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Modern bridges are monitored by an increasing network of sensors that produce massive data for bridge performance prediction.
Reasonably and dynamically predicting withmonitored data for the time-variant reliability of the existing bridges has become one of the
urgent problems in structural health monitoring (SHM).Tis study, taking the dynamic measure of structural stress over time as a time
series, proposes a data assimilation approach to predicting reliability based on extreme stress data with cyclicity. To this aim, the
objectives of this article are to present the following: (a) a Gaussianmixturemodel-based Bayesian cyclical dynamic linearmodel (GMM-
BCDLM) based on extreme stress data with cyclicity and (b) a dynamic reliability prediction method in the combination of GMM-
BCDLM and SHM data via frst-order second-moment (FOSM) method. An in-service bridge for providing real-time monitored stress
data is applied to illustrate the application and feasibility of the proposedmethod.Ten, the efectiveness and prediction precision of the
proposed models are proved to be superior compared to other prediction approaches to extreme stress data with cyclicity.

1. Introduction

In the past two decades, due to the continuous increase in
trafc loads and the uncertainties in both mechanical and
environmental conditions, health monitoring concepts for
bridge systems have become increasingly necessary for the
preventive maintenance of new and existing bridges [1–3].
Nowadays, although the monitoring technology has de-
veloped for a long time, the performance (e.g., stress, de-
fection, and reliability) prediction model, based on the data
collected by the structure health monitoring (SHM) systems,
is still an urgent demand in the current engineering practice,
which could assist in the intervention planning (e.g.,
maintenance, replacement, and rehabilitation) and the cost-
optimized aspects on bridges [4–9]. It is not easy to ef-
ciently utilize monitoring data (especially with cyclical
trends) for performance prediction. Accordingly, the time-
variant SHM data-based dynamic performance prediction,
especially involving the monitored cyclical data, is still
a grand challenge of the SHM feld.

In recent years, diverse forecasting methods have been
developed for predicting the dynamic and static structural
responses of bridges, which can generally be categorized into
model-based methods and data-driven methods [10]. Te
model-based models often necessitate a prior knowledge of
structural features and emphasize the relationship between
external excitation and structural responses [11]. For ex-
ample, Wu et al. [12] proposed an efective method for
dynamically predicting long-gauge strains in high-speed
railway bridges using fber Bragg grating (FBG) sensors,
based on the fnite element approach. Tis method was
validated through numerical simulations, experimental
comparisons, and feld tests, ofering engineers a valuable
tool for monitoring the health conditions of high-speed
railway bridges. However, the applicability of model-
based methods may be limited by the complexity of the
mechanical environment and uncertain material properties
[13]. Furthermore, due to the complex external environ-
mental factors during operation, the changes in structural
parameters may not directly refect potential structural

Hindawi
Structural Control and Health Monitoring
Volume 2023, Article ID 2259575, 16 pages
https://doi.org/10.1155/2023/2259575

https://orcid.org/0000-0002-3135-2629
https://orcid.org/0000-0002-6370-6559
mailto:lmsun@tongji.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2259575


damage, therefore, afecting the accuracy and reliability of its
real-time application [14].

Data-driven models have gained popularity in recent
years, and they establish numerical forecasting models based
on feld measurement data instead of FE models [15–17].
Based on data mining, a novel time series prediction model
with a combination of Kalman flter and autoregressive
integrated moving average-generalized autoregressive con-
ditional heteroskedasticity (ARIMA-GARCH) [18] im-
proves the prediction accuracy of bridge structure
deformation, which does not meet requirements for pre-
dicting nonstationary performance information with cycli-
cal trends. For early warning, a data-driven method based on
an improved variational mode decomposition and condi-
tional kernel density estimation to predict the monitoring
deformation data avoids exploring the complex internal
mechanism of structural behavior evolution [19]. Based on
monitoring noncyclical data, bridge structural reliability
indices are predicted via a data assimilation method and
Bayesian method [20], which is only applicable to non-
stationary data without cyclic properties. Besides, another
data assimilation method [21] is used to predict long-
periodic monitoring information for an in-service bridge.
However, the method relies heavily on fxed Fourier func-
tion equations, which result in fxed amplitudes for the
periods andmake it difcult to capture local variations in the
real-time monitoring data. As a result, the accuracy of
predictions for periodic monitoring data is compromised.
Defection data are also used to provide important in-
formation about the structural health condition of bridges
with the long short-term memory framework [22], but less
attention is paid to the periodicity of the data. In addition,
several machine learning methods [23–28] have also been
applied to the prediction and early warning based on bridge
monitoring data. For example, based on the pavement
temperature data of Sutong Bridge, a predictionmodel based
on the long short-term memory neural network was pro-
posed for the prediction and early warning of the bridge state
[23]. Te problem with these methods is that they need high
computational requirements for model training, and if the
data used to train a model are biased or unrepresentative, the
model will likely exhibit the same biases. Tese methods
mentioned above have a series of limitations and do not
provide practical methods for reliability prediction based on
cyclical data related to existing monitoring systems.
Terefore, fnding an algorithm for efectively and dy-
namically predicting bridge reliability based on the short-
periodic monitored information for the daily monitoring of
extreme stresses, which could assist in daily bridge main-
tenance and early warning, is the topic of this study.

Based on the above issues, the following problems need
to be solved: (1) the dynamic prediction models based on the
cyclical monitored extreme stress data need to be established
and (2) the probability recursive processes of dynamic
prediction models based on cyclical data need to be
achieved.

To predict the time-variant reliability indices of an
existing bridge based on the monitoring cyclical extreme
stress data, we propose a Gaussian mixture model-based

Bayesian cyclical dynamic linear model (GMM-BCDLM)
that incorporates initial information and corresponding
probability recursion processes. Te frst step involves
establishing a GMM-CDLM model based on initial in-
formation. Next, we use the predicted results to update and
correct the parameters of the GMM-CDLM model with the
Bayesian method during the dynamic prediction of extreme
stress. Finally, we use the predicted extreme stress and the
frst-order second-moment (FOSM) method to dynamically
predict the main beam’s reliability.Te fow plan is shown in
Figure 1, and this study is organized as follows: Section 2
proposes the monitored equation and the state equation of
CDLM based on extreme stress data with cyclicity. In Section
3, we provide the probabilistic recursion processes of the
established CDLM with the Bayesian method based on
cyclical data, and then, we provide the recursive processes of
the GMM-BCDLM. Section 4 introduces the FOSMmethod
and combines it with the GMM-BCDLM method. Section 5
discusses the application of this method to an existing bridge
for performance prediction and compares the efectiveness
of the proposed GMM-BCDLM with other methods for
monitoring extreme stress data with cyclicity from an actual
bridge. Finally, Section 6 concludes this contribution and
identifes issues for further examination.

2. The Cyclical Dynamic Linear Model

Te cyclical dynamic linear model (CDLM), including
a linear cyclical state equation, a monitored equation, and
the initial state information, meets the basic assumptions for
state-space models [29]. It primarily includes the following
assumptions:

(1) A linear approximation of the system is acceptable,
and the complete system state can be inferred from
the outputs

(2) Te process and measurement errors are Gaussian-
distributed white noises and are independent and
uncorrelated

(3) Te state variable θt􏼈 􏼉 is a Markov chain, namely,
π(θt |Dt− 1) � π(θt | θ0:t− 1, y1:t− 1) � π(θt | θt− 1),
where π(•) is a general probability density function
(PDF)

(4) Conditionally on θt􏼈 􏼉, the monitoring data ( yt􏼈 􏼉,
t � 1, 2, 3, · · · , T) are independent of each other and
yt depends on θt only

2.1. Cyclical-Factor Representation of Periodic Monitoring
Data. Te linear cyclical state equation shows changes in the
system with time and refects the level of the monitored
cyclical extreme stresses and random disturbances. Te
linear monitoring equation reveals the connection between
the monitored extreme stresses and the current state pa-
rameters of the system. Moreover, based on the historical
monitored extreme stress data, the initial state information
can be approximately obtained using the cubical smoothing
algorithm with a fve-point approximation [30]. In this
study, an in-service steel bridge is adopted as the research
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object, of which the monitored extreme stress is defned as
the monitored maximum stress during each hour.

If the monitored extreme stress data, regarded as a time
series, show similarity after p time intervals, such as the peak
or trough state at the same time, the series is said to be
a cyclical time series with a period of p. Tere is a general
time series set Dt with period p, which includes the data at
and before time t. Te state set, also taken as a time series
approximately obtained with a cubical smoothing algorithm
with fve-point approximation through resampling Dt, is
denoted by Dθt

, the ith cyclical diferenced data set of which
is Dθt,j

. In general, for the nonstationary general time series
set Dt with (n − 1)-order cyclical trends, the diference can
be carried out until the time series after the diference is
stationary, and the number (n − 1) of diference is the order
of cyclical trends. Besides, the augmented Dickey–Fuller
(ADF) test method [31] can also help ascertain the statio-
narity of the data before and after cyclical diferences. Let yt

be the monitored extreme stress at time t, the cyclical dif-
ferences about yt are

Δ0pyk � yk,

Δ1pyk � yk − yk− p,

Δ2pyk � Δ1pyk − Δ1pyk− p,

· · ·

Δi
pyk � Δi− 1

p yk − Δi− 1
p yk− p,

· · ·

Δn− 1
p yk � Δn− 2

p yk − Δn− 2
p yk− p,

(1)

where Δi
pyk, i � 1, 2, · · · , n − 1; k � 1, 2, · · · , t is the ith order

cyclical diference about yt.
Te cyclical factor θj, (j � 0, 1, · · · , p − 1) refers to taking

p-state values within a cycle. Te cyclical vector at time t is
the vector that is arranged by cyclical factors in proper order,
of which the frst element is the cyclical factor at time t,
namely,

θt � θj, θj+1, · · · , θp, θ0, θ1, · · · , θj− 1􏼐 􏼑
T

. (2)

In particular, for arbitrary natural numbers n and k� np,
there is

θk � θ0, θ1, · · · , θp− 1􏼐 􏼑
T

. (3)

Let

P �
O I

1 O
􏼢 􏼣 �

0 1 0 · · · 0

0 0 1 ⋱ 0

⋮ ⋮ ⋱ ⋱ 0

0 0 · · · 0 1

1 0 · · · 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where I is a (p − 1) order identity matrix and O means all
elements here are zero.

Obviously, θt � Pθt− 1. Also, at time t − 2, the cyclical-
factor vector is

θt− 2 � θj− 2, θj− 1, · · · , θp, · · · , θ0, θ1, θj− 3􏼐 􏼑
T

. (5)

Generally, the cyclical-factor vector at time t − h can be
written as

θt � P
hθt− h. (6)

2.2. CDLM Based on Cyclical Extreme Stress Data.
Considering the monitored error vt about yt conditional on
the state (or level), transition error from state to monitoring,
and the basic assumptions for state-space models [29], as-
suming that the monitoring noise and process noise are
mutually independent and follow a normal distribution, the
CDLM is defned as follows.

Monitored equation:

yt � Fθt + vt, vt ∼ N[0, V]. (7)

State equation:

Monitored historical
extreme stress data

Initial information

GMM-CDLM

New data from the
SHM system

Parameters
updating

FOSM

Dynamic reliability
prediction

Dynamic prediction of
extreme stress

Cubical smoothing algorithm with
five-point-approximation

Figure 1: Te fow plan of the dynamic reliability prediction method.
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θt � Pθt− 1 + ωt,ωt ∼ N[0, VW]. (8)

Initial information:

θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N mt− 1, VCt− 1􏼂 􏼃, (9)

where yt is the monitored data at time t;
θt � (θj, θj+1, · · · , θp, θ0, θ1, · · · , θj− 1)

T is the state cyclical
vector at time t; F � (1, 0, · · · , 0)T is a p-dimensional state
transfer vector; N(·) represents the Gaussian distribution; vt

and ωt,i � [ωj,ωj+1, · · · ,ωp,ω0,ω1, · · · ,ωj− 1]
T are, re-

spectively, the monitored white noise and the state cyclical
vector of white noises; V is the monitored error variance; P is
a p × p state transfer matrix, namely, equation (4); W is state
error variance estimated by smoothed data; Dt− 1 is the in-
formation set at time t − 1 and before time t − 1 [32]; and
Ct− 1 � diag(Ct,0, · · · , Ct,p− 1) is the p × p variance matrix of
θt− 1.

According to the information provided by the sensor
manufacturer, the monitoring error vt for this type of sensor
(pressure transducer) is within 3%. Since it is difcult to
precisely determine this error in practical work, for ease of
computation, we assume it to be white noise following
a normal distribution. Given that the monitoring noise is
relatively small, this assumption can approximate the sen-
sor’s monitoring noise to a certain extent, providing the
model with the uncertainty of monitoring. Furthermore,
compared to the monitoring error within 3%, the error
introduced by this assumption for monitoring noise can be
considered a completely negligible secondary error. And
state noise ωt,i is a stochastic variable introduced in the
dynamic model of the system. Its main purpose is to capture
uncertainty and random disturbances in our model. State
noise is typically assumed to be a zero-mean Gaussian
random process with a specifc covariance. Tis means that
over the long term, the infuence of these noises averages out
to zero, but in the short term, they can impact the system
state. Tis aligns with the stress characteristics observed in
the monitoring of in-service bridges. Under normal con-
ditions over longer periods (e.g., months or years), the
monitored stresses should be stable (with a noise mean of 0).
If there are signifcant fuctuations or trends, it indicates
changes in the structural or mechanical environment, re-
quiring further inspection or maintenance.

According to reference [32], Wt can be regarded as
a fxed proportion of Ct. Tis perspective naturally informs
our understanding of system variance. Specifcally, when an
error, ωt,i � [ωj,ωj+1, · · · ,ωp,ω0,ω1, · · · ,ωj− 1]

T, is in-
troduced between observations, this leads to an additive
increase in Wt from the initial uncertainty Ct. It is both
convenient and intuitive to adopt a constant rate of un-
certainty increase, or information decay, for all time points t.
Tus, for a given discount factor δ, choose

Wt � − Ct +
Ct

δ
, (10)

where δ is the discount factor, which is usually 0.48–0.98 by
the author’s experience [33].

2.3. Main Probability Parameters of CDLM. Te prior
probability parameters of CDLM include V, Wt− 1, mt− 1,
and Ct− 1. Te determination approaches are as follows.
Te relationship between the cyclical factors is only af-
fected by the covariance term of the initial prior and the
infuence of this initial prior decay with time [33]. Ac-
cordingly, for simplicity, suppose (θ0 |D0) ∼ N[m0, VC0],
wherem0 � m0I and C0 � C0I are the initial information, I
is a p-order (p is the period, in this paper p � 24) identity
matrix, m0 is the mean value of the initial data, and C0 is
the variance of the initial data, and the initial data are
obtained from historical data through the cubical
smoothing algorithm with a fve-point approximation
[30]. Additionally, V is the monitored error variance. V �

1/n − 1􏽐
n
i�1(yi − y)2 and n is the number of historical

extreme stress data. Te reason for using n − 1 instead of n
is that we are calculating the sample variance rather than
the population variance.

3. BayesianRecursiveProcesses ofGMM-CDLM

Based on the established CDLM shown in equations (7)–(9),
with the Bayesian method [34, 35], the probability recursion
processes and simplifed Bayesian recursion processes of
CDLM can be reached.

3.1. Probability Recursion Processes of CDLM. To calculate
the prior probability, we need to express the joint
probability density and then expand it based on condi-
tional probability:

p θt, θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � p θt θt− 1,Dt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑p θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑. (11)

According to the frst-order Markov property, we obtain

p θt, θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � p θt θt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑p θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑. (12)

By further integration to θt, we can obtain the marginal
probability distribution, i.e., the prior probability
distribution:

p θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽚 p θt θt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑p θt− 1 Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑dθt− 1. (13)

Ten, to derive the posterior probability distribution, we
can expand the joint probability density based on the
conditional probability equation (12). And according to the
conditional independence, we have

p θt, yt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � p yt θt

􏼌􏼌􏼌􏼌􏼐 􏼑p θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑. (14)

Te marginal probability density can be obtained by
integrating the joint probability density:

p yt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽚 p yt θt

􏼌􏼌􏼌􏼌􏼐 􏼑p θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑dθt. (15)

Furthermore, the posterior probability distribution is
given by
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p θt Dt

􏼌􏼌􏼌􏼌􏼐 􏼑 � p θt yt,Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑

�
p θt, yt Dt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑

p yt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑

�
p yt θt

􏼌􏼌􏼌􏼌􏼐 􏼑p θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑

􏽒 p yt θt

􏼌􏼌􏼌􏼌􏼐 􏼑p θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑dθt

.

(16)

3.2. Simplifed Recursion Processes of CDLM. Referring to
[34, 35], Bayesian probabilistic recursion of CDLM means
that dynamic recursive processes about CDLM are achieved
with the Bayesian method. Also, Bayesian probabilistic re-
cursion is good at inferring and predicting past and future
parameters [36].

Based on the aforementioned recursive relationship,
under the criterion of minimum mean-square error, the
optimal estimate of the value θt is the frst moment of the
posterior probability density function. Te estimate at time t
can be written as follows:

􏽢θt � E θt Dt

􏼌􏼌􏼌􏼌􏽮 􏽯

� 􏽚 θtp θt y1, y2, · · · , yn

􏼌􏼌􏼌􏼌􏼐 􏼑dθt.
(17)

Furthermore, it can be expressed further using equation
(8). By applying the method of point estimation [36] and
assuming the monitored variance is known, we can simplify
the recursive relationship as follows.

Assume time t� np, and the current moment is written
as M(0).

(1) Te prior PDF about the state at time t can be ob-
tained with

θt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N mt, Rt( 􏼁, (18)

where mt � (mt,0, · · · , mt,p− 1)
T, Rt � Ct− p,0 + Wt,

and Wt � − Ct− p,0 + Ct− p,0/δ are calculated and
updated with equation (10), and in this study,
δ � 0.8.

(2) Te one-step forward prediction PDF at time t can be
solved with

yt

􏼌􏼌􏼌􏼌Dt− 1􏼐 􏼑 ∼ N ft, Qt( 􏼁, (19)

where ft � Fmt � mt− p,0 is the predicted mean
value, F � (1, 0, · · · , 0)T is a p-dimensional state
transfer vector, and Qt � Rt + V is the predicted
variance. According to the defnition of the highest
posterior density (HPD) region [37], the predicted
interval of the monitored data mt with a 95% con-
fdential interval at time t is

ft − 1.96
���
Qt

􏽰
, ft + 1.96

���
Qt

􏽰
􏼂 􏼃. (20)

(3) With the Bayesian method, the posterior PDF about
the state at time t can be calculated with

θt Dt

􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N mt,Ct( 􏼁, (21)

where mt,0 � mt− p,0 + Atet, Ct,0 � At, At � Rt/
(Rt + 1), and et � yt − ft. et is the one-step forward
predicted error and yt is themonitored data at time t.

Similar equations can be obtained for M(1), M(2), . . .,
and so on, by simply replacing the subscript 0 with the
corresponding subscripts 1, 2, 3, and so forth. Te fowchart
is shown in Figure 2:

3.3. Gaussian Mixed Model-Based Bayesian Recursive
Processes. In practical engineering, the moving loads acting
on a bridge and the complexity of the stress environment
may cause stress responses to deviate from a normal dis-
tribution. In such cases, using only the previously proposed
BCDLM may lead to a decrease in prediction accuracy.
Considering that Gaussian mixture models (GMMs) can be
used to ft and approximate various types of data distri-
butions [38], we have decided to enhance the BCDLM by
incorporating a Gaussian mixture model. Tis improvement
allows for a more fexible representation of the input in-
formation and improves the modeling accuracy.

For the Gaussian mixed model Mt(α),
A � α1, α2, · · · , αk􏼈 􏼉, α ∈ A, assume the monitored variance
V is known. Mt(α) can be written as follows:

p θt( 􏼁 � 􏽘
k

i�1
pt(i)N θt αi, Vi

􏼌􏼌􏼌􏼌􏼐 􏼑, (22)

where pt(i) represents the weight of the subdistribution of
the mixture Gaussian distribution and N(·) represents the
Gaussian distribution.

According to equations (7)–(9) and reference [39], the
GMM-CDLM is defned as follows.

Monitored equation:

yt � Ft(α)θt + vt, vt ∼ N[0, V]. (23)

State equation:

θt � Gt(α)θt− 1 + ωt,ωt ∼ N O, Wt􏼂 􏼃. (24)

Initial information:

θt− 1 α,Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N mt− 1(α), V(α)Ct− 1(α)􏼂 􏼃, (25)

where yt is the monitored data at time t; θt � (θj, θj+1, · · · ,

θp, θ0, θ1, · · · , θj− 1)
T is the state cyclical vector at time t;

Ft(α) � (1, 0, · · · , 0)T is a p-dimensional state transfer vector
for the Gaussian mixed model Mt(α); N(·) represents the
Gaussian distribution; vt and ωt,i � [ωj,ωj+1, · · · ,ωp,ω0,

ω1, · · · ,ωj− 1]
T are, respectively, the monitored white noise

and the state cyclical vector of white noises; V is the
monitored error variance; Gt(α) is a p × p state transfer
matrix for the Gaussian mixed model Mt(α), namely,
equation (4); W is state error variance estimated by
smoothed data; Dt− 1 is the information set at time t − 1 and
before time t − 1 [32]; and Ct− 1(α) is the p × p variance
matrix of θt− 1 | α. Also, the variance of state errors can be
solved with equation (10).
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Te corresponding recursive processes are as follows:

(1) Assume for each ai ∈ A, (θt− 1 | αi, Dt− 1) ∼ N[mt− 1
(αi), Ct− 1(αi)], there are

θt− 1 αi, Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N at αi( 􏼁, Rt αi( 􏼁􏼂 􏼃,

yt αi, Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N ft αi( 􏼁, Qt αi( 􏼁􏼂 􏼃,

θt αi, Dt

􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ N mt αi( 􏼁, Ct αi( 􏼁􏼂 􏼃.

(26)

Among them, the mean and variance of each dis-
tribution can be recursed and corrected by the model
M(αi) using standard CDLM.

(2) p(αi | Dt− 1) � pt− 1(i) is the posterior probability of
selecting the model Mt(αi) at time t − 1 and also the
prior probability of selecting the model Mt(αi) at
time t.

pt αi( 􏼁 �
p yt αi, Dt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑pt− 1(i)

􏽐
k
i�1p yt αi, Dt− 1

􏼌􏼌􏼌􏼌􏼐 􏼑pt− 1(i)
, (27)

where the weight can be calculated with
p(yt | αi, Dt− 1)1/

���
2π

√
e− (yt− 1− ft− 1(αi))

2/2Qt− 1(αi). Te
initial probability p0(i) can be given by the EM
algorithm [39] and historical data, and the posterior
model probability can be continuously corrected.

(3) Te prediction PDF at time t can be solved with

yt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 ∼ 􏽘

k

i�1
pt(i)N ft αi( 􏼁, θt αi( 􏼁􏼂 􏼃. (28)

Te predicted mean value at time t is

ft ≜E yt Dt− 1
􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽘

k

i�1
pt(i)ft αi( 􏼁. (29)

3.4. ComponentsNumber Choosing of GaussianMixedModel.
For a GMM model, if we set the number of components too
low, the model may not have enough fexibility to capture the
structure of the data, leading to underftting. On the other hand,
if we set the number of Gaussian components too high, the
model may become too fexible and lead to overftting. To strike

a balance between underftting and overftting, this study
employs the Bayesian information criterion (BIC) [40] to de-
termine the optimal number of components in the GMM.

Te BIC is defned as follows:

BIC � − 2 · ln(L) + k ln(n), (30)

where L is the likelihood of the data given the model. Tis
represents how well the model fts the data. Higher likeli-
hoods correspond to better fts, so we want to maximize L. k
is the number of parameters in the model. Tis represents
the complexity of the model. Models with more parameters
are considered more complex. n is the number of data
points. ln(n) is the natural logarithm of the number of data
points, which scales the penalty for the number of param-
eters. Ten, by minimizing the BIC, the number of com-
ponents would be calculated.

3.5. Evaluation of Prediction Precision. In this study, the
mean square error (MSE) and normalized root mean square
deviation (NRMSD) are adopted to measure the prediction
precision. Te smaller the MSE and NRMSD, the better the
corresponding model. Te formulas are as follows:

MSE � 􏽘
N

t�1

ft − yt( 􏼁
2

N
, (31)

NRMSD �

����������������

􏽐
N
t�1 ft − yt( 􏼁

2/N􏼐 􏼑

􏽱

ymax − ymin( 􏼁
, (32)

where N is the total number of the predicted data; ft is the
predicted mean value at time t; yt is the monitored data at
time ts; and ymax and ymin are the maximum and minimum
monitored data, respectively.

4. Reliability Prediction Based on
GMM-BCDLM and FOSM

4.1. FOSM Method. From a safety perspective, within the
design service life of civil infrastructure such as bridge
structures, the bearing capacity must be greater than the
efects caused by various loads acting on it, which the fol-
lowing formula can express as follows:

The posteriori PDF of the state vector at time M (t)

The priori PDF about the state vector at time M (t+1)

One-step forward prediction PDF
Updated

The posteriori PDF of the state vector at time M (t+1)

Real-time monitoring data

Figure 2: Recursion fowchart of CDLM.
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R(X)> S(X), (33)

where R(X) represents the structure reactance; S(X) is the
load efect (including dead load efect and live load efect)
caused by both mechanics and environmental conditions on
the structure; and X is various random variables that afect
the structure reactance.

Suppose that there are internally independent and
mutually independent random variables R(X) and S(X),
and the average and standard deviation are μA, σR, μS, and
σS, respectively.

For the linear limit state functions, the general function
of structural performance is

Z(X) � R(X) − S(X). (34)

According to the central limit theorem, as samples in-
crease, the random variable Z(X) will approach a normal
probability distribution. With the FOSM approach [41], the
formula of the reliability index can be obtained as

β �
μR − μS������

σ2R − σ2S
􏽱 .

(35)

4.2. Dynamic Reliability Calculation Formula Based on FOSM
and GMM-BCDLM. For this study, the Ningbo Bund
bridge, a cable-stayed bridge with a total length of 337m
[42], is chosen as an example. It is important to note that the
stress levels at the consolidation part of the tower and beam
are signifcantly higher than in other sections of the
structure, requiring special attention. In practical engi-
neering applications, the calculation precision of the FOSM
method is deemed sufcient. Under both dead load and live
load conditions, the critical section of the main girder ex-
periences static bending failures in both positive and neg-
ative bending moments. Te sensors of the SHM system for
the Ningbo Bund bridge were installed after the bridge was
completed, and the monitoring results do not account for
the load efect caused by the dead load component.
Terefore, when ignoring the infuence of geometric pa-
rameters, the structural performance function for this steel
bridge can be expressed as

Z � R − cMSM, (36)

where R represents the steel yield strength which is 345MPa
for this bridge, and the standard deviation is 27.6MPa; SM is
the extreme stresses monitored or predicted with time; and
cM � 1.15 is a factor assigned to the data provided by sensors
[32]. With equations (19) and (34), the predicted dynamic
reliability index is

β �
μR − cMμM������������

σ2R + cMσM( 􏼁
2

􏽱 ,
(37)

where (μR, σR) is, respectively, the mean and standard de-
viation of R; (μM, σM) is, respectively, the mean and stan-
dard deviation of SM; and cM is a factor assigned to the data
provided by sensors. Especially, when equation (37) is used
to calculate the reliability indices based on monitored ex-
treme stress data, σM is the standard deviation of the
monitoring information.

5. Application to an Existing Bridge

5.1. Bridge Introduction. TeNingbo Bund Bridge, situated in
downtown Ningbo, China, is depicted in Figure 3. It is a single-
pylon four-plane special-type cable-stayed bridge with a main
span of 225m, primarily composed of a separated steel-box
girder [42]. Te bridge is predominantly made of steel, with an
allowable stress of 345MPa, and its support conditions are
specifed in reference [42]. Te health monitoring system is
connected to an of-site data acquisition station and utilizes
a fber-optic network provided by a telecommunications
company to transmit data to the Urban Bridge Monitoring and
Management Center in Ningbo City for storage and man-
agement. Subsequently, the management center conducts data
preprocessing to enhance data quality.

Te stress measurement points of this bridge are
arranged with two cross sections, respectively, the main
beam section at the consolidation part of the tower and beam
(measurement points STR1-16) and the root section at the
front tower column of the cable tower (measurement points
STR17-24). Te sensors used in this study are pressure
transducers, which convert pressure signals into electrical
signals for transmission and processing. Tese pressure
sensors are equipped with temperature compensation
functionality and are installed and calibrated by the supplier
during bridge construction. Tis allows for efective cali-
bration of the sensor readings and reduces the impact of
temperature changes on the measurement accuracy of the
sensors.

Te section at the consolidation part of the tower and
beam is critical in controlling the safety-based structural
performance and is monitored by the stress sensors for the
longitudinal stress information.Te pressure transmitters are
mounted on the crossbeam reinforcement rib inside the steel-
box girder using bolt fasteners. Tese pressure transmitters
are equipped with temperature compensation functionality
and have been precalibrated by the manufacturer during
installation. Tis calibration capability enables the sensors to
correct monitoring readings and minimize the impact of
temperature fuctuations on measurement accuracy. Te
layout of measurement points in this section is shown in
Figure 4. It can be seen that these sensors, STR1-16, are
located on the same steel beam and are connected in series. As
the failure of any monitoring section leads to the collapse of
the entire girder, the failure modes of the monitoring sections
of the bridge girder are considered a series structure.Tis steel
box girder represents an n-dimensional series system with n
correlated failure modes. Due to their almost identical
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mechanical environment, they have a strong correlation. For
the convenience of calculation, it is assumed that they are
fully correlated, and the failure probability pf of the main
beam system can be simplifed as follows:

P Z1,t ≤ 0, Z2,t ≤ 0, · · · , Zn,t ≤ 0􏼐 􏼑

� max P Z1,t ≤ 0􏼐 􏼑, P Z2,t ≤ 0􏼐 􏼑, · · · , P Zn,t ≤ 0􏼐 􏼑􏼐 􏼑

� maxpfi
, i � 1, 2, · · · , n,

(38)

where Zi,t (i� 1, 2, . . ., n) represents the performance
function calculated with equation (36) and P(Zi,t ≤ 0) � pfi

is the failure probability of sections at the location
i � 1, 2, · · · , n.

Among these monitoring points, point STR1 stands out
as themost critical point and is, therefore, chosen as the focal
point of our research. Te average stress levels monitored at
this point are notably higher compared to other points.
Based on equation (38), the failure probability at monitoring
point STR1 is found to be the highest, making its reliability
indices indicative of the overall reliability of the main beam.
Te hourly monitored extreme stress data collected by the
sensor STR1, shown in Figure 5, are utilized to establish the
CDLM for Bayesian dynamically predicting the extreme
hourly stress at point STR1.

Bridge monitoring information generally exhibits dy-
namic characteristics, randomness, and periodicity due to
the efects of periodic temperature load and peak trafc fow.
Based on the real-time monitoring information of the STR1
measurement point of this cable-stayed bridge, the CDLM is
established. In May 2020, the point STR1 was dynamically
monitored with a 1Hz sampling frequency of sampling rate,
and the extreme hourly stress was utilized to establish the
CDLM for Bayesian dynamically predicting the extreme
hourly stress at the dangerous point STR1 of the main beam
section. While a higher sampling frequency can provide
more accurate measurements of instantaneous stress
changes, in this study, we focus on the extreme stress values
per hour, which can be considered as long-term statistical
data relative to 1Hz sampling data. In this case, collecting
a sufcient number of data samples can compensate to some
extent for the lower sampling frequency’s limitations in
capturing instantaneous responses and provide an accurate
estimation of extreme stress values per hour.

5.2. Predictive Results of GMM-BCDLM. Our objective is to
develop a model that accurately captures the structural
response characteristics and exhibits a certain level of
generalization to ensure efciency in real-time applications.
By utilizing only 240 hours of data for model validation, we
can further demonstrate the efcient utilization of response
information by the model and the high computational ef-
fciency of the model itself.

To dynamically predict the reliability of the main beam
section based on monitored extreme stresses, we divided the
detailed procedures into three steps: (a) hourly monitored
extreme stresses of the former 240 h for sensor STR1 are
used to establish GMM-CDLM; (b) the mean value of ex-
treme hourly stresses from the 241st hour to 360th hour is
predicted with equations (22)–(29); and (c) with equations
(35)–(38) and the prediction results, the prediction re-
liability indices of the main beam are computed.

With (1), the frst-order cyclical diference about yt can
be obtained (see Figure 6), which is stationary after the
augmented Dickey–Fuller (ADF) test [31].

Trough the cubical smoothing algorithm, hourly ex-
treme stress data of the former 240 h are approximately
resampled into initial state data (see Figure 7). Ten, the
established cyclical dynamic linear model, with equations
(2)–(9) and (24)–(26), can be obtained as follows.

Te monitored equation is similar to (18), where Ft(α) �

(1, 0, · · · , 0)T is a 24-dimensional state transfer vector.
Te state equation is similar to (24), where Gt(α) is

a 24 × 24 state transfer matrix obtained with equation (4),
Wt � Ct− p+1,0(δ

− 1 − 1), and according to the experience of
the author, δ � 0.8.

Te initial state information can be obtained using
a cubical smoothing algorithm with fve-point approxima-
tion [30] applied to the previous 240 h extreme stress data,
and initial parameters are then determined with equations
(22) and (25) and Section 2.3. Finally, the density estimation
p0(i) is obtained via the expectation-maximization algo-
rithm [39] and initial state data.

Ten, with equations (7)–(29) and updating, the pre-
dicted hourly extreme stress mean value about the hourly
monitoring extreme stresses is computed and shown in
Figure 8, which indicates that the predicted results ft the
changing rules of monitored extreme stress data well and
remain within the 95% confdence interval.

Figure 3: A view of Ningbo Bund bridge.
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When establishing a predictive model based on normal
historical data, the expected prediction will also refect the
structural behavior trends of a bridge’s normal operation. By
using prediction intervals, the range of potential trends can be

further determined. If the monitoring data deviate from this
expected trend, particularly beyond a certain confdence interval
(typically 95% or 99.7%), it indicates the possibility of sensor or
even structural anomalies, necessitating further inspection.

STR1~STR16
STR17~STR24

Figure 4: Monitored sections for Ningbo Bund bridge.

Figure 5: Te sensor layout at the critical section.
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Figure 6: First-order cyclical diference of monitored extreme stress data.
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5.3. Analysis of Prediction Results. In Figure 9, we show
diferent prediction results of four existing common ap-
proaches for a fair comparison, i.e., GMM-BCDLM,
Bayesian Fourier dynamic linear model (BFDLM) [32],
seasonal autoregressive and moving average model
(SARMA) [43], and long short-term memory (LSTM) [22]
to forecast extreme stress data with cyclicity. It indicated the
superiority and advantages of the proposed method for
monitored data with cyclicity.

To further demonstrate the efectiveness of the proposed
model in this paper, two additional sensors, STR2 and
STR10, were selected as research objects. Te GMM-CDLM
model was established to model and predict their behavior
and compared with other commonly used methods. Te
predicted results are shown in Figures 10 and 11.

With equations (31)–(32), the computed MSE and
NRMSD results for GMM-BCDLM, BFDLM, SARMA, and
LSTM are shown in Tables 1 and 2, respectively. Among
these, the proposed GMM-BCDLM model yields the
smallest MSE and NRMSD, thereby indicating superior
predictive performance. Tis further underscores the en-
hanced accuracy of our proposed model in predicting cy-
clical bridge structural monitoring information.

It can be observed that in Figure 10, during the period
from 280 hours to 300 hours, two measured data points lie
far away from the predicted curve. We have included these
points in Figure 12 and added a 95% confdence prediction
interval. It is important to understand that a 95% confdence
prediction interval means that there is a 95% probability of
the actual values falling within this interval. Terefore, it is

M
on

ito
re

d 
str

es
s (

M
Pa

)

0 50 100 150 200
Time (h)

150

145

140

135

130

Monitored extreme stress data
Initial state data

Figure 7: Monitored extreme stresses and initial state data of STR1.
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still consistent with our expected outcome, considering that
only a few data points out of 120 deviate from the predicted
interval.

Te choice of a 95% confdence interval is primarily for
analytical convenience. In practical engineering applica-
tions, higher confdence levels are often employed to de-
termine warning thresholds. A commonly used choice is

a 99.7% confdence interval, corresponding to the 3-sigma
criterion. By adjusting the confdence level, it is possible to
determine reasonable warning thresholds based on engi-
neering considerations.

Here are the prediction interval results with a 99.7%
confdence level (Figure 13). It can be observed that as the
confdence level increases, the possibility of false alarms is
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Figure 9: Comparison between BFDLM, SARMA, LSTM, and GMM-BCDLM.
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Table 1: MSEs of the diferent models.

GMM-BCDLM BFDLM SARMA LSTM
Sensor STR1 1.993 5.0441 2.6809 2.0748
Sensor STR2 8.8690 13.7649 16.7401 10.6454
Sensor STR10 4.0601 6.4653 6.0648 4.8587

Table 2: NRMSDs of the diferent models.

GMM-BCDLM BFDLM SARMA LSTM
Sensor STR1 0.1304 0.4658 0.2476 0.1916
Sensor STR2 0.1849 0.2303 0.2540 0.2025
Sensor STR10 0.0964 0.1216 0.1178 0.1054
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Figure 12: Prediction results with 95% confdence prediction interval (sensor STR2).
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signifcantly reduced. We further focus our attention on the
raw data (Figure 14), where it can be seen that the stress
monitoring values exhibit a substantial increase in an area
where they should have been at a lower level within the cycle.
Tis could reasonably be attributed to the passing of an
overloaded vehicle or a sensor anomaly. However, consid-
ering the acceptable range relative to the warning threshold
(taking the 99.7% confdence prediction interval as an ex-
ample), it falls within an acceptable range. If the monitoring
values were to further increase and even exceed the warning

threshold, such as the range within the 99.7% confdence
interval, it could be classifed as an exceptional case re-
quiring further inspection or repair at the STR2 section of
the main beam.

5.4. Reliability Prediction. With equations (19) and (38), the
predicted and monitored reliability indices are, respectively,
calculated. Furthermore, according to (38), the reliability
indices of monitoring point STR1 can represent the
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reliability of the entire main beam. Comparing the predicted
reliability indices with the statistical monitoring values at
a 95% confdence level [37], the predicted results, as shown
in Figure 15, are in good agreement with the monitored
reliability indices. Te predicted reliability indices are all
above 5.2, indicating the safety of the main beam.

6. Conclusions

Tis article proposes a new prediction approach, a Gaussian
mixture model-based Bayesian cyclical dynamic linear
prediction method, to dynamically predict the performance
of steel bridges based on extreme stresses with cyclicity.
GMM-CDLM is frst built in the analysis processes, and the
corresponding probability recursion method is given in
detail with the Bayesian approach. Te monitoring data of
the steel bridge are provided to illustrate the efectiveness of
the proposed method. Te prediction results illustrate that
the proposed method can make dynamic predictions based
on monitored data with cyclicity and has excellent pre-
diction precision. Monitored data with cyclicity refer to the
type of data collected from the monitoring sensors that
exhibit periodic or cyclic patterns over time. In the context
of our study, it refers to the monitored data from the bridge’s
sensors, which demonstrate repetitive variations over
a specifc time interval, associated with recurring factors of
daily cycles. Usually, the simplest way to identify cyclicity is
by plotting the data and visually identifying any apparent
patterns, as seen in the monitored data of this study. If there
is a need to satisfy this condition mathematically, statistical
analysis (autocorrelation analysis to quantitatively assess the
presence of periodic patterns) or spectral analysis (like
Fourier analysis) methods are commonly employed.

However, some limitations should be noted. Although
our method has been validated through critical components
of actual bridges, the correlation between sensors has not

been studied quantitatively. Future work should include
follow-up studies to consider the dependency between
sensors.
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