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Bridge weigh-in-motion (BWIM) serves as a method to obtain the weight of passing vehicles from bridge responses. Most BWIM
systems proposed so far rely on the measurement of bridge global vibration data, usually strain, to determine the vehicle load.
However, because the bridge’s global response is sensitive to all vehicles on the bridge, the global vibration-based BWIM
techniques usually sufer from inaccuracy in the case where multiple vehicles are present on the bridge. In this paper, a data-driven
approach is proposed to extract the passing vehicle’s weight and driving speed from vertical acceleration at the bridge joint. As
a type of local vibration, the impulse acceleration responses at a bridge joint can be recorded only during a short period when
a vehicle is passing over the joint and are thus not sensitive to vehicles at other locations of the bridge. A feld test is conducted at
a bridge to prepare labeled training data for the use of a convolutional neural network. One accelerometer is installed on the bridge
joint to record impulse acceleration, while the vehicle’s weight and driving speed are obtained from a WIM station and a camera
near the bridge, respectively. A network that detects the vehicle’s passage as well as its passing lane is frst proposed, followed by
a 1-D convolutional neural network that uses the raw data of acceleration as the input to predict the vehicle’s gross weight and
driving speed. A comparison is made between the 1-D network and an updated 2-D network that uses the wavelet coefcients as
the input matrix. Te latter one shows better performance, indicating that it is important to choose the proper input data for the
network to be trained. A transfer learning technique is used to test the feasibility of the proposed method. Results show that the
proposed method can be extended with limited data to bridges other than the bridge where the network is trained.

1. Introduction

Bridges are susceptible to dynamic loads, including seismic
movement, wind, and trafc loading, during their service
lives. Among these dynamic loads, the trafc-induced load
can be predominant for bridges and their components, in
particular for fatigue, when vehicles with heavy weights pass
on bridges frequently. On the other hand, bridges are suf-
fering from deterioration caused by their aging processes. By
2019, 27.4% of bridges in China were built before 2000 [1],
while around 25% of bridges were built before the 1970s in
Japan [2]. Deterioration can lead to a decrease in the load
capacity of bridges. As a result, the vehicles with heavy

weights pose a nonnegligible risk on bridges and may give
rise to serious problems such as fatigue or even failure of the
bridge in some extreme cases [3]. In this regard, monitoring
the weight of the passing vehicles reveals the severity of the
loading environment at the bridge for maintenance purposes
and provides basic data for the design of future bridges.

Te most direct and accurate way to monitor the passing
vehicle’s weight is to use a static scale, which is both time-
and cost-consuming and requires stopping vehicles.
Terefore, research studies have proposed the idea of bridge
weigh-in-motion (BWIM) that takes the bridge itself as
a weighing scale. Te vehicle-induced bridge responses are
measured, typically by strain gauges, and the passing
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vehicle’s weight is calculated from the bridge responses as an
inverse dynamic problem. Since this idea was introduced by
Moses in the 1970s [4], research studies have proposed many
BWIM algorithms. Some of these algorithms are based on an
extension of Moses’ method [5–7], while others treat the
problem from a system identifcation point of view [8–13].
While easy-to-install BWIM techniques using accelerome-
ters have been proposed, they sufer from two major dis-
advantages. For example, in multiple vehicle cases, the
bridge acceleration measured by sensors is excited by all
vehicles present on the bridge. In such cases, the identif-
cation of each vehicle’s weight can become an ill-
conditioned problem, especially when the distances
among vehicles are relatively short compared with the bridge
span, thus reducing the identifcation accuracy of each ve-
hicle’s weight [14]. Moreover, it is reported that the lon-
gitudinal location, as well as the lateral location, of the
vehicle at each time instant is also an important factor af-
fecting the identifcation accuracy [15], while such location
information is, unfortunately, not necessarily available ac-
curately in real cases. A method that is not sensitive to the
presence of surrounding vehicles and the vehicle’s exact
location on the bridge is desired.

In this paper, a BWIMmethod that uses the acceleration
responses at bridge joints is proposed. When vehicles enter
or leave the bridge, impact responses are observed due to the
joints at the ends of the bridge. Tis impact acceleration
response is infuenced by many factors, including the ve-
hicle’s weight, instant driving speed, and the number of axles
while remaining insensitive to other vehicles at other lo-
cations on the bridge. A feld test is conducted at a two-lane
girder bridge, and a data-driven approach utilizing the
impact acceleration is proposed. Training data for passing
vehicles’ weight and instant driving speeds at joints were
recorded by using a nearby vehicle weighing scale and
a video camera installed near the bridge joints, respectively.
Accelerometers were used tomeasure bridge joint responses.
Convolutional neural networks (CNNs) are used for the
detection of passing vehicles at joints and then for vehicle
weight identifcation. Te efect on the performance of the
network from using diferent types of input dataset is in-
vestigated by comparing a 1-D and a 2-D network structure.
Te network is trained on one lane of the bridge and then
successfully extended to another lane by transfer learning,
showing the practicality of the proposed method. While
there are BWIM proposals based on deep learning on bridge
response data [16], this paper is unique in the sense that only
girder-end acceleration signals are employed. A 2-D net-
work structure with a wavelet transform is shown to improve
the performance, and transfer learning is shown to be
efective.

Tis paper is organized as follows: In Section 2, the
experimental setup for the feld test to obtain various types of
dataset is described and some representative data are pro-
vided. In Section 3, a neural network is proposed to detect
the passing vehicle from the measured bridge responses and
to divide the passing vehicle into several classifcations
according to their passing lanes. Based on the vehicle de-
tection from Section 3, Section 4 proposes a 1-D regression

CNN for the vehicle weight and driving speed for passing
vehicles, whose performance is compared with the 2-D CNN
described in Section 5. To increase the practicality of the
proposed method, a transfer learning technique is used to
extend the trainedmodel to another bridge joint in Section 6.
Finally, some conclusions are drawn in Section 7.

2. Field Test and Data Collection

2.1. Experimental Setup. Te feld test was conducted at an
expressway bridge in Gifu prefecture, Japan. Te bridge is
a two-span steel girder bridge with a length of 74m. A
camera was located near the exit of the bridge to capture the
video of each vehicle passing over the joint. To measure the
vehicle-induced responses, two wireless sensors equipped
with Epson MA351AU three-axis accelerometers were lo-
cated on the entrance joint of the bridge [17, 18], namely,
Accelerometer I and Accelerometer II, at each lane of the
bridge. Te sampling frequency was set to be 100Hz, and an
internal fnite impulse response (FIR) Kaiser flter was
employed. As the proposed data-driven approach necessi-
tates utilizing high-frequency acceleration responses at the
joint and given that the gentle roll-of flter does not
eliminate signal components above the cutof frequency,
a postprocess band-pass flter was then implemented to
acquire a 10–20Hz signal, which corresponds to the vehicle
excitation frequency [19].Te top view of this bridge and the
experimental setup are shown in Figure 1. In addition, the
weight of all vehicles entering the bridge was measured at
a weighing station embedded in the pavement several ki-
lometers away from the bridge.

Te experimental setup consists of three subsystems,
including (a) camera, (b) weighing scale, and (c) acceler-
ometers. Te functions of these subsystems are briefy in-
troduced herein. For each vehicle coming into the bridge, the
camera captured a video of this vehicle, from which the
driving speed, number of axles, appearance interval, and
plate number were extracted by implementing a computer-
vision technique described in [16]. Te vehicle appearances
were utilized to compare with the monitoring system at the
weighing scale to extract the measured weight of the cor-
responding vehicle [20]. Te accelerometers and the camera
are synchronized through postprocessing, making it possible
to extract the vehicle-induced responses for each specifc
vehicle. In this manner, the bridge acceleration responses,
the vehicle’s entering and leaving time, the vehicle’s weight,
driving speed, and other vehicle information are obtained
for each vehicle, forming a database for the training of the
deep learning network.

2.2. Brief Analysis of Collected Data. Typical impact accel-
eration responses induced by a four-axle passing vehicle
with a weight of 11.4 t and a driving speed of 75.5 km/h are
depicted in Figure 2. Te distances between the axles of this
vehicle are 1.76m, 4.24m, and 1.14m, respectively. It is
shown that the vertical impulse acceleration is a local re-
sponse within 1 second. Te impulse response of the four
axles can be roughly detected, as shown by the dashed lines
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in the fgure. Because this vertical impulse acceleration
mostly contains high-frequency components, sensors that
have good performance in high-frequency ranges are pre-
ferred. Intuitively, the peak values of the joint acceleration
should increase together with the weight of the passing
vehicles. However, a time history of around 400 seconds
recorded by using Accelerometer I, which is labeled with
camera detection and measured vehicle weights, shows that
a heavier vehicle weight does not necessarily result in a larger
peak acceleration value, as shown in Figure 3. Tis phe-
nomenon indicates that the vehicle’s weight may be related
to some other factors with a more complex relationship.

Te above phenomenon is further illustrated in Figure 4.
Te maximum acceleration is plotted against the vehicle’s
weight and driving speed for a total of 5900 vehicle passages.
Each vehicle is presented by a data point in the fgure. From
Figure 4(a), it is observed that, with an increase in the vehicle’s
weight, the maximum acceleration also becomes larger. Te
data are found to be very scattered, indicating that large
inaccuracy will occur if we use this linear trend to predict the
vehicle’s weight from the maximum joint acceleration. Tis is
because the impact acceleration response is also afected by
driving speed, number of axles, axle distance, the vehicle’s
passing route, and so on, presenting a highly nonlinear re-
lationship. In Figure 4(b), the maximum acceleration shows
no signifcant relationship with the vehicle’s driving speed.
Terefore, an algorithm that can well refect the nonlinear
relationship among the vehicle’s weight, driving speed, and
joint acceleration, and many other factors are needed.

3. VehicleDetectionBasedonJointAcceleration

Correct detection of vehicles entering and leaving the
bridge provides the foundation for vehicle weight esti-
mation. In this section, a CNN-based classifcation algo-
rithm is proposed to determine whether a vehicle is passing
across the bridge joint within a time window and to de-
termine from which lane the vehicle is entering the bridge.

In the proposed network, the input is a matrix with 2 rows
and 300 columns, representing the time histories measured
by using Accelerometers I and II within a 3-second time
window. Te output of this CNN structure is a vector
containing three values representing the three categories,
namely, “vehicle passing on Lane I,” “vehicle passing on
Lane II,” and “not detected.” Te structure of the CNN is
given in Figure 5, and the labels of the categories are listed
in Table 1.

For the purpose of the classifcation, a softmax function,
which is expressed in equation (1), is adopted for the last
fully connected layer [21]:

Sjc �
e

ajc

ce
ajc

, (1)

where ajc represents the cth output element of the last fully
connected layer of the jth sample and Sjc is the corresponding
normalized value. Trough this function, the output vector
contains values within the range between 0 and 1.

Te loss function is defned by cross entropy and is
expressed in equation (2) to quantify the error level between
the predicted categories and the real categories:

Loss � − 
j


c

yjc ln Sjc , (2)

where

yjc �
1, if the j

th sample belongs to category c,

0, if not.

⎧⎨

⎩ (3)

For the training data labeled as Category I and Category
II, the acceleration time histories at Accelerometers I and II
corresponding to vehicle passage over the joint were
extracted based on the recordings from the camera. Each
category has 9730 labeled time histories for training. For
Category III, acceleration was extracted from the time pe-
riods in which vehicles are not at the joint, including the case
of ambient vibration and the case where vehicles are on other
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(b)

Accelerometer I

Figure 1: Sketch and sensor layout of the test bridge: (a) top view and sensor layout of the test bridge; (b) lateral view of the test bridge.

Structural Control and Health Monitoring 3



19.5 t
21.1 t

22 t

23.9 t

11.4 t
15.6 t

-0.01

-0.005

0

0.005

0.01

A
cc

el
er

at
io

n 
(m

/s
2 )

50 100 150 200 250 300 3500
Time (s)

Acceleration
Camera detection

Figure 3: A time history of impact acceleration labeled with measured vehicle weight.
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Figure 4: Relation of maximum acceleration against the vehicle’s weight and speed: (a) with vehicle weight; (b) with vehicle driving speed.
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Figure 2: Impact vertical acceleration at the bridge joint induced by a passing vehicle.
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parts of the bridge. Te amount of data in Category III is
made equal to the number of the other two categories.

Te labeled data were used to train the network by
a stochastic gradient descent method. Before starting
training, 80% of the data were randomly selected as training
data, while the other 20% were used as validation and test
data. Te accuracy and the loss function are plotted in
Figure 6 for each iteration of the training process. Validation
data are used to test the accuracy of the network every 50
iterations. Te training process is terminated when the loss
function is larger than the previously smallest values three
times in series. In Figure 6(a), the accuracy, which is defned
as the ratio of the count for correct samples to the number of
all samples, keeps increasing for both training and validation
data with the number of iterations. After around 900 iter-
ations, the abovementioned termination criteria are met,
and the training process is thus stopped. Te fnal accuracy
of the trained network reaches 94.93%.

To evaluate the classifcation accuracy of the trained
network, a confusion matrix is constructed, as shown in
Table 2, which includes the classifcation results of all the test
data. Te values of the diagonal elements indicate the
number of results correctly classifed, while other values
indicate the wrongly classifed results. Te accuracy is cal-
culated and listed at the bottom of the matrix for each
category, showing that the presence and the passing lane of
the coming vehicle can be detected with acceptable accuracy.

Once a vehicle passing across the joint is detected, the
identifcation of the vehicle weight and the driving speed is
the next step, which is discussed in the following sections.

4. Vehicle Weight and Speed
Identification through 1-D CNN

In this section, the impact acceleration responses at bridge
joints are used to give an estimation of the vehicle’s weight
and driving speed using 1-DCNN for regression.Te labeled
training data include the vehicle-induced joint vertical
impulse acceleration, the vehicle’s weight, and instant
driving speed. Te weight and driving speed are extracted
from a weighing scale and a camera, respectively.

4.1. 1-D CNN Structure for Vehicle Weight and Speed
Identifcation. From Section 3, the acceleration signals
represented in Figure 2 can tell whether a vehicle is passing
over the joint. However, in addition to the presence of the
vehicle, further details about the passing vehicle can also be
extracted from the acceleration signals, i.e., the vehicle’s
weight and driving speed. In this regard, a 1-D CNN
structure is constructed, as shown in Figure 7, where the
recorded signal of one accelerometer corresponding to the
detected lane of the vehicle is adopted as the input of the
network, and the output vector contains the passing vehicle’s
weight and driving speed. Before being fed into the neural
network, the time history undergoes a time-shifting process
to position the maximum absolute value of the input ac-
celeration at the center of the time history. Tis step aims to
reduce the network input’s complexity and enhance the
accuracy of vehicle weight and speed identifcation.

Similar to the training process for vehicle detection
described in Section 3, 80% of the data serve as training data,
while the other 20% are adopted as the validation and test
data. Before training, the input matrices are normalized by
dividing the maximum values of the weights and speeds of
all passing vehicles. Te output of the network is also
normalized as follows:

wi,norm �
wi − minw

maxw − minw
,

si,norm �
si − min s

max s − min s
.

(4)

In this manner, the output values of the network are all
in the range between 0 and 1.

To quantify the prediction error of the vehicle weight and
driving speed, the loss function for the regression CNN
network is defned as follows:

Loss �
1
2


i

wpre,i − wtar,i 
2

+ spre,i − star,i 
2

 , (5)

where wi and si stand for the weight and driving speed of the
ith vehicle sample and the subscripts “pre” and “tar” indicate
the predicted and target values, respectively.

4.2. Training Process and Test Results for 1-D CNN. Te
evolution process of the loss function is shown in Figure 8.
As the training process starts, the loss function starts to
decrease from a high value. Same as in Section 3, the
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Figure 5: CNN network for vehicle detection.

Table 1: Categories for vehicle detection.

Category I II III
Description Passing lane I Passing lane II Not detected
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Figure 6: Training process of the network of classifcation: (a) accuracy; (b) loss.

Table 2: Confusion matrix for vehicle detection.

True I True II True III
Prediction I 1840 96 21
Prediction II 40 1828 44
Prediction III 52 43 1874
Accuracy 95.24% 92.93% 96.65%
Total accuracy 94.93%

passsing time
Δt

(1 x 100 x 20)

·
··

(1 x 50 x 10)

Conv & Relu Conv & Relu Full Full

10

2

20 10Acc at joints
Lane I

·
··

Figure 7: 1-D CNN network for vehicle weight and speed estimation.
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validation data are applied to the network every 50 itera-
tions, and the training process stops when the loss function
is larger than the previously smallest values three times in
series to prevent overftting.

For the estimated values of vehicle weights and driving
speeds, the target value and predicted value from the net-
work for all test data are plotted in Figures 9(a) and 9(b),
respectively. A reference line, y� x, is plotted in the fgure.
Ideally, the data points represented by circles in grey should
be on the reference line. However, due to many factors,
including training error and measurement noise, the data
points are scattered around the reference line. To quantify
the scatter level of these data points, a correlation coefcient
(CC) is calculated following the defnition of equation (6)
and is shown together in the fgure:

r �
i xi − x(  yi − y( 

��������������������

i xi − x( 
2
i yi − y( 

2
 , (6)

where xi, and yi are substituted by the target and predicted
values of the ith vehicle. For the vehicle weight and driving
speed, this coefcient is calculated to be 0.87 and 0.69,
respectively.

An error distribution histogram for vehicle weight and
driving speed prediction is plotted in Figure 10 as the error
defnition of

εi �
yi − xi

xi

, (7)

where εi indicates the relative error of the ith vehicle. Te
error distribution has its highest value around zero, in-
dicating that the proposed algorithm neither overestimates
nor underestimates the target.

To further evaluate the entire performance of the net-
work, a mean absolute error (MAE) and a root mean square
error (RMSE) are defned in equations (8) and (9),
respectively,

MAE �
1
N


i

yi − xi


, (8)

RMSE �

�������������
1
N


i

yi − xi( 
2



, (9)

where N is the total number of vehicles.
From the abovementioned defnitions, the MAE and

RMSE of the vehicle’s weight and driving speed are calcu-
lated and listed in Table 3. It is observed that the estimation
accuracy is within an acceptable level, while RMSE is usually
larger than MAE due to the existence of very large and low,
and thus rare, vehicle weights and driving speeds, as in-
dicated in Figure 9.

Note that, in this network, the recorded acceleration
responses are put into the network without any pre-
processing technique. Te network needs to fnd out the
deep relation between the input and output data. To in-
crease the prediction accuracy of the vehicle’s weight and
driving speed, a 2-D CNN based on wavelet coefcients is

explained in the next section, whose performance is
evaluated and compared with the one given by the 1-
D CNN.

5. Vehicle Weight and Speed
Identification through 2-D CNN

When utilizing CNNs to complete a task, the selection of the
input matrix is important and may have a signifcant in-
fuence on the accuracy of the prediction. Although a strong
and powerful network has the capability to extract the high-
dimensional relation between the input and the output, it is
always expected that the relevant properties are not buried
too deep in the input signals. For the identifcation task of
the vehicle weight and driving speed, although it is still
possible to use the raw signals measured by using the ac-
celerometers in the same way as in Section 3, it is better to
apply preprocessing to expose some key properties of the
joint acceleration response. In this section, a wavelet
transform is adopted and briefy reviewed herein.

5.1. Wavelet Transform to Generate 2-D Signals. Te con-
tinuous wavelet transform, which is defned in equation (10),
is widely used in signal processing and vibration analysis:

C(τ, f) �
1

����
s(f)

 
∞

−∞
x(t)Ψ∗

t − τ
s(f)

 dt, (10)

in which x(t) is the input signal to be analyzed, s(f ) is the
scale parameter related to frequency f, and Ψ∗ indicates the
complex conjugate of the mother wavelet Ψ. In this study,
the mother wavelet Ψ is chosen to be a Morse wavelet. Te
shape of the wavelet is decided by a symmetry parameter and
a time-bandwidth parameter. In this study, the above-
mentioned two values are empirically set at 3 and 60,
respectively.

Figure 11 shows the wavelet transform of a time history
recorded by using Accelerometer I induced by a two-axle
vehicle passing on Lane 1. Note that these wavelet coefcients
are both time- and frequency-related. In this manner, the
original 1-D signal is converted to a 2-D matrix, which is
helpful to develop the advantages of CNNs. Moreover, the
properties of the recorded signal in both the time and fre-
quency domains are clearly expressed in this matrix, making
it easier for the CNN to extract its hidden features.

5.2. CNN Structure for Vehicle Weight and Speed
Identifcation. As stated above, the input matrix of the
network for vehicle weight and speed identifcation is the
wavelet coefcients. For a 3 s time history with 100Hz
sampling frequency as in the current case, the wavelet
analysis gives 54 values along the frequency axis. Terefore,
the input matrix in this study has a size of 54× 301, cor-
responding to the frequency and the time domain. Two
convolution layers with sizes of 20× 20 and 10×10 follow
the input matrix. ReLU function is used after each of the
convolution layers to provide the network with the ability to
extract nonlinear features. Te maximum pooling layer has
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Figure 9: Test results for vehicle weight and driving speed: (a) vehicle weight; (b) driving speed.
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a stride of 2× 2. Te fully connected layers lead to an output
vector containing two elements, which are represented by
vehicle weights and driving speeds, respectively. Te
structure of the network is depicted in Figure 12.

5.3. Training Process and Test Results. Te loss function is
defned in the same way as in Section 4 and is plotted with the
training process in Figure 13.Tis curve is similar to the one in
Figure 8 that shows the training process for the 1-D CNN. It is
observed that the fnal value of the loss function is lower than its
peer in the 1-D CNN, indicating that the new network pro-
posed in this section performs better than the previous one.

Te target and prediction values are plotted in Figure 14.
Similar to the points shown in Figure 9, the data points are
scattered around the reference line. However, the data points are
closer to the reference line compared with the results from 1-D
CNN, as is refected by the CCs by comparing with Figure 9.

Te relative error distribution is plotted in Figure 15. For
both the vehicle weight and driving speed, the histograms
are observed to be sharper and narrower compared to those
in Figure 10, indicating that the estimation accuracy is in-
creased using the 2-D structure. Table 3 summarizes the
MAE, RMSE, and CC for the two CNN structures. Results
show that the 2-D structure performs better than the 1-D
structure from the perspective of all accuracy indices.

Te test results are also examined from the aspect of the
vehicle weight histogram, which is of signifcant importance
in the feld of bridge weight-in-motion because it is highly
related to bridge fatigue life. Such a histogram could be
directly adopted in the fatigue analysis. In Figure 16, the
target and predicted histograms are plotted together for
comparison. It is observed from the target histogram that
most vehicles are within the ranges of 12–16 t and 20–25 t.
Te predicted histogram is shown to coincide well with the
target one.
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Figure 11: Wavelet coefcients of joint responses induced by a two-axle vehicle: (a) 3-D surface for wavelet coefcients; (b) vertical view of
the 3-D surface.

Table 3: Accuracy for the two CNN structures.

Structures of
CNN

MAE RMSE CC
Weight (t) Speed (km/h) Weight (t) Speed (km/h) Weight (t) Speed (km/h)

1-D 1.70 3.14 2.43 4.45 0.87 0.69
2-D 1.32 2.78 1.76 3.90 0.93 0.79
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6. Possibility of Algorithm Extension by
Transfer Learning

Te abovementioned training and testing processes are
based on Accelerometer I located at the entrance of Lane 1.
Strictly speaking, the trained networks are only suitable for

the vehicles entering Lane 1 of this bridge, where the net-
work is trained. Te practicality of the proposed network is
thus quite limited. In engineering practice, it is desired that
the trained network can be conveniently adopted when
applied to other bridges. However, although the quantitative
nonlinear physical relation between the vehicle’s weight and
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Figure 12: Structure of the network for vehicle weight and speed identifcation.
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Figure 13: Loss function for the 2-D network of vehicle weight and speed identifcation.
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Figure 14: Test results for vehicle weight and driving speed: (a) vehicle weight; (b) driving speed.
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vertical acceleration may be diferent because of the con-
struction details of the joints, some basic characteristics may
be common. For example, the impact acceleration responses
at bridge joints are all impulse-like responses, with the
number of peaks roughly determined by the number of axles,
and the peak values of the impulse are related to the vehicle
weight. Tese similarities provide the basis for the extension
of the proposed network to other lanes or even other bridges.
Te extension is analyzed through a technique known as
transfer learning. If two tasks share similar characteristics,
the trained network from the frst task is adopted as the
initial value of the network for the second task. In this
manner, the number of training data needed for the second
network can be much smaller than in the case where the
network is randomly initialized.

In this paper, transfer learning is tested by using vehicle
data entering Lane II. From measurement records, there
were 5160 vehicles entering from Lane 1 and 740 vehicles

entering from Lane II. Te same training process is con-
ducted, and the training process is plotted in Figure 17. On
the other hand, as a test to illustrate the efectiveness of
transfer learning, the frst convolutional layers, ReLU layers,
and pooling layers are frozen, while only fully connected
layer parameters are trained, which are plotted in the same
fgure. It is clear that the training process with and without
transfer learning behaves much diferently. In the case of no
transfer learning, the termination criterion is satisfed much
earlier than in the case of transfer learning, and the efect of
overftting is also observed, possibly due to insufcient
training data. When transfer learning is applied, it takes
more iterations to reach the termination criterion, and the
fnal value of the loss function becomes lower than the one
without transfer learning.

Te target and predicted values of the test data are
plotted in Figure 18. Te results for training with and
without transfer learning are plotted together. Because these
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Figure 15: Error distribution for vehicle weight and driving speed: (a) vehicle weight; (b) driving speed.
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two sets of data have the same number of data points, the
scattering of the points without transfer learning clearly
indicates that the adoption of transfer learning does have
a good efect on higher estimation accuracy.

Table 4 shows some details of the training process dis-
cussed above. Te number of vehicles passing over Lane II is
much less than the number passing Lane I. Tis reduction in
the number of training data undoubtedly leads to a larger
error, i.e., MAE and RMSE, and a lower CC when estimating
the passing vehicle’s weight. Once transfer learning is in-
troduced, the estimation error decreases to a comparable
level as in the case where sufcient training data are
available.

Tis section tests the possibility of using transfer learning
when there is not sufcient data to train the network from
the beginning. In this paper, the training data for vehicle
weights are obtained from a WIM station nearby. A future
BWIM scenario based on this paper’s fndings is as follows:

for bridges where there is noWIM station available, portable
BWIM systems based on accelerometers can be temporarily
adopted on the bridge to obtain the passing vehicle’s weight
for training [7, 22]. Once the training process is fnished
using the proposed method, most accelerometers on the
bridge can be removed, while only one accelerometer for
each lane at the bridge joint remains on the bridge for long-
term BWIM purpose.
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Figure 17: Training process with and without transfer learning for vehicle weight.
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Figure 18: Test results for test data with and without transfer learning.

Table 4: Accuracy for training with and without transfer learning
for the vehicle’s weight.

Lanes I II
Number of training data 5160 740
Transfer learning No No Yes
MAE (t) 1.32 1.90 1.31
RMSE (t) 1.76 2.55 1.67
CC 0.93 0.86 0.94
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 . Summary and Conclusions

Tis paper proposes a data-driven approach for the purpose
of BWIM. In the frst step, a classifcation CNN is proposed
to detect the vehicle’s presence on the joint and classify the
vehicles by their passing lanes. Once the vehicle is detected,
the regression CNN is used to predict the weight and driving
speed of passing vehicles. Te labeled training data are
extracted from a WIM station and camera set nearby. Te
possibility of adopting transfer learning to extend the fea-
sibility of the proposed method is tested. Te following
conclusions are drawn from this study.

(1) By attaching two accelerometers on diferent lanes of
the joint, the vehicle’s entrance as well as its passing
lane can be detected through a classifcation CNN.

(2) Te relation among the vehicle’s weight, driving
speed, and impact acceleration responses at bridge
joints can be trained through a deep learning
technique only from one accelerometer at the
bridge joint.

(3) Although the vehicle’s weight and driving speed can
be predicted directly from the acceleration time
history, the prediction accuracy can be improved by
preprocessing of the wavelet transform to expose
more details in the frequency domain.

(4) When the training data are not sufcient (e.g., only
a portable and temporary BWIM system is available
for the target bridge), the proposed network can
serve as a foundation for the implementation of
transfer learning.
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