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Excessive external vibrations could afect the normal functioning and integrity of sensitive buildings such as laboratories and
heritage buildings. Usually, these buildings are exposed to multiple external vibration sources simultaneously, so the monitoring
and respective evaluation of the vibration from various sources is necessary for the design of targeted vibration mitigation
measures. To classify the sources of vibration accurately and efciently, the advanced hybrid models of the convolutional neural
network (CNN) and long short-termmemory (LSTM) network were built in this study, and the models are driven by the extensive
data of external vibration recorded in Beijing, and the parametric studies reveal that the proposed optimal model can achieve an
accuracy of over 97% for the identifcation of external vibration sources. Finally, a real-world case study is presented, in which
external vibration monitoring was carried out in a laboratory and the proposed CNN+LSTM model was used to identify the
sources of vibration in the monitoring so that the impact of vibration from each source on the laboratory was analyzed statistically
in detail. Te results demonstrate the necessity of this study and its feasibility for engineering applications.

1. Introduction

External vibration is a widely concerning issue in urban
infrastructure construction. Excessive external vibration
could afect the normal functioning of sensitive instruments
such as electron microscopes in laboratories and could afect
the integrity of historical artifacts in heritage buildings. In
addition, excessive vibration and the radiated noise it
generates could also afect the daily life of residents in near-
feld residential buildings. Terefore, it is necessary to
measure and evaluate the external vibration for these sen-
sitive buildings, which could facilitate the understanding of
the magnitude of the vibration impact on the building, and
also provide evidence for vibration mitigation design when
necessary.

Activities that usually cause external vibration include
the normal functions of rail transit lines, including

overground and underground railway lines [1–3] and the
operation of vehicles on roads, especially heavy trucks,
wagons, and buses [4]. Moreover, it also includes con-
struction activities, especially impacts pile driving [5]. Te
vibrations generated by these activities could transmit
through the soil to the surrounding area and generate vi-
bration efects on the buildings in these areas.

Te general vibration mitigation methods include (i)
vibration mitigation at the source, such as using highly
damped track structures to mitigate train-induced vibration
[6, 7], (ii) vibration mitigation at the propagation path, such
as implementing vibration isolation piles in the ground
between the external excitation and the building [8, 9], and
(iii) passive vibration isolation in sensitive buildings, such as
installing vibration isolation tables under sensitive in-
struments and historical artefacts [10]. Te vibration iso-
lation measures for sensitive buildings require targeted
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design according to the specifc vibration source type and the
magnitude of vibration it generates.

In practical engineering, there are usually multiple vi-
bration sources working simultaneously around sensitive
buildings. However, it is often unable to observe and record
the exact time of operation of each vibration source in vi-
bration monitoring, especially for underground vibration
sources [11]. Tese situations make it difcult to statistically
obtain the magnitude of the impact of each external exci-
tation, and thus to take accurate and targeted vibration
mitigation designs. Terefore, identifying the source of the
measured vibration becomes a necessary part of the external
vibration monitoring process.

Due to the distinct mechanisms, the vibration signals
generated by various vibration sources show diferences in
characteristics in both the time and frequency domains.
Experienced experts can identify the source of the vibration
signals based on these characteristics and then carry out
subsequent vibration evaluations. Nevertheless, a number of
researches in recent years have shown that the magnitudes of
external vibrations measured at diferent times often exhibit
large diferences [12, 13], which means that longer vibration
monitoring than before is needed to accurately understand
the magnitude distribution of external vibration in sensitive
buildings. However, it is very inefcient and unfeasible to
still identify the vibration sources by manual methods
during the long-time vibration monitoring process.

In recent years, deep learning is becoming an efcient and
well-known technique and has been widely used in the re-
search and engineering of mechanical signal processing and
identifcation [14–16], which can signifcantly reduce the need
for manual labor and increase the accuracy of signal iden-
tifcation tasks. Tus, the use of deep learning methods to
identify the source of external vibrations is a promising
concept that can greatly improve the efciency of external
vibrations monitoring and evaluation. Compared with most
existing studies on the identifcation of mechanical vibration,
the difculty in identifying external vibration lies in the high
uncertainty of the vibration signal, including the uncertainty
of the distance between the source and the measurement
point and the uncertainty of the source parameters [17, 18].
Terefore, the efectiveness of deep learning-based external
vibration source identifcation needs to be investigated in
detail before applying the technique to practical projects.

In signal processing using deep learning methods, the
most well-known models include a convolutional neural
network (CNN) [19], long short-term memory (LSTM)
network [20], and deep residual network [21]. Specifcally,
CNN can focus on the local features in the signal, while
LSTM can focus on the sequence features in the signal, and
both of them have achieved great success in signal identi-
fcation tasks, such as damage identifcation of mechanical
components [22, 23] and structural health monitoring
[24–26]. In recent years, many researchers have used hybrid
models based on bothmodels to conduct research in the feld
of image or time series signal processing, such as daily
energy consumption prediction [27, 28], daily air and water
quality prediction [29, 30], fnancial asset price volatility
prediction [31, 32], and biological and structural health

monitoring [33–35]. Tese studies have demonstrated that
hybrid models can exploit the strengths of each submodel
simultaneously, achieving better results than any single
model. Nevertheless, there are actually several forms of
hybrid models, for example, combining CNNs and LSTMs
in parallel, or combining CNNs and LSTMs in series. Tere
are few existing studies that discuss the performance dif-
ferences between the various forms of hybrid models, and
this needs to be further investigated. Terefore, this paper
aims to build various forms of hybrid models of CNN and
LSTM to study their feasibility and efectiveness in the task
of external vibration source identifcation.

Specifcally, in this paper, hybrid models based on CNN
and LSTM with various structures are developed, a large
number of external vibration signals measured in Beijing are
used as training and testing samples, and the most suitable
model for external vibration source identifcation is in-
vestigated. Moreover, a case study is carried out to further
discuss the performance and the feasibility of the proposed
model in actual engineering, and this case study evaluates the
vibration level in a laboratory as a preliminary step to propose
isolation measures

Te rest of the paper is organized as follows: Section 2
introduces the theoretical fundamentals of the data pre-
processing methods and the deep learning models. Section 3
presents details of external vibration monitoring and signal
preprocessing. Section 4 presents the implementation and
performance of the proposed models. Section 5 presents
a case study to demonstrate the feasibility of the proposed
method in external vibration evaluation, and Section 6
concludes.

2. Related Theoretical Knowledge

2.1. Time-FrequencyAnalysis Techniques. In the feld of deep
learning-based signal identifcation, inputting time-domain
signals directly into the model is the most common way of
signal processing. However, the characteristics of the vi-
brations generated by diferent sources difer in both the
time and frequency domains. Terefore, this paper uses
time-frequency analysis techniques to preprocess the orig-
inal monitored vibration signals into time-frequency spec-
tra, to ensure that the deep learning model can take into
account the characteristic diferences of the vibration from
each source in both time and frequency domains.

Te most well-known time-frequency analysis tech-
niques used in existing studies include the short-time
Fourier transform (STFT), continuous wavelet transform
(CWT), and Hilbert–Huang transform (HHT). Considering
that the time-frequency spectrum obtained from the STFT
exhibits diferent dimensions at diferent frequencies, which
is not convenient for subsequent input to the deep learning
model so that only CWT and HHT are considered for the
analysis in this paper.

2.1.1. CWT. CWT is a renowned time-frequency analysis
technique that provides promising performance in the time-
frequency analysis of transient and nonstationary signals,

2 Structural Control and Health Monitoring



and it has been used in various felds of research for signal
feature extraction [36]. Te process of CWT analysis can be
defned as follows:

CWTψ(a, b) �
1
��
a

√ 
∞

−∞
s(t)ψ

t − b

a
 dt, (1)

where a denotes the scaling coefcient, which is used to
characterize the wavelet expansion; b denotes the shift co-
efcient, which is used to guide the location of the wavelet;
s(t) is the external vibration signal to be analyzed; and ψ(t) is
the wavelet basis function.Te common basis functions used
in the time-frequency analysis of vibration signals include
Morlet (Morl), Mexican Hat (Mexh), and complex Gaussian
(Cgau).

2.1.2. HHT. Te HHT is another time-frequency analysis
technique specifcally developed to deal with nonlinear and
nonstationary data [37]. Compared to other traditional
methods, this technique can adaptively generate basis
functions, so that the time-frequency spectrum obtained
using this technique exhibits higher resolution, and it has
also been widely used in engineering research in recent
years. Briefy, HHT is a combination of empirical mode
decomposition (EMD) and Hilbert transform. First, EMD
allows any complex signal to be adaptively decomposed into
intrinsic mode functions, which can be expressed as follows:

s(t) � 
i�1

n

Ci + rn, (2)

where Ci is the ith decomposed intrinsic mode function, rn is
the residual signal. Ten, the Hilbert transform is done for
each intrinsic mode function, and the Hilbert spectrum
H(ω, t) for the original signal can be expressed as follows:

H(ω, t) � Re
n

i�1
ai(t)e

j ωi(t)dt
, (3)

where Re is the operator of the real part, ai(t) and ωi(t) are
the amplitude and instantaneous frequency functions of
each intrinsic mode function Ci. Amore detailed description
of this technology can be found in the existing studies
[37, 38].

2.2. Hybrid Machine Learning Approach. Tis Section in-
troduces the theoretical fundamentals of CNN, LSTM, and
hybrid models of CNN and LSTM, which are deep learning
algorithms that have been widely proven to be very efective
in vibration analysis.

2.2.1. CNN. CNN is a well-known deep learning architec-
ture that is widely used in research on the classifcation and
identifcation of one-dimensional and two-dimensional
signals. Due to techniques such as receptive felds, weight
sharing, and pooling [39], CNN networks achieve lower
complexity and better generalization performance than fully
connected neural networks [40]. Well-known CNN models

such as ResNet [41], AlexNet [19], and GoogleNet [42] have
all performed accurately on large-scale datasets in in-
ternational competitions.

CNNs are usually composite networks with multiple
stacked layers, the main type of layers in CNNs consists of
convolutional layers, pooling layers, and fully connected
layers. Te illustration of the CNN model is shown in
Figure 1. Te signal fed into the model is frst processed in
the convolutional and pooling layers for feature extraction,
and the extracted features are further integrated into the
fully connected layer and fnally mapped to the output layer.
Specifcally, the data processing of the signal in each type of
layer can be represented as follows:

(1) Convolutional layer
Te operation in the convolutional layer is given by

yn � f ckn ⊗Y + bn( , n � 1, . . . , N, (4)

where yn denotes the nth features extracted in the
convolutional layer; ckn is the n

th convolution kernel;
bn is the nth bias; Y is the signal fed in the con-
volutional layer; N denotes the number of convo-
lution kernels in the convolutional layer; ⊗ denotes
the convolution operation; and f(·) denotes the
nonlinear activation function, e.g., the rectifed linear
unit (ReLU) [43].

(2) Pooling layers
Te pooling layer could reduce the size of the feature
map extracted from the last convolutional layer, and
pick out the most important features [19]. Common
pooling methods include average pooling and max
pooling, the process of max pooling could be de-
scribed as follows:

yn � max yn , (5)

where yn denotes the feature with reduced size; yn

denotes the extracted feature from the
convolutional layer.

(3) Fully connected layer
Te extracted features are then fed into the fully
connected layer for classifcation, the fully connected
layer is the main component of the fully connected
network (FCNN). On this layer, all extended one-
dimensional feature vectors are weighted, summed,
and entered into the activation function, which could
be described as follows:

y
i

� f w
i
x

i− 1
+ b

i
 , (6)

where i is the index of the network layer, y is the
output of a fully connected layer, x is the feature
vector, w is the weight coefcient, and b is the bias.
Te softmax function is commonly used as the ac-
tivation function f(·) for classifcation tasks, it can
map the input to the probability of each category,
which is defned as follows:
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where φ � [φ(r1), . . . ,φ(rC)] denotes the probabil-
ity of each classifed result, rc denotes the input of the
activation function, and C denotes the number of
signal categories.

Considering the nonperiodicity and nonstationarity of
vibration signals, the batch normalization (BN) technique is
usually used when processing such signals with CNN
models. Te BN layers are usually added following each
convolutional layer, and it ensures that the features can
maintain the same distribution during model training by
fxing the mean and variance of the input signal for each
convolutional layer, which can thus improve the model
training efciency [44].

In addition, to prevent overftting, the dropout tech-
nique [45] is often used in fully connected layers, which can
prevent over-reliance of the model on certain weights.

2.2.2. LSTM. LSTM [20] is a variant of recurrent neural
network (RNN), which is a well-known neural network that
can be used in the analysis of sequence data, such as analysis
of language, vibration, and image. In contrast to traditional
RNNs, LSTMs introduce memory units and gating mech-
anisms to deal with the gradient disappearance and gradient
explosion problems during the training of long sequences.
Te gating mechanism in LSTM can be used to control the
transfer state, aiming to remember the important in-
formation and forget the unimportant information. Tese
functions are performed by the input, forget, and output
gates in the network unit, and the unit of the LSTM is shown
in Figure 2, the specifc formulas of the LSTM are as follows:

ft � σ Wf · ht−1, xt  + bf ,

it � σ Wi · ht−1, xt  + bi( ,

ct � tanh WC · ht−1, xt  + bc( ,

ct � ft · ct−1 + it · ct,

ot � σ Wo · ht−1, xt  + bo( ,

ht � ot · tanh ct( ,

(8)

where xt is the input vector; ft, it, and ot are the activation
vector of the forget gate, input gate, and output gate at time t,
respectively; ct and htare the memory cell activation vector

and hidden state activation vector at time t; Wf, Wi, and Wo

are input kernels for the forget gate, input gate, and output
gate, respectively; and bf, bi, bc, and boare bias; σ is the
logistic sigmoid function; tanh is the hyperbolic tangent
activation function.

2.2.3. Integration of CNN and LSTM. Te hybrid model of
CNN and LSTM can be expressed in three forms, as shown
in Figure 3. Te frst one can be called CNN−LSTM [26, 46],
which indicates that the CNN is used to extract the local
features of the signal frst and the LSTM is used to further
process the extracted features. Te second one can be called
LSTM−CNN [47, 48], which means that the LSTM is frst
used for the extraction of the overall features of the signal,
and the CNN is subsequently used for further processing of
the signal. Te third type can be called CNN+LSTM [49, 50],
in which both CNN and LSTM are used for feature ex-
traction of the original input signal. In all three types, the
obtained features are usually fed into a fully connected layer
and classifer for signal classifcation and identifcation.

2.2.4. Hyperparameter Optimization. Tere are various
hyperparameters in each submodule of the hybrid model of
CNN and LSTM, such as the number of convolutional
kernels and the number of LSTM units, and variations in
these parameters during the training process could infuence
the accuracy of the model. To achieve the best identifcation
results as far as possible, it is necessary to optimize the
combination of hyperparameters in the model.

Common hyperparameter optimization methods can be
divided into empirical and model-based methods [51].
Empirical hyperparameter optimization methods mainly
refer to researchers relying on previous experience to adjust
the hyperparameters of the model, which is accessible and
has been applied by a large number of studies [27, 30, 31].
However, the empirical methods lack theoretical analysis
and the optimal hyperparameter might be missed. Model-
based methods usually include grid search and random
search.

Specifcally, grid search is an exact hyperparameter
optimization method that tests all potential combinations of
hyperparameters to obtain the optimal one [52, 53]. In grid
search, the lower and upper values of each hyperparameter
need to be artifcially defned so that a parameter grid can be
built up in the defned parameter areas, and the optimal
hyperparameter combination is obtained by evaluating all

Convolution Pooling Fully connected layer
Output layer

Image Feature map Feature map

Figure 1: Illustration of the CNN model structure.
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the target function values for each node. Te algorithm is
simple to implement and efective in low-dimensional pa-
rameter spaces. However, it is computationally expensive
and might not be suitable in cases where the model contains
a large number of hyperparameters or where the model is
computationally expensive.

Another universal method of hyperparameter optimi-
zation is random search, in which upper and lower limits for
all hyperparameters also need to be artifcially specifed, but
the method assumes that diferent hyperparameters are not
equally important for the model performance, so it is more
efcient to use randomly distributed points rather than
uniformly distributed points to cover the parameter space
[51, 54]. In practice, it has been found that random search is
also easy to implement and performs better than grid search,
because it can fnd the optimal combination of hyper-
parameters almost as well as grid search and in signifcantly
less time [51]. Considering that the hybrid model of CNN
and LSTM proposed in this study is computationally ex-
pensive, the random search is used for hyperparameter
optimization in this paper.

2.3. Evaluation Indicators for Classifcation Performance.
To fnd the best performing hyperparameter combinations
for various models, the identifcation performance of various
models with diferent hyperparameter combinations on the
test set was evaluated using the indicator of accuracy, which
was defned as

Accuracy �
NC

NT

, (9)

where NC is the number of samples correctly identifed by
the model in the test set, and NT is the total number of
samples in the test set.

In addition, to study the specifc performance of the
proposed method in the identifcation of various categories
of vibration signals, the indicators of precision and recall are
used in this paper, which are defned as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

(10)

where TP is the number of true positives, which is the
positive vibration samples of a certain category that are
correctly identifed by the proposed model; FP is the number
of false positives, which is the positive vibration samples of
the certain category that are incorrectly identifed by the
proposed model; FN is the number of false negatives, which
is the negative vibration samples of the certain category that
are incorrectly predicted by trained model. Especially,
precision indicates the percentage of samples identifed
correctly in the samples identifed as positive vibration of
a certain category by models, while recall indicates the
percentage of samples identifed correctly in the positive
vibration samples of a certain category.

For a well-trainedmodel, both performance indicators of
precision and recall are expected to be high, but these two are
contradictory to each other in some cases and it is difcult to
improve both indicators at the same time. Terefore, this
study also uses the F1 score as the indicator of model
performance, which considers both precision and recall and
conveys a balance between them, and a well-trained model
are expected to have a high F1 score. Te F1 score is cal-
culated as follows:

F1 � 2 ×
Precision × Recall
Precision + Recall

. (11)

3. External Excitations, Field Measurements,
and Signals Preprocessing

Tis section presents the details of the external vibration
signals used in the model training and testing in this study,
including the description of the external vibration moni-
toring and signals preprocessing.
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Figure 2: Illustration of the LSTM model.
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Figure 3: Hybrid structure of CNN and LSTM: (a) CNN− LSTM, (b) LSTM−CNN, and (c) CNN+LSTM.
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3.1. External Excitations and Field Measurements.
Figure 4 shows the process of external vibration monitoring
in sensitive buildings. According to the type of sensitive
building and the demand for vibration monitoring, multiple
monitoring points can usually be set up inside and outside
the building, and data acquisition instruments and vibration
sensors are used to record the vibration signals. In actual
projects, the sensors typically could record external vibra-
tions from a variety of sources, including railway trafc, road
trafc, and construction activities.

One of the most common sources of external vibration is
vehicles on the road, the magnitude of which is closely
related to the weight and speed of the vehicle. Trucks and
buses with large loads usually generate excessive vibration,
which is one of the external excitations of wide concern [55].
Since the type of vehicles driving on roads and the con-
gestion of the trafc are random, this leads to high ran-
domness of the ground vibrations generated by road trafc.
In addition, with the extensive planning and construction of
rail transit infrastructure around the world, the efects of
railway-induced ground vibrations have been widely con-
cerned. Although the physical parameters and driving
conditions of trains passing through the same location are
usually similar, recent studies have shown that the vibration
induced by railway is also highly random due to the ran-
domness of wheel wear [17]. Also, the weight of the train
vehicle is signifcantly larger than that of the vehicle on the
road, which results in a larger magnitude of ground vi-
bration, making it one of the most concerning sources of
vibration in sensitive buildings. Construction activity is also
a source of external vibration that has been widely con-
sidered. Tere are many specifc sources of vibration gen-
erated during construction activities, of which the impact
pile driving is one of the external excitations of wide con-
cern, which can generate impulsive excitations of large
magnitude and the vibrations generated can propagate over
long distances on the ground [56]. Terefore, the impact pile
application is regarded as the major source of vibration for
construction activities to be considered in this study.

Over the past decade, the author’s research team has
carried out extensive monitoring of external vibration at
various sites in Beijing, and the locations of these monitoring
sites are shown in Figure 5. Tese existing monitoring data
provide sufcient samples for the study of deep learning-
based vibration source identifcation in this paper, including
samples for training the models and testing their
efectiveness.

Specifcally, the sensors used for this monitoring are the
Lance accelerometer LC0130 with a measurement range of
0.12 g and measurement frequency range of 0.5–1000Hz, the
INV3060S networked distributed data acquisition devices
were used to collect external vibration data, and computers
were used to record and process the collected vibration data,
these equipment are commonly used in external vibration
monitoring, which is shown in Figure 6. In addition,
multiple monitoring points were usually arranged at each
monitoring site, which was usually placed on the ground at
a distance of 0.5m from the sensitive building, which sat-
isfed the requirements of the relevant standards. Moreover,

during the monitoring process, the technicians recorded the
surrounding trafc and construction activity at each mo-
ment, this information assisted the experts in identifying the
source of the vibration response in the subsequent
processing.

3.2. Signal Preprocessing. In actual external vibration
monitoring, only signal segments with high magnitude are
usually of interest, which is potentially infuential to sensitive
buildings. Terefore, in this study, the original long-term
monitored signals are intercepted and segmented, the length
of the intercepted signal segment is chosen to be 30 seconds,
which can usually contain most of the intact vibration signal
caused by external excitation, and only those signal segments
with themagnitude of the vibration root mean square (RMS)
value higher than a certain threshold are selected for
identifcation analysis, and the threshold needs to be taken
according to the vibration limit value of the sensitive
building to be evaluated. In this paper, this threshold has
been chosen as 0.001m/s2, which is less than the limit value
for urban ambient vibration according to Chinese standards
[57], and the illustration of the segmentation of vibration
signals in this paper is shown in Figure 7.

Another essential step in signal preprocessing is the
labeling of the source of the vibrations in each signal
segment. In this process, experts with experience in vi-
bration evaluation identify the sources of vibration in each
signal segment and use the identifcation results to label the
signal segments. Specifcally, the evidence for the identi-
fcation by the expert mainly comes from two components.
Te frst component is the recorded observation of the
vibration source around the measurement point at each
moment during the monitoring process, which is usually
done by the technician who carried out the vibration
monitoring. Te other part is the characterization of the
signal segment obtained in the analysis in the time and
frequency domains. In this paper, vibration sources for
signal segments were classifed into four categories, in-
cluding railway, road vehicles, construction activities, and
other sources of vibration. Te frst three categories are the
main sources of external vibration mentioned above, while
other sources include environmental vibrations, mechan-
ical vibrations such as those caused by ventilation equip-
ment, and other vibrations that are not in the frst three
categories. Te magnitude of these vibrations is usually
relatively insignifcant and is not of priority concern in
external vibration monitoring.

It should be noted that the same signal segment may
contain vibration signals frommultiple sources, but only the
source of the vibration with the largest magnitude was used
as the label for the signal segment in the analysis in this
paper. Tis allows for the identifcation of the most sig-
nifcant external sources of vibration and thus facilitates the
vibration evaluation and design of the building for vibration
mitigation. Specifcally, according to the segmentation
method above, the vibration magnitude at the midpoint of
the signal segment is signifcantly greater than that at the
other moments, so the vibration source with the greatest

Structural Control and Health Monitoring 7
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Figure 5: Te location of measurement sites of train-induced external vibration.
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Figure 6: Te equipment used in the external vibration monitoring: (a) computer; (b) data acquisition device; (c) acceleration sensor.
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Figure 4: Te monitoring of external vibration in the sensitive buildings.
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magnitude at the midpoint of the signal segment is used as
the fnal label for the signal segment.

To obtain the most suitable time-frequency analysis
technique for the monitored vibration signal, the efect of
both HHT and CWT with diferent basis functions was
investigated. Specifcally, based on the sampling frequency of
512Hz for the original monitoring signals, the analysis
frequency for the time-frequency analysis was chosen to be
256Hz, which is also common in external vibration analysis
[58]. Besides, to increase the efciency of the subsequent
deep learning model, the scale of the time-frequency
spectrum of each signal was transformed to 64× 64. Te
results of the time-frequency analysis are shown in Figure 8.
It can be seen that the four diferent vibration signals show
more signifcant diferences in characteristics in the time-
frequency diagram compared to the waveform diagram,
illustrating the necessity of preprocessing the signals using
time-frequency analysis. Specifcally, the energy of metro
train-induced vibration in the time-frequency spectrum is
usually concentrated in the frequency band of about 50Hz
and higher, which results from dynamic excitations gen-
erated by the contact between the tracks and the rails. While
the energy of road vehicles induced vibration is usually more
scattered and appears in the wavelet spectrum in the fre-
quency band of about 30Hz and lower. In addition, the
vibrations generated by construction activities are usually
manifested in the form of impulse signals, which appear in
the spectrum as a sudden occurrence of energy and often
cover a relatively wide range of frequency bands.

In addition, comparing the time-frequency spectra ob-
tained by diferent techniques is shown in Figure 8. It can be
found that the resolution of the time-frequency spectra
obtained using HHT is higher than that of CWT, which
makes it more sensitive to the features of small scales in the
signal. But it only shows the energy of those vibration signals
with the largest magnitude, while neglecting vibrations with
relatively smaller magnitudes; this conclusion is consistent
with some existing studies [59, 60]. Tis leads to the inability
of HHT to depict the overall properties of the train and
vehicle-induced vibrations on the time scale. In the results

obtained using CWTs with diferent basis functions, the
results for CWTs with mexh functions show the lowest
resolution on the frequency scale, which makes it possible to
confuse the actual frequency of the vibration energy. In
contrast, CWTs with Morl and Cgau functions show the
greatest characteristic diferences between diferent vibra-
tion signals and are therefore considered to be the most
suitable time-frequency analysis for external vibration.
Furthermore, considering that the performance of the CWT
technique with Morl functions has been proven by more
studies related to vibration signals processing [61, 62], it is
therefore used as the fnal tool for time-frequency analysis in
the subsequent studies of this paper.

It should be noted that although CWTshowed relatively
superior performance in identifying externals in this study,
which is consistent with the conclusions obtained in some
engineering applications [63, 64], HHT has also been
considered to be superior to CWTin some other engineering
applications [59, 60]. Terefore, researchers need to be
careful in choosing a time-frequency analysis technique, as
each technique has its unique advantages and disadvantages.

4. Model Implementation and
Performance Evaluation

4.1.DataDescription. According to the method described in
Section 3, a large amount of external vibration data mea-
sured by the authors’ research team in Beijing were pre-
processed and were used for the training and testing of the
proposed model in this study, and the sources of the
measured external vibration include railway, road trafc,
construction activities, and others. Specifcally, the available
samples are randomly divided into training and test samples
in a ratio of 3 :1. Te number of vibration samples from
diferent sources is shown in Table 1.

Since existing research [65] shows that using time-
frequency spectra as input is faster and more space-
efcient in storing data compared to time-frequency
graphs, wavelet spectra are used as the model input in
this paper, and the size of the wavelet spectra is set to 64× 64.
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Figure 7: Illustration of the segmentation of vibration signals.
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4.2. Model Implementation. In this paper, three forms of
hybrid models of CNN and LSTM and each submodel are
built separately to investigate the most suitable deep learning
model structure in external vibration identifcation. Con-
sidering that the hyperparameter settings in the models could
signifcantly afect the model results, the random search
method is used to optimize the hyperparameter combinations
for each model. With reference to existing relevant research
[26, 66], six parameters were set as hyperparameters to be
optimized: the number of units in the LSTM, the number of
CNN modules, the size and number of convolutional kernels
in the CNN modules, the size of the pooling layer, and the
number of FCNN units. Considering the capacity of com-
putational devices, each hyperparameter was set at 2 or 3
levels and the sampling space of each hyperparameter is
shown in Table 2. Te number of iterations of random
sampling for eachmodel was set to 30 and the target indicator
for optimization was the accuracy of the model on the test set.

Moreover, in model training, the dropout technique [45]
is used after fully connected layers and LSTM layers in each
model, and the dropout ratio was set as 50%. Te loss

function is chosen as the mean squared error, and the
optimizer is Adam [67] with a learning rate of 0.001.
Considering the huge amount of computation in network
training, mini-batch gradient descent was used as an opti-
mizer to minimize losses and adjust weights in this exper-
iment, this batch sampling strategy used less memory and
was faster to train, and the batch samples were used in the
training process and the batch size was set to 128, the
training epoch was set to 100.

4.3. Model Performance and Discussion. Te optimal
hyperparameter combinations for each model obtained
through random search are shown in Table 2, and the ac-
curacy performance of each model with the optimal
hyperparameter combinations is shown in Table 3. It can be
found that the hybrid model of CNN+LSTM achieves the
best performance among all the models with an accuracy of
97.7%, which is slightly higher than the other hybrid models.
In addition, the CNN performed the best of the three
submodels, with signifcantly higher accuracy than the
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Figure 8: Time-frequency spectra of typical external vibrations: (a) metro train-induced vibration, (b) road vehicles-induced vibration, (c)
construction activities-induced vibration, and (d) vibration from other sources.
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LSTM and FCNN, and its accuracy was comparable with
each of the hybrid models, indicating that the CNN can
provide a stronger feature extraction capability in processing
the time-frequency spectrum of vibration compared to the
other submodels.

In addition, the accuracy of the hybrid model is not
always higher than that of the submodel, specifcally, the
accuracy of the LSTM-CNN is slightly lower than that of the
submodel CNN. Te reason for this phenomenon might be
that in this hybrid model, the front LSTM ignores some of
the features in processing the input signal, thus decreasing
the performance of the rear CNN in identifying the signal.
Tis result indicates that the form of the hybrid model is very
important and it needs to be carefully considered in relevant
studies, an inappropriate hybrid model might achieve
a lower accuracy performance than a submodel. In partic-
ular, the processing of the input signal in the hybrid model of
CNN+LSTM is independent of each submodule, which
could be the reason for the highest accuracy performance
achieved by this form of hybrid model.

Te identifcation performance of each model for each
specifc category is shown in Table 4, and the confusion
matrix results obtained for each model on the testdataset are
shown in Figure 9. It can be found that almost all models
achieve the best performance in terms of accuracy and recall
in identifying railway train-induced vibrations, and the
worst performance in identifying construction activity-
induced vibrations. Te confusion in the identifcation re-
sults is mainly between vibration induced by construction
activities and road trafc, and the number of confusion of

railway-induced vibration is relatively few. Tere could be
two reasons for this phenomenon. First, the diferences
between the characteristics of train-induced vibration and
those of other vibrations in the time-frequency spectrum are
signifcant, so it is simpler to distinguish them in the
identifcation.Whereas the diferences between the vibration
characteristics of construction activities and those of road

Table 2: Te range and optimization results of the hyperparameters for each model.

Range and optimization results
LSTM block CNN block FCNN block

Number of
units

Number of
blocks

Number of
kernels Kernel size Pooling size Number of

units

Range 32, 64,
128 2, 3 64, 128,

256 3, 5 2, 4 256, 512,
1024

Optimal results

CNN− LSTM 128 3 128 5 2 1024
LSTM−CNN 64 2 256 5 2 1024
CNN+LSTM 64 3 256 3 2 512

CNN — 2 256 3 2 1024
LSTM 128 — — — 1024
FCNN — — — — 1024

Table 3: Te accuracy of each model for testing samples.

Te maximum value of accuracy
CNN− LSTM LSTM−CNN CNN+LSTM CNN LSTM FCNN
97.3% 97.1% 97.7% 97.2% 96.0% 93.3%

Table 1: Number of samples in each category.

Category
of vibration source

Number of samples
Training set Testing set Total

Railway 2650 882 3532
Road trafc 2505 846 3351
Construction 303 91 394
Others 626 209 835
Total 6084 2028 8112

Table 4: Identifcation performance of models for each category.

Model Indicator
Model performance for each category
Railway Road trafc Construction

CNN− LSTM
Precision 99.7% 97.5% 74.7%
Recall 99.9% 96.5% 81.0%

F1 score 0.998 0.970 0.777

LSTM−CNN
Precision 98.3% 99.1% 70.3%
Recall 99.8% 96.4% 87.7%

F1 score 0.990 0.977 0.780

CNN+LSTM
Precision 99.8% 99.2% 67.0%
Recall 99.8% 95.9% 92.4%

F1 score 0.998 0.975 0.777

CNN
Precision 98.9% 98.3% 72.5%
Recall 99.8% 96.7% 82.5%

F1 score 0.993 0.975 0.772

LSTM
Precision 99.7% 98.0% 46.2%
Recall 99.7% 94.3% 76.4%

F1 score 0.997 0.961 0.575

FCNN
Precision 98.8% 95.3% 22.0%
Recall 99.9% 91.2% 39.2%

F1 score 0.993 0.932 0.282
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trafc are relatively small in the time-frequency spectrum, as
they overlap in the frequency band below 50Hz, which could
lead to confusion between them by models. In addition,
since the number of signals collected in this study for
construction activity-induced vibration is less than the other
two, this could also lead to the worst identifcation per-
formance for construction activity-induced vibration.

5. Case Study

In this section, a real-world case of external vibration
monitoring is presented, and the proposed method is used
for the identifcation of the sources of vibration recorded
from the monitoring so that the vibration from each source
can be evaluated, and the results of the evaluation and the
performance of the model are demonstrated and discussed.

5.1. Background. In this case, external vibration monitoring
and evaluation were requested for a laboratory. Te labo-
ratory is equipped with several precision instruments, and
excessive external vibrations could afect the normal oper-
ation of these precision instruments, such as the imaging
quality of microscopes. Terefore, vibration from various
external sources in the laboratory needs to be evaluated
separately to provide evidence for subsequent targeted vi-
bration mitigation design. In this case, the generic vibration
criteria (VC) [68] standard was used to evaluate the level of
vibration impact on the laboratory, and this standard
proposes seven levels of vibration magnitude to quantify the
impact of vibration on the instrumentations.

Te location of the building is shown in Figure 10, in
which the laboratory is labeled as Building A, and the ex-
ternal vibration sources outside the building include road
trafc and underground railway. Specifcally, the horizontal
distance between the metro tunnel and the laboratory is
31m, while the closest distance between the road and the
laboratory is only 13m.

To evaluate the impact of external vibrations on the
laboratory accurately, external vibration monitoring was
carried out in the laboratory. A vibration monitoring point
was installed on the ground foor of the laboratory and
monitoring was conducted continuously for up to 24 hours;
the location of the measurement point is shown in Figure 10.
After obtaining the results of the vibration monitoring, the
method proposed in this paper was utilized to determine the
source of the vibration segments and then an accurate as-
sessment of the external vibration from each source was
carried out.

5.2. External Vibration Source Identifcation. Following the
signal preprocessing method described in Section 2.2, the
monitored vibration signals in this study were segmented
and analyzed using CWT, and the vibration source of each
signal segment was identifed by the optimal CNN+LSTM
model trained and tested in the above section.

Te performance of the proposed model in this case for
vibration source identifcation is shown in Table 5 and
Figure 11; it can be found that the F1 scores of the model for

the identifcation of vibrations induced by railway and road
trafc are higher than 0.95, which is similar to the perfor-
mance achieved by the model on the testdataset in the
previous section. Tis further verifes the feasibility of the
proposed method in this paper.

To further investigate the reasons for model mis-
identifcation on some samples, several typical samples
misidentifed by the model are shown in Figure 12. It can be
seen that there could be two possible causes of model
misidentifcation. Te frst is because some of the vibrations
exhibit features on the time-frequency spectrum that are
very similar to those of vibration signals from other cate-
gories, causing the model to misidentify them, and such
a case is shown in Figure 12(a). To reduce this type of
misidentifcation, it might be efective to add some vibration
signals that are easily confused as training samples.

In addition, some signal segments can record vibration
signals from multiple sources at the same time, and when
experts label these samples, they usually use the category of
the vibration with the largest magnitude as the label.
However, when processing such signals, the model might
only focus on the characteristics of vibration signals with
smaller magnitudes, thus causing misidentifcation, and
such cases are shown in Figures 12(b)–12(d). To reduce such
misidentifcations, it might be efective to add some quan-
titative metrics describing the vibration magnitude as input
to the model, which needs to be further investigated.

5.3. Evaluation of External Vibration. Te 5%, 25%, 50%,
75%, and 95% percentiles of the identifed external vibration
from the two sources were calculated using statistical
analysis, the comparison of the results with the limit values
proposed by standard VC for each level is shown in Fig-
ure 13. In this case, the vibration impact generated by both
railway and road trafc on the sensitive instruments in the
laboratory is severe, the vibration impact caused by the
railway is mainly concentrated in the frequency band near
50Hz, while the vibration impact caused by road trafc is
mainly concentrated in the frequency band near 20Hz.

Although the median value of vibration caused by
railway and road trafc is less than the limit value of VC-D
level, the 5th percentile of train-induced vibration is greater
than the limit value of VC-A level, while the 25th percentile
is greater than the limit value of VC-C level. Te 5th per-
centile of vibration caused by road trafc is greater than the
limit value of the VC-B level, and the 25th percentile is
greater than the limit value of the VC-D level. Tis indicates
that the impact of vibration induced by railway on the
laboratory could potentially be more signifcant than that
induced by road trafc. Tese detailed vibration evaluation
results could be benefcial for the subsequent vibration
mitigation design of the laboratory.

In addition, it also can be seen that the evaluation results
obtained from the identifed vibration of the two sources
using statistical analysis are very close to the results obtained
from the actual vibration of the two sources, which further
demonstrates the feasibility of the method proposed in
this paper.
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Figure 9: Confusion matrix of testing results of each model: (a) CNN− LSTM, (b) LSTM−CNN, (c) CNN+LSTM, (d) CNN, (e) LSTM,
and (f) FCNN.
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20 m9 m31 m

13 m
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Figure 10: Location of the building being monitored for vibration and the surrounding vibration sources.

Table 5: Model performance for each category in the case study.

Indicator
Model performance for each category

Railway Road trafc
Precision 99.3% 94.5%
Recall 98.0% 99.6%
F1 score 0.987 0.969
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Figure 12: Continued.
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6. Conclusion

To improve the efciency of external vibration monitoring
and evaluation in sensitive buildings, this paper proposes
a deep learning-based external vibration source identifca-
tion method, which can automatically identify vibration
sources in the monitoring process of external vibration, thus
facilitating accurate probabilistic analysis of external

vibration impact from various sources at sensitive buildings
and subsequent targeted design of vibration mitigation
measures.

Specifcally, hybrid deep learning models with multiple
structures of CNN and LSTM and each submodel were built
separately. Tese models are trained and tested using ex-
tensive external vibration data measured in Beijing, which
are transformed into time-frequency spectra using CWT.
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Figure 12: Typical samples incorrectly identifed by the model.
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Figure 13: Evaluation of vibration caused by (a) railway and (b) road trafc on sensitive buildings using statistical analysis.
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After testing the performance of various models, the hybrid
model of CNN+LSTM was proved to be the optimal model
for external vibration source identifcation, with an accuracy
of over 97%. In addition, the submodel CNN also exhibits
strong performance in the classifcation of CWT spectra of
signals, and its accuracy is only slightly lower than that of the
optimal hybrid model. However, those vibration signal
segments that record multiple sources are potentially mis-
identifed by the deep learning model, which is the difculty
of this work and needs to be investigated further.

Finally, this paper presents a real-world case study in
which a laboratory with sensitive instruments was moni-
tored for external vibration. Te sources of the monitored
vibration signal segments were identifed using the model of
CNN+LSTM proposed in this paper, and the impact of the
vibration from each source on sensitive buildings was
evaluated using statistical analysis, which further validates
the necessity and feasibility of the proposed method in
engineering application.
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