28],
and HT-BTMD [24, 25]. Te former stresses the stifness
force from the spring into the friction plate by the design of
the device, whereas the latter two change the friction co-
efcient on the sphere of movement and assume the normal
force of friction to be constant. Above-mentioned TMDs
obey the Coulomb friction theory. Te HD-TMD is
a symbolic model that summarized the property of hysteretic
damping characteristic and represents these devices pre-
cisely, symbolically, and simply. It should be noted that the
realistic range to apply the proposed HD-TMD model re-
mains expanded, not limited by the thoughts discussed, and
is expected to reveal more.

TMD control theories are mostly applied to the frst
mode of the structure, which afects the structural response
the most under earthquake excitations. An SDOF structure
with an HD-TMD system is presented in Figure 2. Note that
all the bodies were assumed to remain in the elastic range.
m1, k1, and c1 denote the mass, stifness, and damping of the
structure, respectively, and mt is the mass of the HD-TMD.
In addition, €xg stands for ground acceleration. Using the
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Lagrangian method, the equations of motion for the
structure with the HD-TMD system can be expressed as
follows:

m1 + mt( 􏼁€x1 + mt€xt + c1 _x1 + k1x1 � − m1 + mt( 􏼁€xg,

mt€x1 + mt€xt + ktxt + sign _xt( 􏼁η xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌kt � −mt€xg,

⎧⎨

⎩ (2)

where x1 denote the displacement of the structure relative to
the ground. Hence, the dimensionless equations of motion
were further derived as follows:

1 + μt( 􏼁€x1 + μt€xt + 2ξ1w1 _x1 + w1
2
x1 � − 1 + μt( 􏼁€xg,

€x1 + €xt + wt
2
xt + sign _xt( 􏼁η xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌wt

2
� −€xg.

⎧⎪⎨

⎪⎩
(3)

To standardize the subsequent treatment, the following
nondimensionalized terms were introduced, as listed in
Table 1.

Xiang et al. [28] demonstrated that VFP-TMD with HD
characteristic owns linear behavior in the frequency domain
and earthquake records with diferent excitation amplitudes.
Associated with the experiments that Matta [24] had per-
formed, the HD-TMD exhibited linear behavior in the
application of civil engineering. Frequency domain trans-
formation [20, 26] on HD force in equation (3) is conducted
as follows. For a harmonic motion in the form xt � Xte

iwt,
whereXt is a positive amplitude of vibrations response in the
frequency domain (for w> 0)

η xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌wt

2sign _xt( 􏼁 � η xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌wt

2 _xt

_xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� η Xte
iwt

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌wt
2 iwXte

iwt

iwXte
iwt

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

(4)

Based on the Euler formula, |eiwt| � 1. Te equation of
(4) can be further obtained as follows:

η xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌wt

2sign _xt( 􏼁 � ηXtwt
2iwXte

iwt

wXt

� ηXtwt
2
ie

iwt
. (5)

Hence, the displacement FRFs for structure and
HD-TMDwere obtained by Laplace transformation in terms
of complex quantities as follows:

H1(iλ) �
w

2
1X1

f0
�

−λ2 + iηf
2 1 + μt( 􏼁 + f

2 1 + μt( 􏼁

λ4 − λ2 1 + f
2 1 + μt( 􏼁􏼐 􏼑 + f

2
− 2ξ1f

2ηλ+

i −2ξ1λ
3

+ 2ξ1f
2λ − ηf

2 1 + μt( 􏼁λ2 + ηf
2

􏽨 􏽩

,

Ht(iλ) �
w

2
1Xt

f0
�

2ξ1λi + 1
λ4 − λ2 1 + f

2 1 + μt( 􏼁􏼐 􏼑 + f
2

− 2ξ1f
2ηλ+

i −2ξ1λ
3

+ 2ξ1f
2λ − ηf

2 1 + μt( 􏼁λ2 + ηf
2

􏽨 􏽩

,

(6)

k1
kt

ẍg
x1 + xtx1

ktη

mt

c1

m1

Figure 2: Structure with the HD-TMD system.

HD Viscous damping

FD

xt

Figure 1: Hysteretic damping loop for HD and viscous damping.
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where X1 represent the frequency response of displacement
for structure in the frequency domain.

3.H2 Optimization for HD-TMD

To minimize the vibration energy of the overall frequencies
of the system, one of the classical design methods, H2 op-
timization, was widespread for TMD design, in which the
excitation was meant to be processed as the white noise with
a uniform power spectral density function. Although many
other approaches [34–36] address the optimal energy dis-
sipation capability of the tuned mass damper for variable
performance indexes (the acceleration response of the
structure, the multi-performance design approaches, etc.),
theH2 optimization for the HD-TMD and SDOF structure is
more classic, as well as one of the foundations for the

evolutional optimization theories. Especially, it is suitable for
the primary structure being subjected to random and
complex forms of excitations instead of harmonic excita-
tions in the feld of stochastic mechanics. In this section,
numerical solutions are derived and parametric studies are
conducted for the HD-TMD.

3.1. Teoretical Derivation. As a mature vibration control
optimization, H2 criterion is applied by minimizing the
mean square displacement of the structure. Tus, the per-
formance index subjected to white-noise excitation is de-
scribed by [6].

σ1
2 μt, f, η( 􏼁 � S0 􏽚

∞

−∞
H1 iλ, μt, f, η( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dλ, (7)

where variance equals the mean square displacement of the
structure for a random quantity with zero means. S0 denotes
the normalized constant spectral intensity. Te performance
indexes can be evaluated by integrating the square of FRF.
Without losing generality, the inherent damping of the
structure was neglected in this study, and the objective of the
optimization was to optimize the HD-TMD parameters for
the undamped structure. Te square calculation on FRF can
be obtained as follows:

H1 ξ1, iλ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

�
λ2 − f

2
(1 + μ)􏽨 􏽩

2
+ ηf

2
(1 + μ)􏽨 􏽩

2

λ4 − λ2 1 + f
2
(1 + μ)􏼐 􏼑 + f

2
− 2ξ1f

2ηλ􏽨 􏽩
2

+ − 2ξ1λ
3

+ 2ξ1f
2λ + ηf

2
− ηf

2
(1 + μ)λ2􏽨 􏽩

2 . (8)

By introducing ξ1 � 0, the expression can be performed
as follows:

H1(iλ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

�
λ4 − 2B2λ

2
+ B

2
0

λ4 − λ2 A1 + iA4( 􏼁 + A2 + iA3􏽨 􏽩 λ4 − λ2 A1 − iA4( 􏼁 + A2 − iA3􏽨 􏽩
, (9)

where

A1 � 1 + (1 + μ)f
2
,

A2 � f
2
,

A3 � ηf
2
,

A4 � ηf
2
(1 + μ),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B2 � f
2
(1 + μ),

B0 � f
2
(1 + μ)

��������

1 + η2􏼐 􏼑.

􏽱
⎧⎪⎨

⎪⎩

(10)

To avoid the complexity of solving the integral calculation,
the residue theorem is deployed as a common standard
treatment of H2 optimization to simplify the infnite integral.

Normally, simplifcation expressions can be quoted from the
literature [7]. It should be aware that despite the change in the
excitation conditions and response parameters, the de-
nominators of the FRFs for traditional viscous TMD remain
the same, whose real part of it consists of even orders of
frequency variable as well as the imagined part of it consists of
odd orders of frequency variable [6, 13]. However, for HD-
TMD, the denominator of FRFs exhibit diferent properties at
the complex combination terms in the even order and the
missing odd terms of the denominator, which fail in applying
the simplifcation expressions [7, 13, 37] in the literature to
bypass the infnite integral of the square calculation for the
FRF of HD-TMD. To the limited knowledge of the authors,
the simplifcation results for the infnite integral of the FRF of
HD-TMD with the residue theory have been not found in the

Table 1: Notations.

Notations Defnition
w1 �

�����
k1/m1

􏽰
Frequency of the structure

wt �
�����
kt/mt

􏽰
Frequency of TMD

ξ1 � c1/(2m1w1) Damping ratio of the structure
μt � mt/m1 Mass ratio of TMD
f � wt/w1 Frequency ratio of TMD
λ � w/w1 Frequency ratio of excitation
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past. Terefore, it is urgent to derive simplifcation results for
the infnite integral of the FRF of HD-TMD instead of nu-
merical integral calculation.

To apply the residue theorem, the frst step is to factorize
the denominator of |H1(iλ)|2. Te denominator of |H1(iλ)|2

can be decomposed as follows:

λ4 − λ2 A1 + iA4( 􏼁 + A2 + iA3􏽨 􏽩 λ4 − λ2 A1 − iA4( 􏼁 + A2 − iA3􏽨 􏽩

� λ2 + λ21􏼐 􏼑 λ2 + λ22􏼐 􏼑􏽨 􏽩 λ2 + λ23􏼐 􏼑 λ2 + λ24􏼐 􏼑􏽨 􏽩,

� λ − iλ1( 􏼁 λ + iλ1( 􏼁 λ − iλ2( 􏼁 λ + iλ2( 􏼁􏼂 􏼃 λ − iλ3( 􏼁 λ + iλ3( 􏼁 λ − iλ4( 􏼁 λ + iλ4( 􏼁􏼂 􏼃,

(11)

where λ1, λ2, λ3, and λ4 denotes the singular points in the
integral calculation.

By applying the residue theorem, the integral from
equation (7) can be evaluated as follows:

􏽚
∞

−∞
H1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dλ � 2πi􏽘Res H1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, λi􏽨 􏽩 � 2πi􏽘

4

i�1
lim

λ⟶ iλi

λ − iλi( 􏼁 H1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩 � π
C4 − 2C2B2 + C0B

2
0

D
, (12)

where

D � λ1λ2λ3λ4 λ22 − λ21􏼐 􏼑 λ23 − λ21􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ23 − λ22􏼐 􏼑 λ24 − λ22􏼐 􏼑 λ24 − λ23􏼐 􏼑,

C0 � λ2λ3λ4 λ23 − λ22􏼐 􏼑 λ24 − λ22􏼐 􏼑 λ24 − λ23􏼐 􏼑 − λ1λ3λ4 λ23 − λ21􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ24 − λ23􏼐 􏼑

+λ1λ2λ4 λ24 − λ22􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 − λ1λ2λ3 λ23 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 λ23 − λ22􏼐 􏼑,

C2 � −λ21λ2λ3λ4 λ23 − λ22􏼐 􏼑 λ24 − λ22􏼐 􏼑 λ24 − λ23􏼐 􏼑 + λ22λ1λ3λ4 λ23 − λ21􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ24 − λ23􏼐 􏼑

−λ23λ1λ2λ4 λ24 − λ22􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 + λ24λ1λ2λ3 λ23 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 λ23 − λ22􏼐 􏼑,

C4 � λ41λ2λ3λ4 λ23 − λ22􏼐 􏼑 λ24 − λ22􏼐 􏼑 λ24 − λ23􏼐 􏼑 − λ42λ1λ3λ4 λ23 − λ21􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ24 − λ23􏼐 􏼑

+λ43λ1λ2λ4 λ24 − λ22􏼐 􏼑 λ24 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 − λ44λ1λ2λ3 λ23 − λ21􏼐 􏼑 λ22 − λ21􏼐 􏼑 λ23 − λ22􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Te common divisor Cd � (λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
(λ2 − λ3)(λ2 − λ4)(λ3 − λ4) occurred in the above equations
of coefcient D, C0, C2, and C4. With the help of algebraic
operation, the internal connections are given by

X0X1X2X3 − X
2
0X

2
1 − X0X

2
3 �

D

Cd

,

X0X3 �
C4

Cd

,

X0X1 �
C2

Cd

,

X1X2 − X3 �
C0

Cd

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where

X0 � λ1λ2λ3λ4,

X1 � λ1 + λ2 + λ3 + λ4,

X2 � λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

X3 � λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4 + λ1λ3λ4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

Te integral can be further derived as follows:

I2 � 􏽚
∞

−∞
H1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dλ � π

X0X3 − 2B
2
2 X0X1( 􏼁 + X1X2 − X3( 􏼁B

2
0

X0X1X2X3 − X
2
0X

2
1 − X0X

2
3

.

(16)

Moreover, relationships between complex singular
points corresponding to the form of decompose and original
denominator in (11) are given as follows:

iλ1( 􏼁
2

iλ2( 􏼁
2

� A2 + A3i,

iλ1( 􏼁
2

+ iλ2( 􏼁
2

� A1 + A4i,

⎧⎨

⎩

iλ3( 􏼁
2

iλ4( 􏼁
2

� A2 − A3i,

iλ3( 􏼁
2

+ iλ4( 􏼁
2

� A1 − A4i.

⎧⎨

⎩

(17)
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Furthermore, the inner connection of singular points
can be expressed as follows:

λ1λ2λ3λ4 �

�������

A
2
2 + A

2
3

􏽱

,

λ1 + λ2 �

����������������������

− A1 + A4i( 􏼁 − 2
�������
A2 + A3i

􏽰􏽱

λ3 + λ4 �

����������������������

− A1 − A4i( 􏼁 − 2
�������
A2 − A3i

􏽰􏽱

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (18)

Substituting the relationships of singular points in
equation (16) and mathematical transformation on the
complex plane provided in the Appendix, the connections
for singular points are derived as follows:

X0 �

�������

A
2
2 + A

2
3

􏽱

,

X1 �
�
2

√
�����������������

a
2

+ b
2

􏽱

− a

􏽲

,

X2 �
X

2
1 + 2A1􏼐 􏼑

2
,

X3 �
X

2
2 + 2X0 − A

2
1 + A

2
4 + 2A2􏼐 􏼑􏽨 􏽩

2X1
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where

a � A1 +
�
2

√
��������������������

A
2
2 + A

2
3

􏽱

+ A2

􏽲

,

b � A4 +
�
2

√
��������������������

A
2
2 + A

2
3

􏽱

− A2,

􏽲

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

Terefore, the integral of the square of FRF can be ex-
panded as follows:

I2 � 􏽚
∞

−∞
H1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dλ � 8π

X1
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4A
2
4X0 − X0X1

4
− 8X0

2
+ 8A2X0 − 4A1X0X1

2
+ 16X0X1

2
B2 + B

2
0 8X0 − 8A2 − 4A

2
4 − 3X1

4
− 4A1X1

2
􏼐 􏼑􏽨 􏽩

64A
2
2 + 64A2A

2
4 + 16A

4
4 − 64A

2
4X0 − 128A2X0 + 64X0

2
+ X1

4 8A
2
4 + 16A2 − 16A

2
1 + 48X0􏼐 􏼑 − 16A1X1

6
− 3X1

8. (21)

An error analysis was performed to evaluate the cor-
rectness of equation (18) with the numerical discrete integral
of 2􏽐 |H1|

2 from λ � 0 to λ � 10. Among these ranges, the
useful and important frequency response factors in the
calculation of the frequency response function for a two-
degree of freedom system are collected, while the rest of the
summation calculation from λ � 10 to λ �∞ results in close
to zero. Owing to the monotonicity of optimal parameters,
the branch-and-bound algorithm was adopted. Te step size
of the variable parameters is determined by the accuracy of
the optimal parameters for HD-TMD during the operation
of numerical searching. Te optimal parameters of
HD-TMD had been acquired and corrected to four signif-
icant digits, which is enough in the application of civil
engineering. As demonstrated in Figures 3(a)–3(c), the exact
expression results were 100% matched with the data of
discrete integral. Tus, it can be concluded that the sim-
plifcation of the infnite integral through the residue the-
orem was successful.

3.2. Numerical Solutions. Normally, the simultaneous bi-

variate inhomogeneous equations of (zI2/zf) � 0
(zI2/zη) � 0􏼨 should

be taken as the next step toward the closed-form solutions
for the optimal parameters of the HD-TMD. However, it is
difcult to solve because of the theorem of Rufni–Abel,
which states that there is no explicit algebraic analytic so-
lution for an order of the algebraic equation higher than 5. In
this case, the maximum order of f is 7 in the numerator of I2,
not to mention that the order of f after partial derivatives
(whose highest order is up to 14) that afect by the maximum
order of f in the denominator. Hence, the numerical curve
ftting technique was applied to acquire the expressions of
optimal frequency and optimal HD ratio as follows:

fopt � p1μt
3

+ p2μt
2

+ p3μt + p4,

ηopt � q1μt
q2 ,

⎧⎪⎨

⎪⎩
(22)
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where

p1 � −0.4776,

p2 � 0.9573,

p3 � −1.109,

p4 � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q1 � 1.098,

q2 � 0.5352.
􏼨

(23)

Curve ftting results and comparisons are shown in
Figures 4(a)–4(c). Data analysis showed that the maximum
error and root square error of curve ftting compared to
equation (21) were 0.1404% and 0.0349%, respectively, at the
optimal frequency ratio. 6.631% and 1.6190% of the above
errors occurred at an optimal HD ratio. Te numerical
solutions from equation (22) were curve-ftted between the
mass ratios of 0% and 50%, which covered most of the
HD-TMD working scenarios in practice. It can be easily
concluded that the optimal frequency ratio and the per-
formance index decreased with the rise of the mass ratio,
whereas the optimal HD ratio increased.

By equating the damping energy of the HD-TMD and
traditional viscous TMD in a resonate state [24, 25] with the
same stroke, one of the relationships between the HD ratio
and viscous damping ratio can be obtained as follows:

ED,HD � ED,viscous

2ktηoptxt
2

� 2πktξoptxt
2

ηopt � πξopt.

(24)

To emphasize the novelty of the proposed solution,
comparisons with the solutions of Den Hartog, War-
burton [6] (Page 385, Table 2, Case 5), and Xiang et al. [28]
(Page 6, Table 3, Case 1) were performed, as shown in
Figure 4. Te frequency ratio exhibited an average value
between those of Den Hartog and Warburton. It was
observed that the proposed optimal numerical solution
for the HD ratio is characterized by a lower value, whereas

the efective HD ratio transferred by equation (24) was
higher. Figure 4(c) exhibited that the H2 optimization for
HD-TMD was capable of minimizing the total vibration
frequency energy of the structure while other classical
theories were shown to be less efective. Results from
Figure 4(c) indicated that the use of energy balance
equivalence method such as equation (24) to optimize the
structure-HD-TMD system is not feasible (shown sub-
sequently in the numerical verifcation section). Te
comparisons between H∞ optimization [28] and H2 op-
timization for HD-TMD were conducted. For diferent
optimal criteria, the optimal parameters of HD-TMD
appeared distinct diferences, where the optimal fre-
quency ratio derived from fxed-point theory is lower than
the proposed optimal frequency ratio and the former
optimal hysteretic damping ratio is higher than the latter
one. Te performance index of H2 optimization was
2.349% and 2.2052% lower than the H∞ optimization in
respect of maximum diference and average diference.

Te potential meanings of the proposedH2 optimization
for HD-TMD are the original mathematical derivation
guidance for this type of infnite integral in math and the
precious time that can be saved by applying this simplif-
cation to eliminate a further dimension search in the fre-
quency domain.

Te detailed procedure for H2 optimization for
HD-TMD was summarized in Figure 5. To provide a sig-
nifcant diference between the H2 optimization for
HD-TMD and the traditional viscous TMD, the detailed
procedure for H2 optimization for traditional viscous TMD
was summarized in Figure 6. It can be observed that except
for the basic principle of the residue theorem, relationships
of the coupled complex solutions and associated expressions
with the original coefcient are reformed in the H2 opti-
mization for HD-TMD, which exposed the complexity in
math. Te step-by-step derivation of H2 optimization for
HD-TMD is not only the expression of the complexity of
math but also provides a precious and original process for
solving the simplifcation of the infnite integral of HD-TMD
(or any kind of systems, whose square calculation of the
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Figure 3: Te correctness of applying the residue theorem. (a) Optimal frequency ratio. (b) Optimal damping ratio. (c) Optimal per-
formance index.
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FRFs can be expressed as equation (9)) that no one has
completed before.

4. Performance Balance Design for HD-TMD

Te previous H2 optimization mentioned provides the op-
timal parameters without concerning the working condition
for HD-TMD. However, in high-rise buildings, the move-
ment of TMD is restrained within a certain range, where the
space utilization rate and economic beneft of the structure
will be thereby greatly improved. Consequently, to solve this
problem at the design level, a performance balance design

considering the movement of HD-TMD was carried out by
adjusting the weighting factor.Te relevant parametric study
was presented subsequently.

4.1. Performance Index with the Weighting Factor. A per-
formance index with a percentage weighting factor α in
equation (25) was inspired by Wang et al. [29] to il-
lustrate the further mechanism of displacement limita-
tion of HD-TMD. It can be observed that the priority of
the minimum structure response is thereby decreased by
the weighting factor, and the consideration of TMD
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Figure 4: Curve ftting applied forH2 theory of structure with HD-TMD system. (a) Optimal frequency ratio. (b) Optimal damping ratio. (c)
Optimal performance index.

Table 2: Parameters for the traditional TMD and HD-TMD.

TMD types α fopt ξt,opt ηopt Named

Warburton’s TMD — 0.9636 0.08566 — TMD1
Warburton’s HD-TMD — — 0.2691 TMD2
H2 optimized HD-TMD 0 0.9676 — 0.1681 TMD3
Performance balance design HD-TMD 2.377% 0.9676 — 0.2385 TMD4
Matta’s HT-BTMD — 0.9807 0.3314 TMD5

Table 3: Optimization cases for damped SDOF structure with HD-TMD systems.

Names Rmax
(%)

RRMS,quake
(%)

|xt|max
(m)

| €x1 + €xg|max
(m/s2)

Maximum
base
shear
force
(kN)

|FD|max
(kN)

Maximum
damping
energy
(kJ)

Maximum
pendulum
rotation
angle
(°)

Uncontrol 100.000 100.000 — 0.428 3592.5 — — —
TMD1 68.278 54.915 1.486 0.348 2968.5 0.558 813.3 —
TMD2 71.405 57.428 1.413 0.360 3035.8 0.908 823.1 7.424
TMD3 68.601 54.094 1.685 0.353 2975.5 0.694 832.1 8.940
TMD4 71.449 57.803 1.397 0.360 3036.7 0.912 823.5 7.403
TMD5 72.993 60.888 1.237 0.363 3069.3 1.008 807.9 6.727
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response is taken into account at the same time. Par-
ticipation in the weighting factor leads to a trade-of
problem. It can be seen as an estimation of desired
performance that balances with the response of structure
and TMD.

I1 � (1 − α)I2 + αI3, (25)

where I2 � σ21/S0, I3 � σ2t /S0 � 􏽒
∞
−∞ |Ht|

2dλ, and
α ∈ [0, 100%). By introducing ξ1 � 0, the expression of I3
from equation (5) was given by

Ht(iλ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

�
1

λ4 − λ2 A1 + iA4( 􏼁 + A2 + iA3􏽨 􏽩 λ4 − λ2 A1 − iA4( 􏼁 + A2 − iA3􏽨 􏽩
. (26)

Similarly, the infnite integral of I3 can be simplifed
using the residue theorem as Section 3.1 had performed and
demonstrated as follows:

I3 � 􏽚
∞

−∞
Ht

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dλ � 2πi􏽘Res Ht

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, λi􏽨 􏽩 � 2πi􏽘

4

i�1
lim

λ⟶ iλi

λ − iλi( 􏼁 Ht

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩 � π
C0

D
, (27)

which can be further obtained as follows:

I3 � 􏽚
∞

−∞
Ht

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dλ � π

X1X2 − X3

X0X1X2X3 − X
2
0X

2
1 − X0X

2
3

. (28)

Terefore, the performance index for performance
balance design with weighting factor can be expressed as
follows:

I1 � π
(1 − α) X0X3 − 2B

2
2 X0X1( 􏼁 + X1X2 − X3( 􏼁B

2
0􏼐 􏼑 + α X1X2 − X3( 􏼁

X0X1X2X3 − X
2
0X

2
1 − X0X

2
3

, (29)

where coefcients refer to equation (19).

4.2. Parametric Study. To further investigate the variation of
α, the double Y axes plots of fopt and ηopt for diferent mass
ratios of 0.5%, 1%, 2%, and 10% are drawn in Figure 7 based
on the numerical searching strategy. Te optimal frequency
ratio remained stable with weighting factors ranging from
0% to 5%, while the optimal HD ratio increased with the
increase of the weighting factor. Te optimal frequency ratio
and HD ratio held the same patterns with the variate of the
weighting factor for diferent mass ratios as previously
discussed in Section 3.2 and Figure 4, which were dem-
onstrated in blue solid and red dashed lines. Te maximum
diference of the optimal HD ratio was 17.1% for mass ratio
equal to 0.5% and 9.4% for mass ratio equal to 10%. It should
be noted that the optimal HD ratio was more sensitive to the
weighting factor for a small mass ratio of HD-TMD.

Te corresponding performance indexes for the per-
formance balance design of HD-TMD are shown in Figure 8.
As seen from Figure 8, performance indexes were positively
related to the weighting factor, indicating that the control
performance of HD-TMD weakened owing to the per-
centage consideration of the response of HD-TMD itself. In

addition, the performance indexes for small mass ratios
HD-TMD were more sensitive to the weighting factor than
those of the large mass ratios. Meanwhile, I1 variate a lot
from the I2 with the increase of weighting factor thanks to
the contribution of I3.

Owing to the positive growth of the structural perfor-
mance index, the undesired control loss must be con-
strained. As a further illustration of the physical signifcance
of the weighting factor, a tolerance ratio of structural re-
sponse was proposed for judging the acceptable rate of
deviation from the H2 optimization.

Te optimal performance index for performance
balanced design in terms of mass ratio of HD-TMD equal
to 3% was presented as an example in Figure 9. It was
found that the tolerance ratios provided several boundary
conditions for restraining the growth of the performance
index. Te undesired control loss was indicated clearly
with the red line, where corresponding optimal HD ratios
and weighting factors were noted. Te tolerance ratio
based on the structural displacement refected the con-
ditions of using performance balance design, which
should be limited between the contribution of the
movement of TMD and the acceptable control loss for the
structural response.
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To analyze the diference between FRFs, the dynamic
amplifcation factors (DAFs) that represent the absolute
value of FRFs were compared in Figures 10(a) and 10(b). It
should be noted that specifc weighting factors were
adopted based on the tolerance ratio management for the
performance index of structure response. It was dem-
onstrated that the DAFs for the structure and HD-TMD
were perfectly tuned to the double peak curve shape, and
the peaks for the structure were almost the same. How-
ever, as the weighting factor increased, the peak of
structural DAFs increased, representing the appearance of
control loss, whereas the peak of HD-TMD decreased,
meaning the relative absence of the HD-TMD response.
Moreover, it can be observed that the overall values of
DAFs for HD-TMD were several times higher than those
for structure, suggesting that the diference in the per-
formance indexes that accounts for the DAFs was larger.
Tus, the weighting factor should be carefully used;
otherwise, it may come out with a meaningless result.

It is well known that the frequency ratio of TMD de-
termines the energy absorption efciency from the structure,
which was shown to be more signifcant than the damping
ratio [38].Terefore, considering the frequency ratio detuned
from the design, the detuning efect of HD-TMD is shown in
Figure 11. It was observed that the performance index of the
structural response increased rapidly when the detuning
factor was equal to zero. Te robustness of the HD-TMD was
greatly improved by the performance balance design, which
was attributed to the corresponding increase in the HD ratio.

Te procedure for the performance balance design of
HD-TMDwas described in Figure 12. It should be noted that
the procedure mentioned in this study provided a tolerance
ratio that allows designers to accurately adjust the perfor-
mance for the structure with the HD-TMD system, rather
than the uncertain concept of a weighting factor in the
previous studies.

5. Numerical Verifications

Owing to the hypothesis of white-noise seismic excitations,
the detailed performance of the optimal parameters for
HD-TMD needs to be further analyzed via natural earth-
quake records and harmonic excitations. Here, VFP-TMD
[23], as a nonlinear real application and illustration for the
optimal design of HD-TMD, was selected to examine the
optimal numerical solutions and performance balance de-
sign for HD-TMD.

5.1. Linear Comparisons. Twenty sets of real earthquake
acceleration records on the site class C that were recom-
mended by ATC-40 [39] were used in time-history analysis
with the same peak ground acceleration of 0.2 g for struc-
tures equipped with the regular TMD and HD-TMD. As-
suming that the inherent damping ratio of the primary
structure was ξ1 � 0.02, the TMD mass ratio was μt � 0.03,
and the optimal design parameters for traditional TMD and
HD-TMD were obtained using the optimal numerical so-
lutions and performance balance design with a tolerance
ratio equal to 5%, as listed in Table 2. Based on the same
random theory, the optimal closed-form solutions derived
by H2 optimization from Warburton [6] (Page 385, Table 2,
Case 5) for traditional TMD and the corresponding efective
HD ratio for HD-TMD transferred by (24) were compared
in this section. Te numerical calculation was operated by
the Newmark-β method [40].

Temean responses for 20 sets of earthquake records are
shown in Figures 13(a) and 13(b). It can be inferred that both
traditional TMD and HD-TMD exhibited excellent and
stable displacement mitigation capacity on displacement for
fexible structures with periods over 1 second. Moreover, the
proposed optimal numerical solutions based on H2 opti-
mization demonstrated better performance in displacement
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Figure 10: Te DAFs for displacement response of μt � 0.03. (a) Structure and (b) HD-TMD.
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response. For the relatively fexible structures whose period
approaches 6 seconds, the proposed TMD3 and TMD4 re-
fected the advantages of structure displacement control. It
can be seen from Figure 13(b) that the maximum acceler-
ation reduction was limited for those structural periods of
more than 1.7 s. Moreover, the constant superiority of the
proposed optimized HD-TMD for multiple structural

periods was illustrated, implied the further benefcial
structural control features against a wider set of diferent
structural frequency modes of HD-TMD.

For a specifc structural analysis, the natural period of the
main structure T1 � 6.397s, the inherent damping ratio of
the primary structure ξ1 � 0.02, and the TMD mass ratio
μt � 0.03 were considered [41]. Matta [24] summarized the
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H2 optimization

Acquired the optimal parameters for α = 0

Calculated the optimal I1 for α ∈ (0, 1)

Extract optimal parameters from specifc α

Acceptable tolerance ratio
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End

Performance balance design for 
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Figure 12: Procedure for performance balance design.
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Figure 11: Detuning efect for performance balance design of μt � 0.03.
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numerical optimal parameters of linear HT-BTMD based on
H∞ optimization for the above structure, which are listed in
Table 3 and compared in the following verifcations.
Without loss of generality, the performance balance design
was chosen to validate the efectiveness of a tolerance ratio
of 5%.

As shown in Figures 14(a)–14(c), the proposed
HD-TMD optimized by H2 optimization, performance
balance design, and Matta exhibited stable mitigation ca-
pacity on displacement and acceleration against accelerated
excitation, where reduction rates were 14.07%, 18.53%, and
23.42% for the structural displacement and 14.24%, 19.4%,
and 23.93% for the structural acceleration, respectively. Te
above data suggested that the proposed optimal numerical

solutions exhibit the most impressive vibration reduction
ability. Meanwhile, the structural response from the per-
formance balance design increased from the results of the
optimal numerical solutions but still performed better than
the results from Matta.

5.2. Real Application Example. As mentioned in Section 2.1,
the VFP-TMD fulflled its functionalities through the pen-
dulum movement of the TMD in the vertical plane and the
variable friction arrangement that was successfully tested and
applied in the isolated structures [42–44]. Te equivalent
constant stifness force provided by the pendulum path is only
available in the small displacement circumstances for the TMD
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Figure 13: Structural mean response spectrum for 20 sets of earthquake records. (a) Maximum displacement response. (b) Maximum
acceleration response.
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Figure 14: Numerical verifcation of the resonate harmonic excitation. (a) Structural displacement response. (b) Structural acceleration
response, and (c) HD-TMD displacement response.
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itself [45], which highlights the importance of working con-
ditions for such kind of HD-TMD. Te other signifcant
friction nonlinear property of the VFP-TMD is its original
friction force that is contributed by the initial interconnection
with the surface of the TMD and the pendulum path, which
alters the damping force of TMD as follows:

FD � sign _xt( 􏼁 ηkt xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μminNt􏼐 􏼑, (30)

where μmin stands for the original friction coefcient and the
N denotes the gravity of the TMD. (30) transfers into
constant friction damping force (FD � sign( _xt)μminNt) [46]
when the hysteretic damping part is equal to zero
(ηkt|xt| � 0). Te equations of motion for the structure with
the VFP-TMD system are listed as follows [25]:

m1 + mt( 􏼁€x1 + mt€xt + c1 _x1 + k1x1 � − m1 + mt( 􏼁€xg,

mt€x1 + mt€xt + ktxt + FD � −mt€xg.

⎧⎨

⎩ (31)
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Figure 15: Numerical verifcation for earthquake excitation of SDOF structure. (a) Structural displacement response. (b) TMDs’ dis-
placement response. (c) Hysteretic loop for TMDs. (d) Damping energy of TMDs.
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Detailed information was needed for the nonlinear
system based on the aforementioned parameters, which
employed the frst modal mass of the structure m1 � 8.4 ×

106kg, the gravity of the mass of TMD Nt � 2.4696 × 106N
[41]. Te original friction coefcient was assumed to be
μmin � 0.002 as unavoidable friction coefcient on the
surface of regular material. Te time history analysis results
of the structure with the VFP-TMD system under the Loma
Prieta earthquake for μt � 0.03 were prepared in
Figures 15(a)–15(d), where the ground motion recorded on
Yerba Buena Island was one of the selected ground motions
mentioned before. To better illustrate the TMDs’ perfor-
mance during the earthquake excitation, the relative
structural root mean square (RMS) reduction rate RRMS,quake
and the maximum structural displacement reduction rate
Rmax were defned as Rmax � x1,max ,TMD/x1,max ,unc and

RRMS,quake � σ21,TMD/σ
2
1,unc, respectively. Te data for detailed

performance points are shown in Table 3.
It was evident that TMDs exhibit excellent mitigation

capacity toward earthquake excitation, where TMD1 and
TMD3 perform the best at Rmax, RRMS,quake, maximum
structural absolute acceleration | €x1 + €xg|max, and maximum
structural base shear force. TMD1 was a theoretical and
classical object for comparison, whose existing friction force
in real application of viscous damping element was
neglected. As shown in fgure 15(d) and Table 3, the
structural displacement RMS for TMD3 was the minimum
value during earthquake excitation and the damping energy
for TMD3 was the maximum value, indicating that the
proposed H2 optimization for HD-TMD can greatly sup-
press the vibration of the structure against earthquake
excitation.
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Figure 16: Numerical verifcation for earthquake excitation of MDOF structure. (a) Te maximum structural displacements using TMD3.
(b) Te maximum structural displacements using TMD4. (c) Hysteretic loops for TMD3s. (d) Hysteretic loops for TMD4s.
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One of the assumptions mentioned above states, that the
working condition for the VFP-TMD is limited when it
exhibits linear properties. Terefore, the performance bal-
ance design is vital to hold the linear property of VFP-TMD.
As seen from Table 3, the maximum pendulum rotation
angle of TMD3 was the maximum which was shown to
barely hold the linear property according to Xu et al. (9°)
[45], but the TMD4 results suggested that the performance
balance design successfully reduced the maximum pendulum
rotation angle of the VFP-TMD which ensured the linear
property of the HD-TMD while providing impressive miti-
gation capacity to structure. It was found that after the per-
formance balance design, there are 2.847% of loss in the
maximum structural displacement reduction rate and 3.709%
of loss in the RMS reduction rate during the earthquake-excited
period, respectively. Te results also indicated that the pro-
posed methods for HD-TMD can be applied to lightly damped
structures equipped with HD-TMD.

Additionally, the multidegree of freedom (MDOF)
structural analysis combined with the degradation of friction
coefcients of HD-TMD was illustrated as a preliminary
analysis toward real application analysis. Te MDOF
structural model was referred from the literature [41]. In the
reality, the tribological properties vary along the response of
the device, with sliding velocity, normal pressure, and
heating phenomena induced by the sliding itself [47, 48].
Here, considering a range of friction coefcient variations
± 20% was accessed to draw a rough analysis on the de-
viation of friction coefcient.

Te analysis data of the MDOF structure is shown in
Figures 16(a)–16(d). Te maximum structural displacement

was reduced signifcantly on the higher foors of the
structure rather than the lower foors by the adopted op-
timized TMDs, which indicated the urgent need for the
slender structure to deploy vibration suppression device and
the successful application of HD-TMD to mitigate the
earthquake hazard. Although the optimizations were pro-
posed based on the undamped SDOF structure-HD-TMD
system, the optimized HD-TMDs demonstrated stable and
excellent structural control performance against a wider set
of structural modes. Te worst-case study of friction co-
efcient variations illustrated that the decrease of friction
coefcient led to a slight improvement in the displacement
performance while the increase of friction coefcient
resulted in a worse performance but reduced the stroke of
TMD, which refected the same principle of the performance
balance design as discussed.

6. Conclusions

In this study, the seismic optimization of HD-TMD sub-
jected to white-noise excitation was conducted. Te H2
optimization was proposed to minimize the frequency en-
ergy based on the integral of FRF. Owing to the concern
about the working condition for HD-TMD, performance
balance design was carried out. Numerical verifcations
based on real HD-TMD applications were conducted to
examine the correctness of the proposed methods, which
demonstrated great advantages compared with the tradi-
tional methods. Several important conclusions can be drawn
as follows:

(1) As a type of TMDs, the HD-TMD exhibits
displacement-dependent damping force, which can
be achieved by altering the friction-damping output.
Te equations of motion for the structure with the
HD-TMD system were derived. Numerical valida-
tion was conducted for various excitation ampli-
tudes, which exhibited the linear behavior for the
HD-TMD. Furthermore, the frequency response
functions of the structure with the HD-TMD system
were presented.

(2) H2 optimization for HD-TMD was derived cau-
tiously and skillfully based on the simplifed integral
utilizing the residue theorem.Te numerical integral
results showed that simplifcation was 100% accu-
rate. Due to the orders of the algebraic analytic
solution was too high, the closed-form parameters
solutions are not possible to solve due to the theorem
of Rufni–Abel. Numerical curve-ftting solutions
for HD-TMD for themass ratio between 0% and 50%
were provided instead.

(3) With the help of the weighting factor, the perfor-
mance balance design for HD-TMD was carried out.
By slightly changing the performance index ex-
pression, the optimal performance for HD-TMD
considering the movement of TMD is thereby
achieved. Te parametric study demonstrated that
the weighting factor needed to be carefully chosen
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with the help of the tolerance ratio to avoid physi-
cally meaningless results. Te HD ratio of HD-TMD
is more sensitive to the weighting factor than to the
frequency ratio. Te robustness of the HD-TMD was
improved by the performance balance design.

(4) A set of earthquake records were used to statistically
analyze the HD-TMD performance and generate
average earthquake response spectrums. Results
showed that both regular TMD and HD-TMD
exhibited excellent and stable displacement mitiga-
tion capacity on displacement for fexible structures
whose period was over 1 s. Harmonic excitations
were conducted which proved the structural re-
sponse for performance balance design increased
from the results of the optimal numerical solutions
but still performed well.

(5) For a real application example of HD-TMD, the
VFP-TMD was selected to undergo earthquake
excitation with parameters from optimal numer-
ical solutions and performance balance design. Te
comprehensive indexes indicated that the optimal
numerical solutions for HD-TMD can improve the

structural response to the maximum extent. In this
case, the maximum pendulum rotation angle was
so large that the linear property was barely
maintained. Fortunately, the performance balance
design helped decrease the maximum pendulum
rotation angle while providing impressive seismic
mitigation capacity for the structure. Compared
with optimal numerical solution results, the per-
formance balance design demonstrated 2.847% of
loss in maximum structural displacement re-
duction rate and 3.709% of loss in root mean
square reduction rate during the earthquake-
excited period, respectively.

Appendix

Mathematical transformation on the complex plane was
conducted to eliminate the infuence of the imaginary part of
the combined complex formulation, which was numerically
proven to result in a real number.

In Section 3.1, the coupled formulations of equation (16)
are given as follows:

λ1 + λ2 + λ3 + λ4 �

����������������������

− A1 + A4i( 􏼁 − 2
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− A1 − A4i( 􏼁 − 2
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􏽰􏽱

. (A.1)

As basic mathematical knowledge and the following
mathematical transformation principle, a complex number
with root calculation leads to a half-angle of the original one
and root at the absolute length of the original one in the
default geometric view of the complex plane as Figure 17.
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Second, simplifcation like
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Finally, it can be summarized by the following equations
where imaginary parts are thereby eliminated with mathe-
matical transformation and lead to simplifed expressions.
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is further achieved.
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