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Te displacement of concrete dams efectively refects their structural integrity and operational status.Terefore, establishing amodel
for predicting the displacement of concrete dams and studying the evolution mechanism of dam displacement is essential for
monitoring the structural safety of dams. Current data-drivenmodels utilize artifcial data that cannot refect the actual status of dams
for network training. Tey also have difculty extracting the temporal patterns from long-term dependencies and obtaining the
interactions between the targets and variables. To address such problems, we propose a novel model for predicting the displacement
of dams based on the temporal convolutional network (TCN) with the attention mechanism and multioutput regression branches,
named MLA-TCN (where MLA is multioutput model with attention mechanism). Te attention mechanism implements in-
formation screening and weight distribution based on the importance of the input variables. Te TCN extracts long-term temporal
information using the dilated causal convolutional network and residual connection, and the multioutput regression branch achieves
simultaneous multitarget prediction by establishing multiple regression tasks. Finally, the applicability of the proposed model is
demonstrated using data on a concrete gravity dam within 14 years, and its accuracy is validated by comparing it with seven state-of-
the-art benchmarks.Te results show that theMLA-TCNmodel, with a mean absolute error (MAE) of 0.05mm, a root-mean-square
error (RMSE) of 0.07mm, and a coefcient of determination (R2) of 0.99, has a comparably high predictive capability and out-
performs the benchmarks, providing an accurate and efective method to estimate the displacement of dams.

1. Introduction

Dam health monitoring is important for ensuring the safety of
dams. Te monitoring process involves collecting and ana-
lyzing data to detect any structural issues or safety concerns.
Dam monitoring models are widely developed for inspecting
dam health and can predict the operational status of dams by
establishing a structural response under the combined infu-
ence of external factors, such as reservoir pressure, water
temperature, and air temperature, and internal factors, such as
dam material properties, e.g., creep, and alkali-aggregate re-
actions. As an important indicator of dam health monitoring,
the displacement of dams can efectively refect the operational
status and structural integrity of the dam [1, 2]. Terefore, it is
essential to establish a model for predicting dam displacement

and study the evolution of displacement to monitor and
maintain the structural safety of dams.

1.1. Overview of Research Background. Modern dam moni-
toring models can be classifed into machine-learning and
deep-learning models. Machine-learning models [3–9] use
machine-learning algorithms to carry out nonlinear regression
analysis between dam response and infuencing factors,
thereby establishing a mapping between the two. For instance,
Su et al. [10] introduced a prediction method for dam
structural responses based on the support vector machine
(SVM) model, demonstrating enhanced accuracy over con-
ventional SVM models. Dai et al. [11] suggested an optimized
statistical model utilizing random forest regression for
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concrete dam deformation monitoring, showing superior
prediction capabilities for dam displacements compared to
traditional statistical models. Salazar et al. [12] used boosted
regression trees for identifying and assessing dam deformation
and leakage, with their evaluation results surpassing traditional
statistical analysis methods. Kao et al. [13] explored the
monitoring of long-term static deformation data of the Fei-
Tsui arch dam using artifcial neural network (ANN)-based
techniques. Ren et al. [14] achieved precise dam displacement
prediction by integrating grey relational analysis, random
forest, and the backpropagation (BP) neural network. Tese
models solve multicollinearity problems in traditional statis-
tical methods and signifcantly improve accuracy and com-
putational speed compared to traditional methods [15].
However, models based on machine learning cannot extract
the temporal patterns from dependencies and do not apply to
dam displacement prediction with time efects.

In the recent fve years, new displacement predictionmodels
leveraging deep-learning algorithms, such as long short-term
memory network (LSTM) and gated recurrent units (GRU),
have been devised due to their exceptional performance across
diverse felds. Tese models possess memory and display ad-
vantages when learning the nonlinear characteristics of time
series data, making them more suitable for predicting time-
dependent factors like dam displacement. For instance, Liu et al.
[16] proposed a coupled model for predicting the long-term
displacement of arch dams based on an LSTM network, which
incorporates principal component analysis and the moving
average method. Qu et al. [17] designed a single-point and
multipoint model for estimating concrete dam displacement,
using the rough set theory and an LSTM network. Shu et al. [18]
introduced a model using the variational autoencoder and the
temporal attention-based LSTM network for predicting long-
term arch dam displacement. Bui et al. [19], aiming to optimize
the LSTM for highly accurate dam displacement prediction,
designed a model based on the LSTM, combined with the
coronavirus optimization algorithm, for estimating the dis-
placement of a hydropower dam. Wen et al. [20] proposed
a prediction model based on a fusion of multiresolution analysis
(MR) and a stacked GRU neural network. Yang et al. [21]
proposed a technique that combines complementary ensemble
empirical mode decomposition (CEEMD) and GRU for pre-
dicting the displacement of reservoir landslides.

While deep-learning-based dam displacement pre-
diction models have signifcantly improved and demon-
strated superior performance over machine-learning-based
models, practical application challenges persist.

(1) Tese approaches use empirical formulas to con-
struct input samples, which do not refect the actual
operational status of the dam and make it harder to
train the model

(2) Recurrent architectures (such as LSTM and GRU)
struggle to learn long-term patterns from a longer
history sequence length so that they cannot perform
well in dam displacement prediction

(3) Current data-driven methods are inconclusive about
the progression and relationship between dam

displacement and environmental variables, which is
critical to exploring the dam displacement evolution
and physical mechanisms

1.2. Innovations and Contributions. As previously men-
tioned, deep-learning-based dam displacement prediction
models have shortcomings that necessitate further research.
Dam displacement evolution is a dynamic process, with re-
searchers aiming to establish a relationship between dam
displacement and infuencing factors to allow for automatic
and real-time identifcation of the dam’s operational status.
However, models built on artifcial data, created via empirical
formulas, may not accurately represent the dam’s actual
condition. To develop a reliable mapping, it is essential to use
raw monitoring data as the direct input for modeling both
displacement and environmental factors.

Te progression of dam displacement is a slow process,
typically taking several months or more, necessitating
a model capable of capturing its long-term sequential
evolution nature, with strong temporal processing capa-
bilities. While recurrent architectures can learn long-term
temporal dependencies, they are hampered by limited short-
term memory, making it challenging to learn long-term
patterns from longer historical sequences. Researchers
typically apply LSTM models with a time series length of
approximately 10 in applications [19, 22]. However, re-
current architectures may be inadequate for dam dis-
placement prediction due to their short-term memory
limitations. Alternatively, the temporal convolutional net-
work (TCN) can extract useful features from longer se-
quence lengths, making it a potentially efective solution for
extracting temporal information in dam displacement
prediction. Bai et al. [23] introduced TCN in 2018, com-
bining the parallel feature processing capacity of convolu-
tional neural networks with the sequence modeling
capabilities of recurrent neural networks. It outperforms
baseline recurrent architectures in various sequence mod-
eling tasks. Although TCN has been successfully imple-
mented in numerous felds such as engineering life
prediction [24], industrial load analysis [25], and meteo-
rological prediction [26], its application in dam health
monitoring remains limited. As far as we know, this study is
the frst to apply TCN to dam displacement prediction.

Dam displacement evolution is afected by multiple var-
iables, such as time, water level, and temperature, each with
varying levels of impact. Understanding the relationships
between input variables and output results helps to establish
temporal evolution laws and interactions between variables.
Tus, it is essential for the displacement prediction model to
refect the relationship between displacement and these var-
iables. A standalone TCN model might not sufce for dam
displacement prediction. To address this, the attention
mechanism [27] can be used to focus the model on critical
information, improving its interpretability. Earlier works have
explored the use of attention mechanisms in neural networks,
such as Cao et al.’s method of combining TCN and residual
self-attention for predicting the remaining useful life of rolling
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bearings. However, their work only used the self-attention
mechanism to enhance the model’s performance without
analyzing the relationship between features and the target
variable. Yang et al. [28] also designed a model to estimate
concrete dam displacement using the attention mechanism
and the LSTM network. Ren et al. [29] furthered this model by
incorporating both temporal and factor attention, suggesting
an interpretable model that combines the attention mecha-
nism and LSTM networks. Although previous studies have
paired attention mechanisms with LSTM networks to enhance
LSTM’s interpretability, they did not examine the process of
input variable changes. Tis study concentrates on efectively
merging the attention mechanism with TCN and examining
the efect of inverse input variables on dam displacement.

Tere are multiple sensors installed inside the dam; thus,
using a single-point displacement model is not suitable. It is
required to retrain the network when predicting the dis-
placement of multiple points, which not only increases the
calculation complexity but also disregards the correlation
between points [30]. Terefore, it is necessary to use mul-
tipoint displacement modeling to improve the generaliza-
tion of the model.

Accordingly, this study proposes a multioutput model
based on the temporal convolutional network and with the
attention mechanism for predicting the displacement of
concrete dams. Te model regards environmental variables
as the input and the displacement of a dam as the output. It
predicts the displacement of the dam by establishing the
relationship between the displacement and the environ-
mental variables. Te primary contributions of this work are
as follows:

(1) Te proposed model uses raw monitored data as
input to establish a real relationship between dam
displacement and environmental variables

(2) Te proposed model utilizes TCN to learn long-term
features from a longer history sequence length and
introduces the attention mechanism to help TCN
focus on important information and take multi-
output regression branches to predict multiple tar-
gets in parallel, refecting the dam displacement
evolution process as realistically as possible

(3) Te proposed model explores the process of how
input variables afect the displacement changes by
visualizing the attention weights

Te rest of this study is structured as follows. Section 2
introduces the theoretical foundation and algorithm back-
ground, and Section 3 describes the implementation details
of the proposed MLA-TCN method. Section 4 presents
a case study and the analysis of the results, and Section 5
demonstrates a comparative analysis of the developed
model. Finally, Section 6 provides conclusions and future
perspectives.

2. Fundamental Theory

Tis section explains the theoretical basis of the proposed
MLA-TCN model, including its three aspects: the attention

mechanism, the temporal convolutional network, and the
multioutput regression analysis.

2.1. Attention Mechanism. Te attention mechanism is
a particular architecture embedded in machine-learning
models to automatically learn the contribution of the input
to the output. It has a profound optimization efect on
conventional models. Te attention mechanism adopts an
encoder-decoder architecture, which traditionally transfers
the fnal hidden state from the encoder to the decoder. In
contrast, the attention mechanism delivers all the outputs
from the encoder to the decoder, preventing losing practical
information in the encoder-decoder periods of long-term
sequences. In addition, visualizing the attention mechanism
can enhance the interpretability of the model.

Tis work utilizes the global attentional model Luong
et al. proposed in 2015 for feature screening and weight
assignment [31]. Te approach takes an alignment model
receiving the outputs of all encoders as the input and exports
a score by calculating the dot product of the encoder input
and the hidden states of the decoder, all of which are passed
through a location-based function to obtain the terminal
weights of the output of each encoder. Te formulas are
defned as follows:

􏽥h(t) � 􏽘
i

α(t,i)y(i), (1)

α(t,i) �
exp e(t,i)􏼐 􏼑

􏽐i′ exp e t,t′( )􏼒 􏼓

, (2)

e(t,i) �

h
T
(t)y(i),

h
T
(t)Wy(i),

v
T tan h W h(t); y(i)􏽨 􏽩􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

At each time step (t), the model infers a variable-length
alignment weight vector, i.e., α(t,i), based on the current
target state, h(t), and all source states, 􏽥h(t).

2.2. Temporal Convolutional Network. Te TCN is a pow-
erful toolkit for sequence modeling. It introduces a one-
dimensional convolutional neural network and causal
convolution to produce an output of the same length as the
input, and there can be no leakage from the future into the
past. Meanwhile, it employs the dilated convolution network
and residual connection to achieve long-term temporal
feature extraction. Causal convolution predicts the current
output from past input data. If we take one-dimensional
time series X � (x0, x1, . . . xt, . . . , xT) ϵRn as the input,
equation (4) expresses the causal convolution operation,
F(·), for sequence element t. Te TCN also introduces di-
lation convolution in addition to causal convolution to
perform long history sequence assignments [32]. Equation
(5) expresses the dilated convolution of sequence element t
computing F(·) for a one-dimensional sequence input X �

(x0, x1, . . . xt, . . . , xT) ϵRn and flter F � (f1, f2, . . . , fK).
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Furthermore, the temporal convolutional network in-
troduces a generic residual block as an alternative to the
convolutional layer to increase the network depth for
expanding the receptive feld [33]. Within a residual block,
the TCN has two layers of dilated causal convolution, weight
normalization, activation layer, dropout layer, and one-
dimensional convolution. Equation (6) defnes the output
of the ith residual block, Z(i):

(F∗X) xt( ) � 􏽘
k

k�1
fk · xt− K+k, (4)

F∗d X( 􏼁 xt( ) � 􏽘
k

k�1
fk · xt− (K− k)∙d, (5)

Z
(i)

� δ F Z
(i− 1)

􏼐 􏼑 + Z
(i− 1)

􏼐 􏼑, (6)

where d represents the dilation factor, K is the number of
flters, t − d·(K − k) indicates the past direction, and δ(·)

denotes the activation operation.
Figure 1 illustrates the architectural elements of a tem-

poral convolutional network, and Figure 1(a) depicts the
causal convolutional architecture. For input X � (x0, x1,

. . . xt, . . . , xT), output y at time t only depends on the inputs
from the current time (xt) and from the partial past time but
not on any future inputs. Figure 1(b) describes the dilated
causal convolution with a flter size (K) of 2 and dilation
factors (d) of 1, 2, and 4, which can perform a longer history
sequence than the causal convolution in Figure 1(a).
Figure 1(c) details the generic residual block, where one
branch performs a transformation operation on the input,
while the other conducts a simple 1× 1 convolution trans-
formation to maintain the consistency of the number of
feature maps in parallel with the existing branch.

2.3. Multioutput Regression Analysis. Most existing methods
for predicting the displacement of dams adopt single-output
regression analysis, which can only address regression prob-
lems involving a single target variable. Dam displacement
involves multiple measurement points and directions, which
are correlated, so they cannot be regarded as entirely in-
dependent. Terefore, single-output regression analysis cannot
satisfy the requirements of dam displacement prediction.

Tus, this work utilizes multioutput regression analysis
in constructing the MLA-TCN model to address these
problems, which can deal with regression problems in-
volving multiple variables and improve the generalization of
the model. Te major diference between multioutput re-
gression and single-output regression is the number of la-
bels. Te process of multioutput regression is illustrated in
Figure 2. For features X� (X0, X1, . . ., XN) ∈Rn and labels
Y� (Y1, Y2, . . ., YM), multioutput regression analysis es-
tablishes an equation H: X⟶Y between X and Y based on
the sample setD� {(X, Yi)|1< i≤m}.Te loss function of the
multioutput regression analysis is the superposition of each
target loss function, and the total loss is the sum of the
diferences between the estimated and actual values of each
target.

3. Methodology

Tis study devises a novel method based on the attention
mechanism and the temporal convolutional network to
predict the displacement of dams by establishing a re-
lationship between dam displacement and environmental
variables. Figure 3 presents the overall framework of the
proposedMLA-TCNmodel.Te proposed model comprises
three parts: (1) data acquisition and preprocessing, (2)
network construction and training, and (3)model prediction
and evaluation.

Te frst step is to acquire monitored data using mon-
itoring equipment such as sensors installed in the dam body,
preprocess the obtained data with various methods, and
fnally make them into a dataset.

Next, the network is constructed using an encoder-decoder
architecture, incorporating an attention mechanism in the
encoder to weigh the signifcance of the data, a temporal
convolutional network in the encoder for long-term temporal
information processing, and multioutput regression analysis in
the decoder for predicting multiple targets at once. Te model
is trained using the Huber loss function, and hyperparameters
are tuned using the Hyperband algorithm.

Finally, we utilize the pretrained MLA-TCN model to
predict dam displacement, and the performance of the
model is estimated by absolute mean error (MAE), root-
mean-square error (RSME), and the coefcient of de-
termination (R2). Te following detail the MLA-TCN
method.

3.1. Data Acquisition and Preprocessing. Te MLA-TCN
method utilizes experimental monitored data for modeling.
Generally, monitored data are obtained from equipment,
such as sensors, preset inside the dam, which are subject to
the abnormality, absence, and inconsistent data format
caused by environmental disturbance and equipment cor-
ruption. Feeding such raw data directly into the neural
network without processing misleads model predictions, so
these raw data require operations such as outlier processing,
missing value processing, and normalization processing.Te
trained samples are not representative, so it is essential to set
untrained samples to test the model for analysis, and the
whole dataset should be divided into a training set and
a testing set.

3.2. Model Development. Tis section intends to establish
a structural response between dam displacement and en-
vironmental variables so as to predict dam displacement
using environmental variables. Te proposed model is
constructed with an encoder-decoder architecture.

In the encoder, the attention mechanism layer is frst
introduced to process the input, as shown in Figure 4(a). For
environmental variables X � [x1, x2, . . . , xN], the input
features are X � [x1,T, x2,T, . . . , xN,T] when the length of the
temporal sequence is T. Te attention mechanism layer
calculates the weight of each input variable for each time step
(t) employing procedure ① and then computes the weight
ratio of each input variable using procedure ②. Finally, it
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obtains the weight assignments employing procedure ③,
merged with the source features to compose the output of
the attention mechanism layer. Equations (1)–(3) express
steps ①, ②, and ③, respectively. Te process does not
compress the input variables, and each input has a corre-
sponding weight to guarantee data integrity, as shown in
Figure 4(b).

Afterward, a deep temporal convolutional network is
used to extract information from the weight-assigned fea-
tures. It consists of multiple generic temporal convolutional
network residual blocks in series, as shown in Figure 5(a).
Each block has a dilated causal convolution layer, a weight

normalization layer, an activation layer, a dropout layer, and
a one-dimensional convolution layer in series. Te dilated
causal convolution layer performs long-term temporal
feature extraction. Te weight normalization layer limits the
weight range to increase training speed, while the activation
layer maps the output nonlinearly using rectifed linear
units. Finally, the dropout layer randomly abandons some
convolution work during training to prevent overftting.

Furthermore, the TCN residual block employs an ad-
ditional 1× 1 convolution to ensure that the element ad-
dition receives a tensor of the same shape so as to account for
the diference in the widths of the input and output.

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer
…x0 x1 xt–4 xt–3 xt–2 xt–1 xTxt xt+1

…y0 y1 yt–4 yt–3 yt–2 yt–1 yTyt yt+1

(a)

…

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer

d = 4

d = 2

d = 1

x0 x1 xt–4 xt–3 xt–2 xt–1 xTxt xt+1

…y0 y1 yt–4 yt–3 yt–2 yt–1 yTyt yt+1

(b)

Dropout

ReLU

WeightNorm
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Dropout
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̂̂̂Z(i) = (Z1
(i),…,ZT

(i))

̂̂̂Z(i–1) = (Z1
(i–1),…,ZT

(i–1))

(c)

Figure 1:Te architectural elements in a temporal convolutional network: (a) a causal convolution with a flter size of 2; (b) a dilated causal
convolution with dilation factors of 1, 2, and 4 and a flter size of 2; (c) the TCN residual block. A 1× 1 convolution is added when the
residual input and output have diferent dimensions.
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Figure 2: Te multioutput regression process diagram.
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Figure 3: Te overall framework of the designed MLA-TCN method.
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Figure 5(b) illustrates the feature extraction process of a long
sequence based on the deep TCN. Te outputs of the at-
tention mechanism layer X � [X1,T, X2,T, . . . , XN,T] are fed
into a deep temporal convolutional network and computed
over several TCN residual blocks, where D convolutional
kernels are designed for convolutional operations to obtain
D sequences, i.e., Y∗1 , Y∗2 , . . . , Y∗d , . . . , Y∗D ; the dth tensor can
be expressed by Y∗d � (Yd,0, Yd,1, . . . , Yd,T), and fnally, Y∗d �

(Yd,0, Yd,1, . . . , Yd,T) is obtained as the output of the temporal
convolution layer.

In the decoder, the model introduces several branches
to analyze multiple targets simultaneously. Each branch
has the same architecture: a dropout layer, a batch nor-
malization layer, and a fully connected layer. Te batch
normalization layer homogenizes the output of the con-
volutional layer to prevent gradient explosion and gradient
disappearance. Te fully connected layer integrates the
local information of the convolutional layer through the
weight matrix for regression analysis so as to fnally obtain
multiple target outputs, Y.

3.3. Model Training and Optimizing. Te proposed model
needs to be trained before making any predictions, and this is
performed by minimizing the loss function. Te MLA-TCN
model has multiple branches with the same architecture and
shared weights, so a corresponding loss function is designed
to learn the relative features. As each branch has the same
construction and task, the model’s loss function is the same as
that of a single branch. As expressed in equation (7), we adopt
the Huber loss function [34] as the loss function for each
branch. Te Huber loss function is a multistage function that
is used to calculate the loss for data with periodic variations
and signifcant discrepancies. It uses mean square error when
the diference between predicted and measured values is
within the range of a hyperparameter ε and mean absolute
error when it is outside the range of ε. Tis approach
overcomes the limitations of single-stage loss functions that
are afected by target value. Te proposed model’s loss
function is designed to train the multibranched MLA-TCN
model, and it is expressed in equation (8) as the superimposed
loss between multiple predicted and actual values.

Concatenate

Input Attention Layer Attention Output TCN Feature Extraction
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Figure 4: Te architecture of the attention mechanism: (a) the attention mechanism based on factor screening, where ① indicates the
calculation of the factor weights,② denotes the softmax of the factor weights, and③ represents the result of the factor screening; (b) the
visualization of the attention weights.
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Figure 5: Te TCN-based feature extraction network: (a) the deep temporal convolutional network; (b) the feature extraction processes
based on the TCN.
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Lε � minω,σ 􏽘

n

i�1
σ + Hϵ

Xiω − yi

σ
􏼒 􏼓σ􏼒 􏼓 + α‖ω‖2

2
, (7)

where

Hϵ(z) �
z
2
, if |z|< ε,

2ε|z| − ε2, otherwise,

⎧⎨

⎩ (8)

L � 􏽘
m

k�1
Lε, (9)

where yi represents the ith real value, Xi denotes the ith
input, n is the number of samples, ω and σ indicate the
network parameters, Hε stands for the Huber formula, ε is
the hyperparameter, z represents the diference between the
predicted andmeasured values of the network, and k denotes
the number of multioutput regression targets.

For optimization objectives, the MLA-TCN model should
be trained to fnd optimal parameters ω and σ. TeMLA-TCN
model is a feedforward neural network that utilizes the
backpropagation algorithm to calculate its parameters. Te
network parameters are optimized using the small batch
randomgradient descent algorithm and theAdam algorithm to
minimize the objective function, i.e., L(ω, σ).

3.4. Model Prediction and Evaluation. Tis study introduces
three statistical metrics, namely, the mean absolute error, the
root-mean-square error, and the coefcient of determination,
to evaluate the performance of the MLA-TCN model. Tese
evaluation metrics assess the model performance from mul-
tiple perspectives. Te MAE measures the magnitude of the
predicted value with respect to the measured value, while the
RSME is sensitive to large-scale errors and accounts for the
dispersion of the model; an RSME close to zero indicates
accurate prediction.Te coefcient of determination is utilized
to measure the ftting of a sample regression line to data and
ranges from 0 to 1.0, with a value close to 1.0 implying a perfect
ft. Te following formulas defne the evaluation metrics:

MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽶
􏽴

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2 ,

(10)

where n represents the number of samples, yi denotes the ith
real value, 􏽢yi is the ith predicted value, and y indicates the
average value.

4. Case Study

4.1. Overview of Hydropower Dam. Tis study uses an op-
erational hydroelectric project as a case study. Te hydro-
power station lies at the junction of the city of Baiyin and

Yuzhong County, the province of Gansu, on the mainstream
of the Yellow River, 65 km away from the main river of the
city of Lanzhou in China, as illustrated in Figure 6(a).
Figure 6(b) displays an overview of the upstream side of the
project.

Te dam’s safety monitoring system was installed during
construction, and an automated system was established in
1996. Various parameters are monitored, such as elevation
control, environment volume, deformation, seepage, stress-
strain response, and temperature. Water levels and tem-
perature are measured both manually and automatically,
while horizontal displacement is inspected using automatic
and manual equipment.

Figure 7 shows the arrangement of the pendulum line
automatic monitoring system. Tree inverted pendulum
lines were installed on the left dam abutment, the right
auxiliary dam section, and the right dam abutment, num-
bered 1#, 6#, and 2#, respectively. Similarly, two inverted
pendulum lines were placed on the operation gallery,
numbered 4# and 3#, respectively, to check the terminal
stability of the wire alignment. Te 5# inverted pendulum
line was positioned adjacent to the grouting gallery and the
V-perpendicular line. A V-perpendicular line was equipped
in the hydraulic turbine section 2#.

4.2. Data Acquisition and Preprocessing. Te goal of this
study is to predict the horizontal displacement of a dam
using environmental variables, specifcally the upstream
water level, downstream water level, temperature, and time.
Data from a 14-year period, from 2007 to 2020, are used for
the analysis, and the upstream water level, downstream
water level, and air temperature are considered as input
features, and the specifc measuring points, DC1, DC5,
DC6(2), and ZC2, are used as prediction targets. Measuring
points DC1 and DC5 represent the displacement of the dam
foundation, and DC6(2) indicates the displacement of the
dam crest. ZC2 measures the displacement of this position
relative to the dam crest, which also indicates the dis-
placement of the dam crest, as shown in Figure 7. Te lo-
cations of the four specifc measurement points are marked
with ellipses in Figure 7.

Figure 8 illustrates the changes in the monitored data,
where Figure 8(a) shows the variations in the upstreamwater
level, downstream water level, and temperature, and
Figure 8(b) displays the changes in the horizontal dis-
placement of measuring point DC1, with X representing the
relative displacement in the upstream-downstream direction
and Y representing the relative displacement in the left and
right bank directions. Table 1 summarizes the maximum,
minimum, mean, and standard deviation values of the
monitored data. Te data from measuring points DC6 and
ZC2 are relatively scattered, while the data from measuring
points DC1 and DC5 are slightly discrepant.

Figure 8 shows defciencies, outliers, and noise in the
monitored data, so the raw data require preprocessing before
constructing the dataset. We frst replace the outliers with
average values and then adopt the Lagrange interpolation
method to fulfll the defciency. Finally, we normalize the
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Study Site

(a) (b)

Figure 6: Te hydropower dam: (a) the study site of the dam; (b) an overview of the dam.
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Figure 7: Te arrangement of the pendulum line automatic monitoring system.
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processed data to a range of 0–1.0 using the following
equation:

xn �
x − xmin

xmax − xmin
, (11)

where xn represents the homogenized data, x denotes the
input variable, xmax is the maximum value, and xmin in-
dicates the minimum value.

After processing the data, we divide the data into the
training set and the testing set with a ratio of 8 : 2. Sub-
sequently, the datasets are fed into the model for training
and optimization. To better assess the model’s generalization
ability and its performance on unknown data, we adopted
the approach of using the frst 80% of the data as the training
set and the remaining 20% as the test set.

4.3. Environmental Settings and Parameter Confguration of
Experiments. Tis section mainly presents the software and
hardware environments and the corresponding parameter
confguration of the MLA-TCN model. Te proposed and
comparison models were coded in Python 3.7 with the
Spyder editor. All the models were executed utilizing
a personal computer (PC) equipped with Intel® Core™
i7-8700K CPU operating at 3.70GHz and NVIDIA GeForce
RTX 2080 Ti, 11G.

To establish the MLA-TCN model for predicting the
displacements of the dam, we require to reasonably de-
termine four parameters, namely, the number of convolu-
tional kernels in the TCN layer (KN), the size of
convolutional kernels in the TCN layer (KS), the learning
rate (LR), and the sequence length (SL), which signifcantly
afect the model prediction performance. Te hyperband
algorithm [35], along with fvefold cross-validation, is used
to fnd the best hyperparameter combinations (KN, KS, LR,
and SL) for optimal model performance. Hyperband is an
early stopping method based on successive halving, which
aims to search for the best hyperparameters as quickly as
possible. However, due to limited resources, not all
hyperparameter combinations can be trained to conver-
gence, so the successive halving algorithm is used to ter-
minate some combinations early. Tis algorithm has two
parameters, η and s, which control the proportion and
number of hyperparameter combinations, respectively. Te
hyperband algorithm performs the successive halving al-
gorithm multiple times with diferent s values and allocates
the same resources to each one to fnd the best hyper-
parameter combination.

Based on the above algorithm, a four-dimensional search
space (KN, KS, LR, and SL) is established. Te hyper-
parameter ranges are set as follows: KN� [1, 16, 32, 64, 128,
256], KS ∈ [1, 9], LR� [0.01, 0.001, 0.0001], and SL� [10, 15,
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Figure 8: Te time-series monitored data: (a) the upstream water level, the downstream water level, and air temperature; (b) the horizontal
displacement at measuring point DC1.

Table 1: Te statistical analysis of the monitored data.

Variable Unit Maximum Minimum Mean Standard deviation
DC1-X mm 3.74 − 0.84 1.67 0.96
DC1-Y mm − 0.68 − 5.04 − 2.71 1.06
DC5-X mm − 0.1 − 2.54 − 1.05 0.5
DC5-Y mm 0.06 − 2.19 − 1.29 0.62
DC6-X mm 6.04 − 9.22 − 1.77 2.56
DC6-Y mm 6.08 − 5.19 0.51 2.28
ZC2-X mm 17.7 − 10.45 3.58 4.13
ZC2-Y mm 14.3 − 13.92 1.8 5.07
Upstream water level m 1480.32 1475.52 1478.09 0.80
Downstream water level m 1456.61 1450.09 1453.14 1.32
Air temperature °C 30.64 − 29.10 7.99 11.33
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100, 200, 400]. In the Hyperband algorithm, the number of
iterative epochs is set at 30, and the batch size is set at 32.Te
hyperparameter combination of the MLA-TCN model de-
termined by the Hyperband algorithm is as follows: KN� 64,
KS� 3, LR� 0.01, and SL� 100.

4.4. Model Training and Validating. Te optimized
MLA-TCN model is employed for training, and the
number of iteration epochs is set at 200 with the early
stopping algorithm, which can avoid overftting by ter-
minating the training in advance. For each epoch, the loss
and error of the training and testing sets are recorded.
Figure 9(a) depicts the trend of the Huber loss of the
MLA-TCN model during both the training and testing
phases. Te graph shows a gradual decrease in the Huber
loss as the iteration increases and eventually stabilizes after
30 epochs. Te optimal performance of the testing set is
obtained after 176 epochs, which is when the iteration
terminates, indicating a well-trained model without any
overftting or underftting. Figures 9(b) and 9(c) demon-
strate the variation in the MAE and RSME of the proposed
MLA-TCN model during training and testing. Te MAE
and RSME follow the same trend as the Huber loss and
gradually stabilize. At the iteration termination, the model
MAE and RSME are, respectively, 0.04 and 0.03mm for the
training and testing sets in the x-direction of DC1, which
are signifcantly lower than the standard deviation of 0.96
and 1.06mm from Table 1, indicating a well-trained
MLA-TCN model. Additionally, the diference between
the MAE and RSME is 0.001 and 0.01mm for the training
and testing sets in the x-direction of DC1, respectively,
suggesting a relatively low variance of errors in the training
and testing sets.

4.5. Model Performance. Te MLA-TCN model’s prediction
performance is evaluated using 4749measured samples from
January 1, 2008, to December 31, 2020. Figure 10 displays the
model’s prediction performance at the DC1 station, with 156
sample points selected from the frst day of each month
during the period. Te black line represents the measured
displacement value, and the red line indicates the predicted
value. Te MLA-TCN model accurately predicts the irreg-
ular, periodic variation in the dam’s displacement, and the
predicted values closely match the actual values. Table 2
presents the evaluation metrics at four measurement points.
Te proposedmodel’s MAE and RSME values are lower than
the standard deviation, indicating high accuracy. Te co-
efcients of determination are close to 1.0, suggesting that
the model fts the experimental data well. Te diference
between the MAE and RSME is lower than 0.3mm, in-
dicating a narrow variance of prediction error and high
prediction accuracy. Te above results demonstrate that the
MLA-TCN model performs excellently in predicting dam
displacement.

To simplify, the proposed MLA-TCN model is a multi-
output regression analysis model that predicts the dis-
placement of a dam in both x- and y-directions. However, to
analyze the model’s generalization, four output branches are

utilized to predict the displacement at four measurement
points. Table 3 shows that the model’s performance remains
excellent, indicating high generalization. It should be noted
that this study only considers two output branches for re-
gression analysis, except for exceptional explanation.

4.6. Analysis of Temporal Sequence Length. Tis section aims
to explore the impact of sequence length on the prediction
performance of the MLA-TCN model, a critical aspect in
temporal regression analysis for dam displacement pre-
diction. Dam displacement evolution encompasses various
temporal scales, including short-term fuctuations and
long-term trends, necessitating diferent temporal in-
tervals for consideration. To investigate this, the model is
trained and tested with 15 sequence lengths ranging from 5
to 700 (5, 10, 15, 20, 50, 100, 150, 200, 250, 300, 350, 400,
500, 600, 700), covering both short and long-term pro-
cesses. Te goal of this exploration is to determine the
optimal sequence length for accurate dam displacement
prediction.

Figure 11 shows the model’s performance for each
measurement point, with MAE and R2 values presented for
diferent sequence lengths. Te assessment metrics for each
measurement point are normalized to a range of 0 to 1.0 and
plotted in a scatterplot form, with the horizontal coordinate
indicating the temporal sequence length.Te results indicate
that the MLA-TCN model performs better with longer se-
quence lengths, but there is no strict physical regulation
governing this relationship. Based on this trend, the pro-
posed model selects an optimal temporal sequence length of
100 for its short running time and strong information ex-
traction capability.

Figure 11(a) plots the MAE values for the MLA-TCN
model with diferent sequence lengths. It is evident that the
longer the sequence length taken, the lower the prediction
error. A power function with formula y � 1.67x− 0.648 also
fts the variation of the mean absolute error with the se-
quence length.

Figure 11(b) presents the variation of the coefcient of
determination of the MLA-TCN model with the sequence
length: the longer the sequence length, the higher the re-
gression performance. Furthermore, a power function with
the formula y � 1.67x− 0.0525 can model the variation of R2

with the sequence length.
Te abovementioned fndings prove that the previous

argument that the prediction performance of the model is
relevant to the sequence length is proper. Generally, the
performance of the proposed model improves with the
length of the temporal sequence. When the sequence length
of the MLA-TCN model is taken as 100, its performance is
optimal, and further raising the time series length does not
enhance its prediction accuracy much. Instead, it may in-
crease the complexity of the model operation, thereby
raising the computation costs. Tis demonstrates that al-
though the proposed model is able to learn a longer-term
pattern in the temporal dependencies, the model obtains
features from a sequence length of 100 at most; hence, it still
has the potential to improve.
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Figure 9: Te errors in the training and testing sets versus the training epoch: (a) the Huber loss; (b) the mean absolute error; (c) the root-
mean-square error.
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4.7. Visualization of Weights. In the proposed model, the
attention mechanism layer assigns weights according to the
importance of the input variables.Tis section visualizes and
analyzes the weight assignment results, presented in the
form of three-dimensional waterfall graphs in Figures 12 and
13, to further understand the relationship between the
displacement of the dam and each variable.

Figure 12 displays the initial weight allocation of the
MLA-TCN model at four measurement points (DC1, DC5,
DC6, and ZC2). Te x-coordinate represents the sequence
length, set at 100, the y-coordinate signifes the four input
variables, and the z-coordinate corresponds to the weight. It
can be observed that the initial weight values vary across
factors, suggesting that the MLA-TCN model can selectively
extract valuable information based on the importance of
a factor’s impact on displacement. Te weights of each
infuencing variable difer across diverse sequence lengths at

each measurement point, suggesting that the impact of
environmental variables on dam displacement is a dynamic
process, rapidly changing with space.

Figure 13 visualizes the infuence of four environmental
variables (temperature, upstream water level, downstream
water level, and time) on dam displacement over time,
represented by their weights. It indicates that displacement
is primarily infuenced by upstream water level, temper-
ature, and time, in alignment with traditional statistical
models [36, 37]. Tis underscores that the MLA-TCN
model is capable of deriving a reasonable relationship
between displacement and infuencing variables through
the visualization of the attention mechanism. Moreover,
the fgure reveals the evolution of displacement allocation
over time, indicating that the infuence of environmental
variables on displacement tends to stabilize over time. For
instance, measurement points DC1, DC5, and DC6 are

Table 2: Te performance of the MLA-TCN model with two branches.

Observation point MAE (mm) RSME (mm) RSME–MAE (mm) R2

DC1-X 0.0547 0.0743 0.0196 0.9943
DC1-Y 0.0491 0.0635 0.0144 0.9960
DC5-X 0.0327 0.0486 0.0159 0.9908
DC5-Y 0.0217 0.0311 0.0094 0.9972
DC6-X 0.1979 0.2785 0.0806 0.9844
DC6-Y 0.1881 0.2648 0.0767 0.9872
ZC2-X 0.5578 0.8763 0.3185 0.9500
ZC2-Y 0.5528 0.8899 0.3371 0.9680
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Figure 10: Te performance of the MLA-TCN model: the (a) DC1-X and (b) DC1-Y displacement of the dam.

Table 3: Te performance of the MLA-TCN model with four branches.

Observation point MAE (mm) RSME (mm) RSME–MAE (mm) R2

DC1-X 0.0599 0.0869 0.0270 0.9916
DC1-Y 0.0471 0.0635 0.0164 0.9963
DC5-X 0.0342 0.0517 0.0175 0.9899
DC5-Y 0.0245 0.0343 0.0098 0.9966
DC6-X 0.1973 0.2849 0.0876 0.9832
DC6-Y 0.1786 0.2609 0.0823 0.9878
ZC2-X 0.4616 0.7708 0.3092 0.9648
ZC2-Y 0.4934 0.7774 0.2840 0.9753
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primarily afected by time in the later stages, as they are
situated near the dam’s base and foundation, and their
displacements are mostly infuenced by physical charac-
teristics such as material aging and structural damage.
Conversely, the ZC2 measurement point, located in the
middle of the dam crest, is chiefy afected by temperature
and upstream water level, as its displacement is pre-
dominantly infuenced by loads such as water and tem-
perature. Tis demonstrates that the MLA-TCN model can
gain a reasonable understanding of how environmental
variables infuence displacement over time, as made visible
by the attention mechanism.

In conclusion, through weight visualization, the proposed
model can not only predict dam displacement but also output
the reasonable relationship between dam displacement and
each infuencing factor, providing an auxiliary tool for un-
derstanding the evolution mechanism of dam displacement.

5. ComparingDevelopedMLA-TCNModel with
Other Machine-Learning Methods

Tis section compares the developed MLA-TCNmodel with
six state-of-the-art machine-learning regression algorithms,
namely, the support vector regression (SVR), random forest
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Figure 11: Te efect of the sequence length on the model performance: (a) the mean absolute error; (b) the coefcient of determination.

W
ei

gh
ts

0.5
0.4
0.3
0.2
0.1
0.0

DC6 Sequence Lenth

U

Tem

D

T

0.4
0.3
0.2
0.1
0.0

W
ei

gh
ts

U

Tem

D

T

ZC2 Sequence Lenth

W
ei

gh
ts

0.5
0.4
0.3
0.2
0.1
0.0

DC5 Sequence Lenth

U

Tem

D

T

W
ei

gh
ts

0.5
0.4
0.3
0.2
0.1
0.0

DC1 Sequence Lenth

T

D

U

Tem

Figure 12: Te initial visualization of the weights.

Structural Control and Health Monitoring 13



(RF), LSTM, GRU, long short-term memory network with
attention mechanism (ATTLSTM), and TCN, to further
demonstrate its superiority. Te SVR and RF are the widely
applied machine-learning models, while the LSTM, GRU,
ATTLSTM, and TCN are representative deep-learning
models; the TCN is a temporal convolutional deep-
learning model not deployed to the feld of dam displace-
ment prediction.Tese models cover diverse aspects and can
provide a comprehensive comparison.

5.1. Parameter Confguration. Before employing the six
models to predict the displacement of the dam, we should
determine the combination of the hyperparameters af-
fecting the prediction performance of each model so that
each model can obtain the optimal performance capa-
bility. Terefore, this section adopts the hyperband al-
gorithm to optimize the hyperparameters of the deep-
learning models, while setting the number of iteration
epochs at 30 and the batch size at 32. Te grid-search
algorithm is also introduced to optimize the hyper-
parameters of machine-learning models SVR and RF.
Table 4 presents the hyperparameter settings and the
optimum results of each model.

5.2. Comparing Performance of Models. Te prediction
performance of the proposed model and other comparative
models is assessed with 4749 samples measured from Jan-
uary 1, 2008, to December 31, 2020. Table 5 presents the
evaluation results, including MAE, RMSE, discrepancy, and

R2, at each measurement point. Te MAE and RSME of all
the models at each measurement point are signifcantly
lower than the standard deviation of the original data.Te R2

values of most models generally reach 0.6, although there are
exceptions with some RF and SVR models at certain
measurement points falling below this threshold. Tese
results suggest that these models can provide good predictive
results in the majority of instances.

For a more intuitive comparison, Figure 14 presents the
relative values of evaluation metrics for benchmark models
and the proposed MLA-TCN model across diferent mea-
surement points. Te vertical axis represents the ratio of the
evaluation metrics between each model and the MLA-TCN
model, while the horizontal axis signifes the values of the
evaluation metrics for each model. It is noteworthy that
MLA-TCN, TCN, ATTLSTM, LSTM, and GRU models are
deep-learning models, while RF and SVR models are
machine-learning models.

Figure 14 underscores that deep-learning models out-
perform machine-learning models, substantiating the claim
made in the previous introduction. Tis superior perfor-
mance of deep-learning models can be credited to their
ability to capture temporal sequence information, making
them more adept at predicting dam displacement than their
machine-learning counterparts. Additionally, the proposed
MLA-TCN model demonstrates a superior performance
relative to other deep-learning models.

As noted earlier, data at measurement points DC6 and
ZC2 exhibit relatively high variability. Among the deep-
learning models, the TCN model performs signifcantly
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better than other comparative models at measurement
points DC1 and DC5, while its performance at measurement
points DC6 and ZC2 is comparatively poorer. Tis di-
vergence can be attributed to the TCN model’s reliance on
dilated convolutional layers for capturing long-term de-
pendencies, as opposed to an explicit memory mechanism,
making it more sensitive to data quality. Te MLA-TCN
model, however, circumvents this limitation by enhancing
the model’s information extraction capacity through the
attention mechanism, thereby compensating for the TCN
model’s dependence on data quality. Hence, the MLA-TCN
model exhibits superior performance in predicting dam
displacement.

While the ATTLSTM model incorporates an attention
mechanism, Figure 14 demonstrates that the combination
of attention and LSTM is not as efective as the combi-
nation with TCN. As further substantiated by Table 5, the
ATTLSTM model displays unstable prediction errors,
characterized by a relatively large MAE and a smaller
RSME, leading to a signifcant discrepancy between the
two metrics. Tis suggests a high variance in prediction
errors and a lower prediction accuracy. Te root cause of
this lies in LSTM’s relatively lesser profciency at capturing
long-term dependencies compared to TCN. In contrast,
the combination of TCN and attention is adept at cap-
turing both local and global dependencies, thereby

Table 5: Te performance of the seven machine-learning models.

MLA-TCN TCN ATTLSTM LSTM GRU RF SVR

DC1-X

MAE 0.0599 0.1828 0.2660 0.2626 0.3716 0.4183 0.3925
RSME 0.0869 0.2618 0.3804 0.4103 0.5284 0.5357 0.5080

RSME–MAE 0.0270 0.0790 0.1144 0.1477 0.1567 0.1174 0.1156
R2 0.9916 0.8920 0.8428 0.7764 0.7086 0.5150 0.6109

DC1-Y

MAE 0.0471 0.1551 0.1600 0.1504 0.1913 0.3012 0.3027
RSME 0.0635 0.2248 0.2611 0.2153 0.2613 0.3874 0.3895

RSME–MAE 0.0164 0.0698 0.1011 0.0649 0.0700 0.0862 0.0867
R2 0.9963 0.9411 0.9321 0.9552 0.9102 0.8227 0.8417

DC5-X

MAE 0.0342 0.0810 0.0941 0.0859 0.1370 0.1705 0.1912
RSME 0.0517 0.1191 0.1659 0.1515 0.2366 0.2432 0.2581

RSME–MAE 0.0175 0.0381 0.0717 0.0656 0.0996 0.0727 0.0669
R2 0.9899 0.9438 0.8801 0.9033 0.7977 0.6761 0.6518

DC5-Y

MAE 0.0245 0.0601 0.0645 0.0636 0.0716 0.0760 0.1132
RSME 0.0343 0.0821 0.0916 0.0904 0.0983 0.0973 0.1380

RSME–MAE 0.0098 0.0220 0.0271 0.0268 0.0267 0.0213 0.0247
R2 0.9966 0.9788 0.9760 0.9742 0.9714 0.9715 0.9410

DC6-X

MAE 0.1973 0.3304 0.4604 0.4282 0.5170 0.8435 0.8685
RSME 0.2849 0.4732 0.7183 0.6156 0.7177 1.0047 1.0694

RSME–MAE 0.0876 0.1427 0.2579 0.1874 0.2007 0.1612 0.2009
R2 0.9832 0.9506 0.8748 0.9268 0.8859 0.7320 0.6850

DC6-Y

MAE 0.1786 0.5080 0.3133 0.3368 0.7540 0.4058 0.7067
RSME 0.2609 0.7664 0.4477 0.4596 1.4834 0.5361 0.9050

RSME–MAE 0.0823 0.2583 0.1343 0.1228 0.7294 0.1303 0.1984
R2 0.9878 0.8613 0.9605 0.9603 0.9136 0.9435 0.8320

ZC2-X

MAE 0.4616 1.2854 1.0552 1.0567 1.4052 1.6161 2.0032
RSME 0.7708 1.8661 1.6005 1.6893 2.0675 2.1858 2.5707

RSME–MAE 0.3092 0.5807 0.5453 0.6326 0.6623 0.5697 0.5675
R2 0.9648 0.7694 0.8360 0.7860 0.6244 0.5596 0.4471

ZC2-Y

MAE 0.4934 1.7897 0.9687 0.8011 1.1125 1.8785 2.3633
RSME 0.7774 2.8954 1.5186 1.2252 1.6342 2.4795 3.1281

RSME–MAE 0.2840 1.1057 0.5499 0.4241 0.5218 0.6010 0.7648
R2 0.9753 0.6153 0.9014 0.9390 0.8677 0.6564 0.3226

Table 4: Te hyperparameter confguration of the comparison models.

Models Hyperparameter settings Optimum results
SVR C ∈ [1, 10], E ∈ [0.001, 0.15] C� 9.5 and E� 0.0945
RF N ∈ [1, 200], D ∈ [1, 5] N� 154 and D� 4
LSTM U� [16, 32, 64, 128], LR � [0.01, 0.001, 0.0001], SL � [10, 15, 100, 200, 400] U� 64, LR� 0.001, and SL� 10
GRU U� [16, 32, 64, 128], LR � [0.01, 0.001, 0.0001], SL � [10, 15, 100, 200, 400] U� 32, LR� 0.01, and SL� 10
ATTLSTM U� [16, 32, 64, 128], LR � [0.01, 0.001, 0.0001], SL � [10, 15, 100, 200, 400] U� 64, LR� 0.001, and SL� 10

TCN F � [1, 16, 32, 64, 128, 256], S ∈ [1, 9], LR � [0.01, 0.001, 0.0001],
SL � [10, 15, 100, 200, 400]

F� 32, S� 3, LR� 0.01, and SL� 100
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Figure 14: Te performance of the established model compared with seven machine-learning models.
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facilitating a more comprehensive understanding of the
temporal dynamics intrinsic to the data. Consequently, the
MLA-TCN model proves to be more suitable for pre-
dicting dam displacement.

Figure 15 compares the prediction results of all themodels
with the measured data at measurement point DC1 to ex-
plicitly observe the prediction performance of the established
model and seven machine-learning models. Te y-axis
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Figure 15: Comparing the results predicted by the MLA-TCN model and the seven machine-learning models with the measured data.
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represents the displacement of the dam, and the x-axis in-
dicates the date; the red curve denotes the prediction of the
MLA-TCN model, and the results predicted by the other
models are plotted in diferent colors. Figure 15 illustrates that
all models exhibit relatively accurate predictions of the pe-
riods of dam displacement changes and the peak-to-peak
values within the training set. However, a noticeable dis-
tinction emerges in the testing set, where the MLA-TCN
model outperforms the others, highlighting its superior
prediction performance and robust generalization capability.

6. Conclusions

Tis work developed a multioutput model for predicting the
displacement of concrete dams based on the temporal
convolutional network with the attention mechanism. Te
model introduced the attention mechanism andmultioutput
regression branch based on the temporal convolutional
network and could efectively estimate the dam displace-
ment. Te applicability of the proposed model was con-
frmed by a total of 5104 samples concerning a concrete
gravity dam from January 1, 2007, to December 31, 2020.
Comparing the established model with seven state-of-the-art
machine-learning models confrmed its superior perfor-
mance. From the abovementioned fndings, the following
main conclusions could be drawn:

(1) Te MLA-TCN model ultimately adopted the
measured data as its input, which could extract the
practical features without sophisticated preprocess-
ing and predict the dam displacement realistically
and accurately.

(2) Multioutput branches provided the MLA-TCN
model with a high generalization capability to si-
multaneously predict the displacement of multiple
measurement points. In addition, expanding the
output branches did not afect the prediction per-
formance of the model.

(3) Te prediction performance of the model correlated
with the sequence length: the performance capability
of the proposed model generally increased with the
length of the temporal sequence. Te TCN enabled
the MLA-TCN model to learn long-term patterns
from long sequences, and the model performed
optimally at a sequence length of 100.

(4) Te attention mechanism not only contributed to the
powerful feature-screening capability of the
MLA-TCN model but also could increase the in-
terpretability of the model by visualizing the weights.
Te evolution of the dam displacement was complex,
and the efect of environmental variables on it
changed with time and space. Te MLA-TCN model
could provide the physical interpretation for the
evolution of the dam displacement by visualizing the
weights.

(5) Te MLA-TCN model outperformed seven state-of-
the-art machine-learning models: the ATTLSTM,
TCN, LSTM, GRU, RF, and SVR. Terefore, the

developed model could provide an efective method
to estimate the displacement of concrete dams.

Te developed model does have its limitations. First, the
quality of monitored data dramatically impacts the perfor-
mance of the MLA-TCN model, which makes it challenging
to diagnose anomalies and recover them autonomously,
thereby limiting the practical application of the model.
Moreover, the spatial generalization capability of the model,
such as the simultaneous spatial and temporal prediction of
the displacement of diferent dams, remains to be enhanced.
Terefore, we will continue our research in the future by
considering the above concerns.
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