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Structural health monitoring (SHM) systems may sufer from multiple patterns of data anomalies. Anomaly detection is an
essential preprocessing step prior to the use of monitoring data for structural condition assessment or other decision making.
Deep learning techniques have been extensively used for automatic category classifcation by training the network with labelled
data. However, because the SHM data are usually large in quantity, manually labelling these abnormal data is time consuming and
labour intensive.Tis study develops a semisupervised learning-based data anomaly detection method using a small set of labelled
data and massive unlabelled data. Te MixMatch technique, which could mix labelled and unlabelled data using MixUp, is
adopted to enhance the generalisation and robustness of the model. A unifed loss function is defned to combine information
from labelled and unlabelled data by incorporating consistency regularisation, entropy minimisation, and regular model reg-
ularisation items. In addition, customised data augmentation strategies for time series are investigated to further improve the
model performance. Te proposed method is applied to the SHM data from a real bridge for anomaly detection. Results
demonstrate the superior performance of the developed method with very limited labelled data, greatly reducing the time and cost
of labelling eforts compared with the traditional supervised learning methods.

1. Introduction

Structural health monitoring (SHM) systems may sufer
from multiple patterns of data anomalies caused by sensor
faults, communication interference, system malfunctions,
and harsh operational or environmental conditions [1–3],
making the automatic and reliable structural condition as-
sessment challenging. Terefore, detecting these anomalies
is an essential preprocessing step for SHM systems. In recent
years, machine learning (ML) and deep learning (DL)
techniques have been widely used in the feld of SHM for
automatic big data processing, such as data compression and
recovery [4, 5], response prediction [6, 7], abnormal data
detection [8–14], and image-based crack detection [15, 16].
Most studies adopted the supervised learning, that is, the
models are trained using the labelled data only. Bao and Li
[1] summarized the recent developed supervised learning
methods for data anomaly detection. As the representative

studies, Tang et al. [2] developed the convolutional neural
network-based anomaly detection method by transforming
the time series SHM data into images for model training. Du
et al. [8] employed the ResNet18 as the feature extractor to
detect anomaly-sensitive features for classifcation in the
context of imbalanced classes [8]. Zhang et al. [3] developed
the support vector data description-based method to detect
data anomalies caused by sensor faults and extreme events.
However, sufcient labelled data are difcult to obtain in
many cases because anomalous data are difcult to collect
and label manually from oceans of data.

Facing the challenge of limited labelled data, augmenting
the quantity of training data is an efective strategy to al-
leviate model overftting and enhance model generalisation
performance [17, 18]. Data augmentation (DA) is a widely
used strategy that leverages existing samples to create new
ones through a series of transformations based on the prior
knowledge about the invariant characteristics of data against
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specifc transformations. Enhancing the quantity and quality
of training data can facilitate covering unexplored input data
space and expanding the decision boundary of the model.
DA has been a common and mature technique for appli-
cation to general image recognition tasks, such as image
cropping, mirroring, colour augmentation, scaling, or
translation [19–21]. Nevertheless, standard procedures for
data anomaly detection, which could be regarded as a type of
time series recognition method, have not been well estab-
lished. Te main challenge for DA of time series is to design
appropriate operators that can simultaneously generate
representative new samples and guarantee that these new
samples belong to the same class. Not all transformations are
applicable to the time series datasets because of the diversity
and complexity of the data samples. Terefore, particular
domain knowledge is required for the time series DA.

Another strategy is to take full advantage of limited
labelled and sufcient unlabelled data for model training.
Semisupervised learning (SSL) is a branch between super-
vised learning and unsupervised leaning. SSL unifes the
utilisation of large amounts of available unlabelled data and
typically much smaller sets of labelled data; it is particularly
suitable when labelled data are extremely scarce to construct
a reliable classifer. Te underlying precondition of SSL is
that the posterior distribution p(y | x) could be inferred
with the utilisation of useful information of the marginal
distribution p(x) over the input data space [21]. In this case,
unlabelled data could be used to integrate information about
p(x) and then about p(y | x). Tis precondition is satisfed
in many real-world conditions [21]. Compared with those
models trained using limited labelled data only, SSL could
help improve the model performance by allowing sufcient
unlabelled data to participate in model training.

SSL can be generally grouped into transductive and
inductive methods [21, 22]. Te former infers the label for
unlabelled data directly using graph-based principles, where
no classifcation models are produced. By contrast, the latter
aims to construct a reliable classifer to make predictions on
any data in the input space, exhibiting high adaptation and
generalisation performance, and has arisen a lot of research
attention. Inductive methods can be further classifed into
multiple categories based on how they incorporate unla-
belled data. Generic regularisation, entropy minimisation,
and consistency regularisation are three widely used tech-
niques to defne the unlabelled loss function [21, 22]. Te
generic regularisation item is usually incorporated in the
unifed loss function to alleviate model overftting and
improve generalisation performance to unseen data [23].
Entropy minimisation is based on the low-density as-
sumption that the decision boundary should not pass
through the high-density areas of input data [24]. Several
approaches to achieve low-entropy predictions include di-
rectly minimising the entropy items, constructing one-hot
labels, or using sharpening functions to force the classifer to
output low-entropy predictions on the unlabelled data [24].
Consistency regularisation is correlated with smooth as-
sumption, that is, a small distortion to the input data should
not change the distribution of model output [25].

In SHM data anomaly detection, a large amount of
unlabelled data may be available. However, current super-
vised learning-based methods only utilise the information
from labelled data for model training. Few existing studies
employ SSL methods to exploit the information from
unlabelled data [26]. Besides, DA techniques are simply
applied by researchers as the data preprocessing tools
[27, 28], whereas the combined efects of DA and SSL
techniques in improving the model performance for SHM
data anomaly detection have not been investigated. Teo-
retically, DA techniques can assist in the SSL method to
some extent. For example, a straightforward approach to add
distortion in consistency regularisation-based SSL method is
DA, which applies transformations to the input data and
assumes that relevant class semantics are unchanged [21].
Nevertheless, due to the diversity and complexity of SHM
time series data, DA strategies used in image DA may be
inapplicable. Hence, it is worthwhile to develop efective
customised DA techniques for SHM time series data.

In this regard, this study develops a novel DL-based data
anomaly detection method by fully utilising both labelled
and unlabelled data for model training. DA, entropy min-
imisation, and consistency regularisation strategies are in-
corporated into the SSL framework to improve model
performance. Particularly, customised DA techniques are
designed for SHM time series data. Te contribution of DA
volume and the quantity of labelled data to improve model
performance are investigated. Te proposed method is ap-
plied to a long-span cable-stayed bridge for acceleration data
anomaly detection.

2. DA for Time Series

DA for time series can be categorised into four main classes,
including random transformation, decomposition, pattern
mixing, and generative models [17]. Random trans-
formation is a commonly used method by adding random
noise, scaling, random wrapping in time or magnitude di-
mension, permutation, and window sliding. Decomposition
methods extract representative independent features from
the original time series, such as trend and season compo-
nents, and then generate new samples based on extracted
features. Pattern mixing is operated by integrating two or
more time series to generate new ones. For generative
models, the distributions of the extracted features are
established and then leveraged to generate new patterns, of
which the generative adversarial network is a representative.
Amongst all four categories, random transformation-based
method is the simplest yet efective; thus, it is adopted in this
study. Specifcally, the method leverages specifc trans-
formation functions g(·) to generate sample x′ by x′←g(x),
where x is a time series x � x1, . . . , xt, . . . xT with T time
steps. Table 1 lists six random transformation-based DA
techniques, of which jittering, scaling, and magnitude
warping belong to magnitude domain methods, whereas
time warping, permutation, and random sampling belong to
time domain methods. Magnitude domain transformations
convert the raw data along the value/magnitude axis,
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whereas time domain transformations mainly adjust the
time steps.

2.1. Magnitude Domain Transformations. Jittering is one of
the simplest yet efcient DA methods by adding noise to
time series, which can be defned as follows:

x
′

� x1 + ε1, . . . , xt + εt, . . . , xT + εT, (1)

where ε is typically assumed to be Gaussian noise added to
each time point. Te standard deviation of the noise is
a hyperparameter, which needs to be predetermined.

Scaling multiplies the entire time series with a scaling
parameter α, which can be defned as follows:

x
′

� αx1, . . . αxt, . . . αxT, (2)

where α is a hyperparameter of the zoom-in/out factor and
can be determined by a Gaussian distribution.

Magnitude warping augments time series by multiplying
a smoothed curve to warp the original signal’s magnitude,
which can be defned as follows:

x
′

� α1x1, . . . , αtxt, . . . , αTxT, (3)

where α1, . . . , αt, . . . , αT is a random curve sequence gen-
erated by cubic splice interpolating with hyperparameters I

(the number of knots) and σ (the standard deviation of each
knot).

Generally, jittering can be considered as adding
Gaussian noise to each data point, whereas magnitude
warping smoothly applies varying noise to each data point.
Diferent from these methods, scaling applies the same
magnitude transformation to each data point.

2.2. Time Domain Transformations. Time warping is similar
to magnitude warping. Warping is operated in the temporal
dimension, which can be defned as follows:

x
′

� xτ(1), . . . , xτ(t), . . . , xτ(T), (4)

where τ(·) is a warping function based on the generated
smooth random curve with similar hyperparameters I (the
number of knots) and σ (the standard deviation of each
knot).

Permutation produces a new sample by reassigning the
segment order of the original time series, which can be
mainly classifed into two: with the same-sized segments or
with the random-sized segments.Te original time sequence
dependency will not be preserved after permutation.

Random sampling is similar to time warping. Te dif-
ference between these methods is that the former only uses
partial data points for interpolating, whereas the latter uses
all samples.

Te methods adopted in the time domain trans-
formations are similar to those in the magnitude domain
transformations, except that the former transformations
operate on the time axis, whereas the latter transformations
occur on the value axis. In practice, a signifcant issue is to
balance the transformation efect to guarantee the

generalisation performance, and new samples would be
accurately identifed.

3. Proposed SSL-Based Anomaly
Detection Method

Te proposed SSL-based data anomaly detection method is
based on MixMatch [23], a superior SSL study conducted by
Google. Figure 1 depicts the overall framework of the
method. For labelled examples, the classifer will directly
predict their labels. For unlabelled examples, a common DA
technique is initially introduced. Te augmented examples
are sent to the classifer, and the predictions are averaged to
obtain consistent labels. A label guessing procedure based on
a sharpening function is introduced to adjust the averaged
predictions as low-entropy predictions, through which the
unlabelled examples guess one-hot labels. Another unique
technique, namedMixUp [23], is introduced to combine the
labelled and unlabelled examples with guessing labels to
enhance model generalisation and robustness. Subsequently,
the processed labelled and unlabelled data are reused to
calculate the labelled and unlabelled loss items for model
updating. Trough these steps, the classifer is expected to
learn the underlying useful information from the massive
unlabelled data, and an optimal decision boundary is ob-
tained for anomaly classifcation.

3.1. DA Prior to Input. As shown in Figure 1, DA is
implemented on the labelled and unlabelled data, which is
consistent with the smoothness assumption. In each batch,
only one DA transformation is executed for labelled data,
whereas K DA transformations are executed for unlabelled
data to force the model to generate the same outputs for
unlabelled samples with diferent augmentations.

3.2. Label Guessing. Each unlabelled sample produces K

augmented samples after DA, as described in Figure 2. Te
augmented samples are sent to the same classifer to produce
model predictions. Te average of those predicted class
distributions over K augmentations is calculated as follows:

qb �
1
K



K

k�1
pmodel y | ub,k; θ , (5)

where qb denotes the averaged prediction of unlabelled data,
ub,k denotes the Kth augmented unlabelled data, and θ
denotes the model parameter.

Table 1: DA techniques for time series in this study.

Data
transformation Description

Jittering Adding random noise
Scaling Multiplying a random scalar

Magnitude warping Convolving a smooth curve varying around
one

Time warping Perturbing temporal locations smoothly
Permutation Permuting data segments randomly
Random sampling Subsampling and interpolating
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Prediction averaging coordinates with consistency reg-
ularisation, which expects the model to produce the same
outputs over augmented samples. Entropy minimisation is
another essential component for obtaining an ideal decision
boundary. One efective approach to achieve entropy
minimisation is adopting sharpening function to adjust the
temperature of the class distribution, which is defned as
follows:

Sharpen(p, T)i �
p
1/T
i


L
j�1p

1/T
j

, (6)

where p is the averaged categorical distribution, i indicates
class information, and T is the temperature hyperparameter.
Te output of the sharpening function approaches a one-hot
distribution if T is close to zero. Terefore, lowering the
temperature hyperparameter is benefcial for the model to
make low-entropy predictions. Te one-hot class distribu-
tion after prediction averaging and sharpening is assigned as
the guessing label for unlabelled data, as shown in Figure 2.

3.3. MixUp. Apart from traditional DA techniques, Mix-
Match integrates a new data synthesis method, namely,
MixUp to mix labelled and unlabelled data, which can be
described as follows:

λ′ � max(λ, 1 − λ), (7)

x
′

� λ′x1 + 1 − λ′ x2, (8)

p
′

� λ′p1 + 1 − λ′ p2, (9)

where λ is a random variable following Beta distribution,
(x′, p′), and (x1, p1) and (x2, p2) are the input and label
probability of integrated samples and original two input
samples, respectively. Equation (9) guarantees that the in-
tegrated new sample is closer to x1 than x2 to preserve the
original order of the sequence because the labelled and
unlabelled data are combined and integrated using MixUp.

MixUp plays diferent roles for labelled and unlabelled
data. For labelled data, MixUp serves as a regularisation item
given that the data have been combined to generate unseen
new samples for training, even potentially mixed with
unlabelled data. For unlabelled data, MixUp serves as an
additional strong DA technique to enrich the input space.

3.4.UnifedLoss Function. MixMatch provides a unifed loss
function, which gracefully minimises prediction entropy
whilst maintaining consistency, thereby achieving

Labelled data Classifier Model prediction

Unlabelled data Classifier Model prediction Guessed label

Forward Propagation (Prediction, Loss Calculation

Backward Propagation (Parameter Updating based on Gradients)

Data augmentation
process

Combined loss for labelled
and unlabelled data

L = LX + λULU

Classifier
ResNet18

Ground-truth label

Labelled loss term
cross-entropy loss

LX = 1
X'

H (p,pmodel (y | x;θ))
x,p X'

Unlabelled loss term LU = 1
U'

||q – pmodel (y | u;θ)||2

u,q U'Ncross-entropy loss

Figure 1: Framework of the proposed SSL-based method.

Classifier 
(ResNet18)

Classifier 
(ResNet18)

Average 
Model prediction

Label Sharpen
Guessing label

K augmentations Model Predictions

Unlabelled data

Figure 2: Label guessing process for unlabelled data.
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satisfactory or even exceeding the performance of traditional
regularisation techniques.

Te combined loss for SSL is defned as follows:

X
′
, U
′

� MixUp(X, U, T, K, α), (10)

LX �
1

X
′






x,pϵX′
H p, pmodel(y | x; θ)( , (11)

LU �
1

C U
′






u,qϵU′
q − pmodel(y | u; θ)

����
����
2
2, (12)

L � LX + λULU. (13)

As shown in equation (10), a labelled batch X and an
equally sized unlabelled batch U could produce augmented
labelled batch X′ and unlabelled batch U′ after MixUp.
Subsequently, X′ and U′ are separately used to calculate
labelled and unlabelled loss items. Specifcally, equation (11)
calculates the typical cross-entropy loss between ground-
truth labels and model predictions from X′, and equation
(12) calculates the squared L2 norm between guessing labels
and model predictions from U′. Te adaptation of L2 norm
causes the model to become less sensitive to inaccurate
predictions. Equation (13) combines the labelled and
unlabelled loss items, where λU is a time-dependent pa-
rameter balancing the trade-of between labelled and
unlabelled loss items.

Te MixMatch method was originally developed for
image classifcation, and it primarily investigated common
DA strategies by elastically deforming or adding noise to the
image data [23]. However, SHM time series datasets are
diverse and complicated. Tey contain important in-
formation related to structural vibration properties and the
patterns that may be sensitive to noise, peak magnitude, and
time series sequence [7, 29, 30]. Terefore, not all trans-
formation strategies used in image DA are applicable. Te
core of DA for SHM time series data is to develop suitable
operators that can generate representative new samples and
ensure that these samples belong to the same class. In this
study, customised DA techniques listed in Table 1 will be
applied and investigated with specifc domain knowledge for
SHM time series data. Te method developed in this study
contributes to enhance the performance of MixMatch in
time series data classifcation tasks, especially for SHM data
anomaly detection.

4. Case Study

4.1. Description of the SHM Data. Te acceleration data
measured by the SHM system of a long-span cable-stayed
bridge in China are used to validate the proposed method
[31]. A total of 38 accelerometers are available, with the
specifc layout shown in Figure 3. Te acceleration data
collected with a sampling frequency of 20Hz in two months
(2012-01-01 to 2012-02-29) are used. Te acceleration re-
sponses are divided into hourly segments without

overlapping, and then transformed into the image form as
the dataset. Te entire dataset contains 54,720 (38× 24× 60)
segments. Each image is composed of two parts, the hourly
time-domain acceleration responses as the upper part and
the frequency-domain spectrum as the lower part.Te image
samples of seven data patterns, including the normal data
and six representative anomalies, are shown in Figure 4. Te
time-domain and frequency-domain information are used
within one image because a few patterns may be similar in
the time domain andmay be misclassifed, such as “normal,”
“minor,” and “outlier,” whereas “trend” and “drift” are
similar in the frequency domain. Terefore, the use of dual-
domain image can help the DL models achieve better
performance.

Te acceleration data in January 2012 (28,272 samples)
are used in the semisupervised training process. For each
data pattern in January 2012, 200 samples are randomly
selected as the balanced labelled data, and the remaining
samples are assigned as unlabelled data for training, as listed
in Table 2. Te proposed model is expected to learn data
pattern-sensitive features from 1400 labelled data and a large
amount of unlabelled data.Te acceleration data in February
2012 (26,448 samples) are randomly separated into two parts
with 5,000 and 21,448 samples. Te former is used as the
validation dataset to determine the training quality, and the
latter is used as a blind dataset to validate the efectiveness of
the proposed method, as shown in Table 3.

4.2. Results and Analysis. Te proposed MixMatch-based
method involves multiple hyperparameters. Specifcally, the
number of augmentation times K for unlabelled data,
sharpening temperature T for entropy minimisation, Beta
distribution parameter, and trade-of loss parameter λU are
set to 2, 0.5, 0.75, and 100, respectively. Random horizontal
fips and adding random noise are selected as the DA al-
gorithms prior to input. More DA techniques are explored in
the later section. Te training epoch is set to 100, and all
calculations are carried out on a computer with a CPU of
InterCore i7-8700 @3.20Ghz and a GPU of GeForce RTX
2080Ti.

Tewell-trainedmodel is tested on the blind acceleration
data collected in February 2012, containing 21,448 samples.
Figure 5 shows the confusion matrix of the results. Te
precision and recall rates of most data patterns are above
95%, and the overall accuracy is 93.6%, which indicates that
the SSL-based model could learn useful information of data
patterns under the circumstances of extremely limited la-
belled data by utilising additional information from unla-
belled data. Te overall performance is satisfactory
considering that only 200 labelled samples are available for
each data pattern. Nevertheless, the precision of “minor,”
“outlier,” and “drift” are relatively poor. As shown in Fig-
ure 5, a relatively large number of “normal” samples are
misclassifed as “minor” and “outlier,” and “trend” samples
are misclassifed as “drift.” One possible reason is that the
sample number of these falsely identifed patterns is the
smallest amongst all data patterns. Terefore, the available
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unlabelled data are insufcient for providing efcient con-
trastive features against confusing patterns, leading to the
poor learning performance.

As a comparative study, ResNet18 is trained in a fne-
tuning manner [8] using the same number of labelled
samples (200 for each data pattern) but without any

unlabelled data. Te confusion matrix of the test results is
shown in Figure 6. Te classifcation performance is evi-
dently poor with an overall accuracy of 76.7%, as compared
with the SSL-based method. Specifcally, the performance of
“normal” and “square” patterns is acceptable, revealing that
these patterns might be easier for the model to learn than

y

North

x

z

z

Downstream

Upstream

South

Figure 3: Accelerometer layout of a long-span bridge.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 4: Acceleration data patterns: (a) normal, (b) missing, (c) minor, (d) outlier, (e) square, (f ) trend, and (g) drift.

Table 2: Dataset composition for the SSL training process.

Labelled/unlabelled data composition of each pattern
Data pattern Normal Missing Minor Outlier Square Trend Drift
Labelled data 200 200 200 200 200 200 200
Unlabelled data 13,375 2,742 1,575 327 2,796 5,578 479
Total quantity 13,575 2,942 1,775 527 2,996 5,778 679
Total 28,272/100%
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other patterns. Te precision of “missing,” “outlier,” and
“drift” patterns is relatively low. A considerable number of
“trend” samples are misclassifed as “missing” or “drift”
patterns, probably because these patterns exhibit similar
features when only extremely limited labelled data are
provided. Te precision and recall of “minor” patterns are
poor, showing that the model requires more samples to learn
distinguishable features of “minor.” In addition, the recall
rate of “trend” pattern is only 49.8% because of the mis-
classifcation with “missing,” “outlier,” and “drift” patterns.
Te comparative study indicates that the SSL-based method
improves the model performance in comparison with su-
pervised learning when applied to cases with limited labelled
data. Nevertheless, SSL cannot further improve the model
performance of data patterns with limited labelled and
unlabelled data, such as “outlier” and “drift.”

4.3. Efects of DA Volume. A customised DA technique for
time series is further developed to expand the available
training data to tackle the insufcient unlabelled data
problem encountered during SSL training, as introduced in
Section 2. Six DA algorithms described in Table 1 are further
utilised to investigate the efects of DA. Te insufcient and
difcult-to-train data patterns are augmented prior to
implementing the SSL method, including “minor,” “outlier,”
“trend,” and “drift” patterns. Figure 7 presents some DA
examples for the “outlier” and “drift” patterns, where the
characteristics of the related patterns are efectively
enriched.

Nine schemes are designed to investigate their efects on
model performance, as shown in Table 4. DA is mainly
implemented for “minor,” “outlier,” “trend,” and “drift”
patterns, whose performance indices are less satisfactory in

Normal Missing Minor Outlier Square Trend Drift Recall

Normal 9919 0 559 199 5 0 7 93.0%

Missing 0 2331 2 1 1 0 0 99.8%

Minor 27 0 1418 9 5 0 5 96.9%

Outlier 5 1 5 214 16 0 3 87.7%

Square 20 0 1 0 2259 0 0 99.1%

Trend 16 46 0 0 27 3211 412 86.5%

Drift 0 0 0 0 0 0 723 100%

Precision 99.3% 98.0% 71.4% 50.6% 97.7% 100% 62.9% 93.6%

Labelled

Predicted

Figure 5: Confusion matrix of classifcation results in February 2012 based on SSL.

Table 3: Dataset composition for the SSL training process.

Data pattern Normal Missing Minor Outlier Square Trend Drift
(a) Validation data composition of each pattern
Quantity 2,208 632 185 87 934 846 108
Percentage (%) 44.16 12.64 3.70 1.74 18.68 16.92 2.16
Total 5,000/100%
(b) Test data composition of each pattern
Quantity 10,689 2,335 1,465 244 2,280 3,712 723
Percentage (%) 49.84 10.89 6.83 1.14 10.63 17.31 3.37
Total 21,448/100%
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the abovementioned studies. Te blank block refers to no
DA operation. After the DA operation, 200 samples are
randomly selected as the labelled training data of each
pattern, and the remaining samples are used as the sup-
plementary unlabelled training data. Te compositions of
validation and test data remain unchanged for a straight-
forward performance comparison.

Figure 8 depicts the precision/recall curve of each data
pattern with diferent DA compositions, where the hori-
zontal axis represents the situation of SSL without DA and
nine situations of SSL with diferent DA compositions.
Figures 8(b) and 8(e) show that the performance of
“missing” and “square” patterns slightly fuctuates because
they have already achieved considerable performance, as
shown in Section 4.2. For the “normal” and “trend” patterns
in Figures 8(a) and 8(f), a clear ascending trend of recall

score is found with the increase in unlabelled data, indicating
the incremental improvement of model performance on
distinguishing “normal” against other patterns. “Minor,”
“outlier,” and “drift” patterns are rare classes compared with
others, which also performed poorly in the abovementioned
studies. As shown in Figures 8(c), 8(d), and 8(g), the sup-
plement of unlabelled data could improve their precision
scores, especially indicating from the beginning of each
precision curve. Another phenomenon is that the precision
score seems to be inversely related with the recall score. In
practice, this phenomenon is reasonable. Specifcally, con-
sidering an extreme situation where only one sample is
classifed as “minor,” the precision becomes 100%, whereas
the recall becomes almost zero. Terefore, the precision and
recall score should be balanced according to the actual
scenario.

Normal Missing Minor Outlier Square Trend Drift Recall

Normal 9676 0 0 1013 0 0 0 90.5%

Missing 1 2331 0 2 0 1 0 99.8%

Minor 108 0 39 1116 202 0 0 2.66%

Outlier 0 9 0 235 0 0 0 96.3%

Square 16 0 562 4 1698 0 0 74.5%

Trend 2 1423 0 114 3 1848 322 49.8%

Drift 3 0 0 81 2 4 633 87.6%

Precision 98.7% 62.0% 6.50% 9.16% 89.1% 99.7% 66.3% 76.7%

Labelled

Predicted

Figure 6: Confusion matrix of classifcation results in February 2012 based on ResNet18 using extremely limited labelled data.

Figure 7: DA samples for “outlier” and “drift.”
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Table 4: DA composition strategies in this study.

Data
pattern Normal Missing Minor Outlier Square Trend Drift Total

No DA 13,575 2,942 1,775 527 2,996 5,778 679 28,272
Aug_1 — — 10,650 3,162 — — 4,074 46,158
Aug_2 — — 10,650 6,324 — — 4,074 49,320
Aug_3 — — 10,650 12,648 — — 4,074 55,644
Aug_4 — — 10,650 9,486 — — 8,148 56,556
Aug_5 — — 10,650 12,648 — — 8,148 59,718
Aug_6 — — 10,650 12,648 — — 12,222 63,792
Aug_7 — — 10,650 12,648 — 11,562 12,222 75,354
Aug_8 — — 10,650 15,810 — — 16,296 82,590
Aug_9 — — 10,650 18,972 — — 20,370 89,826
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Figure 8: Continued.
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For ease of comparison, all results are summarised in
Figure 9. In general, with the increase in unlabelled data of
rare classes, the precision score of originally poor patterns
exhibits a considerable improvement. In the meantime,
a corresponding slight decrease in recall scores is found and
is acceptable in practice. Te global impact of diferent DA
compositions cannot be evaluated directly, considering that
the performance improvements of diferent data patterns are
not closely consistent with each other. Here, a pair of simple
yet efcient indices is defned, namely, “ScorePart” and
“ScoreGlobal,” as shown in Figure 10. “ScorePart” is the
increment of the sum of precision and recall scores of
“minor,” “outlier,” “trend,” and “drift” patterns compared
with those of pure SSL results without DA, whereas
“ScoreGlobal” is the increment of the sum of precision and

recall scores of all patterns compared with those of pure SSL
results without DA.

Figure 10 shows that the overall model performance is
steadily improved with the supplement of unlabelled data for
rare but indiscernible patterns. Nevertheless, a sharp de-
crease corresponds to the implementation of Aug_6. Te
results show that the application of Aug_6 changes the
original data ratio greatly, resulting in the imbalance against
the “trend” pattern. With the additional DA for “trend,” the
data composition of each pattern becomes roughly com-
patible, and the overall performance continues to become
better. Te highest model performance is obtained at the
implementation of Aug_8; then, the overall performance
starts to decay, indicating that the DA strategy reaches its
boundary in improving model accuracy and no more
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Figure 8: Precision/recall curve of each pattern with diferent DA compositions: (a) normal, (b) missing, (c) minor, (d) outlier, (e) square,
(f ) trend, and (g) drift.
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benefts can be obtained by augmenting extra
unlabelled data.

4.4.Efects ofLabelledDataQuantity. Te infuence of model
performance with diferent numbers of labelled training data
is further investigated. Four diferent situations are

considered; with 200, 300, 400, and 500 labelled training data
for each pattern, the number of the entire training data is
unchanged. Te baseline is determined as 200 labelled
training data for each pattern with the implementation of
Aug_8 in the former analysis. Te results are shown in
Figures 11 and 12.
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Figure 11: Precision/recall curve of each pattern with diferent numbers of labelled data: (a) normal, (b) missing, (c) minor, (d) outlier, (e)
square, (f ) trend, and (g) drift.
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Similarly, a clear inverse correlation is found between
precision and recall of all data patterns, with the increase in
the labelled training data. Te precisions of the “minor,”
“outlier,” and “drift” patterns that are originally rare and
poorly classifed are ascending as the labelled data are added,
accompanied with descending recalls. For “normal” and
“trend” patterns that satisfactorily classifed themselves,
whilst containing a relatively large number of mis-
classifcations with other patterns, their precisions are
slightly descending as the labelled data are added, accom-
panied with ascending recalls. “Missing” and “square”
patterns are naturally easier to be distinguished than other
data patterns owing to their simple yet conspicuous features.
A possible explanation for this inverse correlation phe-
nomenon is that the model training of data patterns is
a progressive process. For data patterns with fewer labelled
training data, the model seems to be cautious of class
prediction. Terefore, only limited “confrmed” samples
could be predicted, resulting in high precision score but low
recall score. Tis status becomes constant until the training
data are increased sufciently for the model to “confdently”
identify these data patterns. Subsequently, with the extra
increase in labelled training data, model predictions become
“audacious,” resulting in a relatively large number of falsely
misclassifed samples, presented by a slight decay of pre-
cision and growth of recall. Nevertheless, this slight decay of
precision is insignifcant to some extent because the model
has learned reliable and robust features of data patterns.
More detailed and rigorous investigations of this interesting
phenomenon might be investigated in the future.

Overall, a preliminary increasing and then decreasing
trend is observed with the increase in labelled training data
for each pattern, as shown in Figure 12. Tis fnding in-
dicates that the assistance of labelled data for SSL model
training is restricted. Te redundant labelled data may not
further improve the model performance. Tis fnding is
consistent with that of investigating diferent-scale unla-
belled data for model performance in Section 4.3. In
summary, the analysis in Sections 4.3 and 4.4 reveals that the
labelled and unlabelled data play essential roles in the SSL
training process, and the increase in the volume of training
data and the DA technique have limited efects on improving
the model performance.

5. Conclusions

Tis study develops a novel method for detecting SHM
data anomalies with limited labelled data and massive
unlabelled data. To fully exploit the information of
unlabelled data, the MixMatch technique is employed to
defne a unifed loss function that comprises consistency
regularisation, entropy minimisation, and regular model
regularisation items, which combine information from
both labelled and unlabelled data to enhance model
generalisation and robustness. Te proposed method is
applied to the SHM data from an actual bridge. Te results
indicate that the SSL-based method improves the model
performance compared to supervised learning when ap-
plied to the case with limited labelled data.

In addition, customised DA strategies for SHM time
series data are investigated to improve the model perfor-
mance, including jittering, scaling, magnitude warping, time
warping, permutation, and random sampling. Te efects of
DA volume and labelled data quantity in improving model
performance are studied. Results reveal that the increase in
the volume of training data and the DA technique contribute
to improve the classifcation accuracy. Nevertheless, the DA
strategy has its boundary in improving model accuracy and
no more benefts can be obtained by augmenting extra
unlabelled data upon the boundary. Tis study will provide
valuable insights into time series DA and data anomaly
classifcation in the context of limited labelled data.
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