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In this study, the optimal design issue of a passive tuned mass damper (TMD) was transformed into the nonsparse control gain
matrix optimization problem, and a general passive TMD optimization design method to minimize structural mean square
responses or impulse response is therefore proposed. Te proposed optimization procedure combines the static output feedback
(also known as direct output feedback) algorithm and the updating iterative procedure. Te proposed method can be applied to
variant design scenario, whether the main structure is single-degree-of-freedom (SDOF) or multidegree-of-freedom (MDOF)
structures, undamped or damped structures, subjected to wind disturbances or earthquake excitations. In addition, the proposed
method is capable to consider the excitation shaping flter, so the design results are more suitable for practical application. Te
design procedure of the proposed method is presented, and all the required weighting matrices are introduced and derived in
detail. Firstly, the SDOF structures are used as the main structure to demonstrate the correctness of the proposed method. Te
numerical simulation results verify that the obtained optimal design parameters of TMDwere found identical to some cases which
contain the analytic solution.Te accuracy and feasibility of the proposed design method are confrmed. Finally, a passive TMD is
optimally designed for a 5-story MDOF structure subjected to Kanai–Tajimi spectrum comparable earthquakes and a 60-story
high-rise MDOF structure subjected to Davenport spectrum comparable wind loads for demonstration.

1. Introduction

Building structures are often subjected to external forces
such as wind loads or earthquakes. In order to improve the
resilience capability of building structures, the application of
passive damping systems to reduce the vibration response of
the structure is a feasible approach. Soong and Dargush [1]
and Li [2] introduced various types of linear and nonlinear
passive damping systems and their applications to reduce
structural vibrations. Recently, Takewaki and Akehashi [3]
further reviewed the application of passive damping systems
for nonlinear structures from 1980s. Among the many
passive energy dissipation systems, TMD is one common
passive damping device that can efectively reduce the
structural response. Unlike other types of passive energy
dissipation devices that are distributed across many foors of

buildings, the TMD is usually installed at the top of
buildings. Terefore, the TMD is efective in reducing the
structural response of the specifc tuning mode, whether
other foor-distributed installed dampers are efective for
more natural modes of the MDOF building structure [4].

Te tuned mass damper or dynamic vibration absorber
(DVA) is a passive structural vibration control device, as
a substructure system assembled by mass, damping, and
stifness. Te substructure system employed on the main
structure can change its dynamic characteristics. When the
natural frequency of the substructure is close to the vibration
frequency of the main structure, the vibration energy of the
main structure is transferred to the substructure system
according to the resonance efect. Tis reduces the vibration
energy of the main structure, thereby decreasing the dy-
namic response and enhancing the safety and comfort of the
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main structure. Since Frahm [5] proposed a patent that
incorporates a mass-spring system into a structure as
a damping device, the passive TMD has attracted the at-
tention of civil and mechanical engineers worldwide. At
present, the passive TMDhas been successfully used inmany
tall buildings, such as the two sets of 360-ton TMDs that are
diagonally installed on the 58th foor of the John Hancock
building in Boston (height 244m) [6] and one set of 660-ton
suspension TMD that is installed on the 92nd foor of the
Taipei 101 building in Taipei (height 508m) [7]. For the
buildings installed with TMD, the wind-induced accelera-
tion was reduced by about 40% in record [1]. For existing
structures, the fundamental natural frequency of the
building structures is often gradually decreased during their
life cycle. Terefore, re-evaluating and retroftting the design
parameters of the TMD to maintain its vibration reduction
efect have also been a signifcant issue in recent years [8, 9].

Te optimal design of TMD is a topic that attracts the
interest of engineers. Den Hartog [10] incorporated the TMD
into the undamped SDOF structure subjected to external
harmonic disturbance and used the “fx-point” in the fre-
quency response function to deduce a set of optimal design
formulae. Tsai and Lin [11] proposed an optimal design
formula for the undamped SDOF structure in the harmonic
base excitation in the concept of fx-point theory and further
obtained the design formula for the damped structure by
regression. Warburton [12] proposed the optimization for-
mula to minimize the mean square response of structural
displacement or velocity for undamped structures subjected
to random wind load or earthquake load. Furthermore, the
optimization formula of analytic solutions or approximate
solutions for various cases of objective and disturbance was
compiled and proposed by Korenev and Reznikov [13]. Later,
Bakre and Jangid [14] obtained the optimal design formula by
regression for mean square response minimization of
structural displacement and velocity of the damped structure
under random wind load or earthquake load. Marano and
Greco [15] proposed some promising optimization criteria of
TMD for vibration control considering stochastic excitation.
In 2012, Tigli [16] derived the design formula of the analytic
solution for mean square response minimization of structural
velocity for the damped structure under random wind force.
He further deduced the design formula of the approximate
solution for mean square response minimization of dis-
placement and acceleration. Over the past decades, the design
of TMD systems has been widely investigated to mitigate
various types of vibration problems [17–19]. Te aforemen-
tioned design formulae [10–16] are derived from SDOF
structures. However, in practical applications, most civil
building structures are MDOF structures, which require
simplifying an SDOF system to apply the TMD design for-
mula. Furthermore, most of the design methods do not
consider wind or seismic spectrum, which might result in
a certain diference between the design scenario and the actual
situation [4].

Since industrial development, there has been a contin-
uous modifcation in the active control theory. Particularly,
in the 1980s, with the development of science and tech-
nology, the active control theory received signifcant

attention in the civil engineering feld. Soong and Manolis
[20] used the optimal linear quadratic regulator (LQR)
theory to discuss the vibration reduction performance of
a structure equipped with an actively controlled tendon
system. Chung et al. [21] frst used the shaking table test of an
actively controlled tendon system to verify the feasibility of
active control of structures. Te Kajima Corporation in
Japan frst implemented active control technology in full-
scale buildings [22]. With the gradual development of H2
and H∞ control theory [23], Spencer et al. [24] and Dyke
et al. [25] applied the output feedback control theory to
control a hydraulic-driven mass block installed on a building
structure. Teir results validated the feasibility and efec-
tiveness of the output feedback active control theory.

Meanwhile, studies that employed active control theory
to solve the optimal design problem of passive systems are
also developing. Agrawal and Yang [26] modifed the LQR
control method to a constrained static output LQR and
applied to design the parameters of the passive energy
dissipation system. Te optimal parameters within the gain
matrix can be solved by constrained gradient optimization
method. Furthermore, Yang et al. [27], using the linear
matrix inequalities (LMI) framework, proposed an optimal
methodology to design the passive energy dissipation de-
vices, so that the design results can minimize the H2 or H∞
performance without simulating structural responses. Zuo
and Nayfeh [28–30] used the output feedback control theory
for designing a passive system by importing appropriate
constraint conditions. Te constrained conditions and
gradient descent were used to obtain the optimal design
parameters. Michielsen et al. [31] used the LQR-based op-
timization to obtain the optimal parameters of multiple
tuned mass–spring–damper systems to reduce the plate
vibration. Chang et al. [32, 33] transformed the optimization
TMD design problem into an optimal observer problem to
perform a parameter optimization design. For optimizing
the negative stifness and additional damping in a shear
frame structure, Qu et al. [34] formulated the optimal
problem as a static decentralized control and solved the
parameters along a homotopy path. Tis iterative procedure
enables the gain matrix to be merged with a specifc load
pattern. Broadly speaking, employing active control theory
to obtain optimal design parameters of passive system has
been proven to be a feasible approach [26–34]. However,
most of the research has formulated the optimization
problem to a sparse gain matrix [28–31, 34] because of
applying a state feedback loop. Tis sparsity constraint is the
key issue that raises the difculties of fnding the optimal
solution.

Te objective of this study is to propose a general optimal
design method for a passive TMD using a static output
feedback algorithm and an updating iterative procedure.Te
updating process utilizes the fact that the solution of static
output feedback ensures an improved system response,
enabling the gain matrix to converge without requiring the
gradient of the objective function. Additionally, excitation
shaping flters such as wind or seismic spectrum can be
incorporated into the design scenario to ensure a compre-
hensive design. In this study, the equation of motion for
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a MDOF structure that implemented with a designing
passive TMD is reconfgured, so the optimal design problem
of the TMD could be transformed into the nonsparse gain
matrix optimization problem as static output feedback issue
in active control feld. Te static output feedback algorithm
is then applied to obtain the conditionally optimal gain
matrix. Following that, the updating iterative procedure is
further presented to determine the optimal TMD design
parameters, thus the structural mean square or impulse
responses reach the minimum without regarding the reg-
ulator of control authority. Te feasibility of the proposed
method is confrmed through numerical verifcation by
comparing solutions obtained from the proposed method
with the conventional analytic solutions. Tis study also
employed the proposed method to obtain the optimal design
parameters of TMD for the cases of velocity or absolute
acceleration minimization of a SDOF structure subjected to
earthquake loading. Finally, two cases of designing a passive
TMD for MDOF structures considering wind or earthquake
excitation shaping flter are also demonstrated.

2. Problem Formulation

2.1. Dynamics of a MDOF Building Structure Implemented
with a TMD. If a N-DOF structure is implemented with
a passive TMD, the DOF of the total system changes to
(N+ 1). Te foor where the TMD is connected to the
structure is the j-th foor (j≤N), as shown in Figure 1. Te
DOF of TMD is placed in the upper leftmost DOF of the
matrices. Te vector d can be confgured using the TMD
location as follows:

d1×(N+1) � 1 01×(N− j) − 1 01×(j− 1)􏽨 􏽩. (1)

Te equation of motion of the (N+ 1)-DOF system is
expanded to

m€x (t) + c _x(t) + kx(t) � ewf(t), (2)

where x(t) �
xd(t)

xs(t)
􏼢 􏼣 is the displacement vector, xd(t) and

xs(t) �

xN(t)

⋮
x1(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ are the displacement of TMD and struc-

ture relative to the base, respectively; m �
md 01×N

0N×1 ms
􏼢 􏼣 is

the system mass matrix, md is the TMD mass, ms is the
structural mass matrix of dimension RN×N;

c � cdd
Td +

0 01×N

0N×1 cs
􏼢 􏼣 is the system damping matrix, cd

is the damping coefcient of TMD, cs is the structural
damping matrix, and the superscript Tdenotes the transpose

of the matrix; k � kdd
Td +

0 01×N

0N×1 ks
􏼢 􏼣 is the system

stifness matrix, kd is the stifness of TMD, ks is the structural
stifness matrix;wf(t) and e are the external disturbance and
the system external disturbance confguration matrix, re-
spectively. If the external force is wind force, then
wf(t) ∈ RN×1 represents wind loads acting on each story of

the structure. In addition, the TMD is mostly installed in-

doors, there is no direct wind action so e �
01×N

IN×N

􏼢 􏼣. If the

external disturbance is the base acceleration, wf(t) ∈ R1×1 is
ground acceleration. Te TMD is afected by the earthquake
force as well, so e � − m1 and 1 ∈ R(N+1)×1 are the column
vectors where the elements are ones.

2.2. Transformation of anOptimal Design Problem toOptimal
Control Problem. To determine the optimal design of the
TMD stifness and damping coefcient and to maintain the
overall system stability in the design process, which uses the
active control algorithm, the stifness and damping co-
efcient of TMD are set as

kd � kd0 + kd1, (3)

cd � cd0 + cd1, (4)

where kd0 and kd1 are the initial stifness and controlling
stifness, respectively; cd0 and cd1 are the initial damping
coefcient and controlling damping coefcient, respectively.
To keep the system stable, the initial kd0 must be greater than
0 to ensure stability. A simple suggested value can be
md(2πfs)

2 which means the TMD is initially tuned to the
natural frequency of the structure, fs. Te initial damping
coefcient cd0 should be set as a positive value greater than 0.
Tis makes the overall system asymptotically stable. Te
initial damping ratio is suggested to be about 1% or more.
Te sum of the restoring force and damping force of TMD is
the partial interaction force of TMD and structure and is
expressed as

m2

mj

mj+1

md

cd

kd

x1 (t)

x2 (t)

xj (t)

xj+1 (t)

xN (t)

xd (t)

m1

mN

Figure 1: Schematic diagram of a MDOF structure equipped with
a TMD.
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u(t) � kd1 xd − xj􏼐 􏼑 + cd1 _xd − _xj􏼐 􏼑. (5)

Tis interaction force u(t) can be regarded as a control
force requiring optimal design. Te feedback signals of
equation (5) are the TMD stroke and the velocity of TMD
relative to the structure, so the controlling stifness kd1 and
controlling damping coefcient cd1 are the gains of this
control force.

Substituting equation (3) to equation (5) into equation
(2), the equation of motion of the system in confguration
space changes to

m€x (t) + c _x(t) + kx(t) � bu(t) + ewf(t), (6)

where c � cd0d
Td +

0 01×N

0N×1 cs
􏼢 􏼣 and k � kd0d

Td+

0 01×N

0N×1 ks
􏼢 􏼣 are the damping matrix and stifness matrix,

respectively, of the left part of the equation. b � − dT is the
location vector of the control force. For convenient active
control design, the equation of motion of equation (6) can be
converted to the state-space expression as follows:

_zs(t) � Aszs(t) + Bsu(t) + Eswf(t), (7)

where zs(t) �
x(t)

_x(t)
􏼢 􏼣 is the state vector;

As �
0 I

− m− 1k − m− 1c􏼢 􏼣 is the system matrix;

Bs �
0(N+1)×1

m− 1b
􏼢 􏼣 is the state-space control force location

vector; Es is the state-space external force location matrix. It

is expressed as Es �
0(N+1)×N

m− 1e
􏼢 􏼣 for an external wind force

of multiple inputs or as Es �
0(N+1)×1

m− 1e
􏼢 􏼣 for an external

earthquake force of single input. Te control force of
equation (5) in the state-space form can be expressed as

u(t) � kd1 cd1􏼂 􏼃
d 01×(N+1)

01×(N+1) d
⎡⎣ ⎤⎦

x

_x
􏼢 􏼣 � GVszs(t),

(8)

where G � kd1 cd1􏼂 􏼃 is the undetermined gain matrix,
including all the parameters to be designed for TMD
(stifness and damping coefcient), which is not a sparse

gain matrix. Te TMD relative state output matrix Vs �

vrd
vrv

􏼢 􏼣 is the matrix of the corresponding output vector

combination, where vrd � d 01×(N+1)􏽨 􏽩 is the output vector
of TMD displacement relative to the structure, and vrv �

01×(N+1) d􏽨 􏽩 is the output vector of TMD velocity relative to
the structure. Te relationship between the gain matrix and

feedback signal of the structural system and partial in-
teraction force is shown in Figure 2.

Te state-space expression, besides the system state
equation of equation (7), is often accompanied by an output
(measurement) equation. Te relation of the state zs(t),
input u (t), and output ys(t) of the system is usually
expressed as

ys(t) � Cszs(t) + Dsu(t) + Fswf(t), (9)

where ys(t) is the output, which can be a single output or
multiple outputs; Cs is the output matrix; Ds is the control
force feedforward matrix; Fs is the external disturbance
feedforward matrix. Cs, Ds, and Fs matrices can be selected
according to the desired output.

2.3. Augment State-Space System with Excitation Shaping
Filter. In the TMD design, the external excitation is often
considered a random disturbance. However, it is also pos-
sible to consider the wind or earthquake characteristics in
the modeling, i.e., the rational linearized Davenport spec-
trum [35] or Kanai–Tajimi spectrum [33]. Te wind or
seismic spectrum can be regarded as a shaping flter as

_zf(t) � Afzf(t) + Efw(t),

wf(t) � Cfzf(t) + Ffw(t),
(10)

where zf(t) is the implicit states of the flter; Af , Ef , Cf , and
Ff are the state-space matrices of the flter; w(t) is white-
noise input and wf(t) is now a shaped external disturbance
output which will continuously feed into the main system.
Te excitation shaping flter can be easily combined with the
MDOF structure with the TMD system of equation (7)
written in state-space representation by

_z(t) � Az(t) + Bu(t) + Ew(t), (11)

where z(t) �
zs(t)

zf(t)
􏼢 􏼣 is the states of the augment system;

A �
As EsCf
0 Af

􏼢 􏼣, B �
Bs
0􏼢 􏼣 and E �

EsFf
Ef

􏼢 􏼣 are the system

matrices of the augment system. Te accompanied output
equation of equation (9) becomes

y(t) � Cz(t) + Du(t) + Fw(t), (12)

Structure with 
TMD

Gain matrix
G

Excitation
wf (t)

Responses
zs (t)

Passive control system

Outputs
Vszs (t)

Partial interaction 
force u (t)

Figure 2: A schematic diagram of the gain matrix and output
feedback signal of control force.
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where C � Cs FsCf􏼂 􏼃;D � Ds; and F � FsFf . Moreover, the
control force of equation (8) is now written as

u(t) � GVz(t), (13)

where V � Vs 0􏼂 􏼃 can be derived. Te relationship of the
augment system between the excitation shaping flter and
passive control system is shown in Figure 3

If designing the TMD under random (white-noise)
exicration is considered, then a constant of one is used for
the shaping flter. As a result, the augment system can be
simplifed as z(t) � zs(t), A � As, B � Bs, E � Es, C � Cs,
and F � Fs.

3. Optimal Design of a Passive Tuned
Mass Damper

According to equation (13), the partial interation force of
TMD is not full-state feedback. Te optimal gain matrix
cannot be obtained by computing the expanded Riccati
equation. Tis optimal gain matrix can be obtained by the
static output feedback (direct output feedback) design
method.

3.1. Optimal Design of the Static Output Feedback. Static
output feedback is a method to design an active control force
[36, 37]. It uses output feedback instead of state feedback.
Te control efect of static output feedback is usually not
identical to the traditional LQR optimization in active
control, because the initial conditions and constrains of
control force have to be considered. However, these con-
straint conditions make the static output feedback suitable to
apply for the passive system.

In control theory, the control force applied to the system
aims to enhance the dynamic characteristics of the system
and reduce its response when encountering external forces,
so equation (13) is substituted in equation (11) to obtain

_z(t) � [A + BGV]z(t) + Ew(t). (14)

If the system is stationary and the external force w(t) is
an impulse load at a time t � 0, this external impulse can be
transformed into the initial condition of the system while
satisfying the following equation:

_z(t) � [A + BGV]z(t), z(0) � E1, (15)

where 1 is the column vector of ones and the dimension is
the number of external forces. Te corresponding output of
the solution can be expressed as

y(t) � Cz(t) + Du(t), z(0) � E1. (16)

To obtain the optimal gain matrix G to minimize
equation (16), the quadratic efectiveness objective function
J of output y(t) minimization is set up as

J � 􏽚
∞

0
yT

(t)y(t)􏽨 􏽩dt

� 􏽚
∞

0
zT

(t)Qz(t) + 2zT
(t)Nu(t) + u

T
(t)Ru(t)􏽨 􏽩dt,

(17)

where the weighting matrices in previous equation are as
follows:

Q � CTC, (18)

N � CTD, (19)

where Q is the positive semidefnite weighting matrix of the
system state; N is the weighting matrix of state and the
control force coupling term; R � DTD is the control force
regulator. Tese weighting matrices can be determined only
according to the optimization objective by combinations of
the output matrix C and D of equation (12), so the design
method is general for various design cases. Te output
matrices corresponding to diferent optimization objectives
are shown in Table 1. As presented in Table 1, the wind and
earthquake forces are not distinguished because of the same
output matrix in the same design objective under impulse
excitation.

Te objective function of equation (17) must follow the
dynamics of the system and satisfy the constraint conditions.
Te constraint objective function J

′ can be derived by
Lagrange multiplier L (Appendix A). Te minimization of
the constraint objective function is the simultaneous solu-
tion of partial derivatives of all the independent variables in
J
′ to be 0 to obtain

zJ
′

zL
� (A + BGV)

TH + H(A + BGV) + Q + 2NGV + VTGT
RGV􏼐 􏼑 � 0, (20a)

zJ
′

zH
� Z0 + L(A + BGV)

T
+(A + BGV)L � 0, (20b)

zJ
′

zG
� 2BTHLVT

+ 2NTLVT
+ 2RGVLVT

� 0, (20c)
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Te algebraic equations of equations (20a)–(20c) are
solved simultaneously to obtain the gain matrix G. Usually,
solving the algebraic equations of equations (20a)–(20c)
simultaneously can be iterative [38, 39] by regarding the
equations (20a) and (20b) as Lyapunov equations. Te so-
lution of the Lyapunov equation of equations (20a) and
(20b) is shown in Appendix B.

Furthermore, the solution of equation (20b) is related to
the initial condition of the system. Unlike [26, 36], that uses
the identity matrix as the quadratic initial condition matrix,
the quadratic initial condition matrix is related to the ex-
ternal disturbance location matrix, i.e., Z0 � E11TET (Ap-
pendix A). Terefore, the quadratic initial condition matrix
under wind or earthquake forces is diferent, as shown in
Table 2.

In addition to the output matrices listed in Table 1,
further output matrices of specifc objectives can be com-
bined as required.

3.2. Updating Iterative Procedure. However, when output
matrixD is zero in some cases, then the regulator R is zero so
there is no solution that consists of the Lyapunov equations
[38, 39]. Ten, equations (20a)–(20c) is not easy to solve.
Terefore, a conditional objective is used to replace equation
(17) as follows:

Jc � 􏽚
∞

0
yT

(t)y(t) + u
T

(t)Ru(t)􏽨 􏽩dt, (21)

where R is an assigned control force regulator. To minimize
equation (21), the partial derivatives are the same as
equations (20a)–(20c) except that the control regulator in
equations (20a)–(20c) becomes

R � DTD + R. (22)

If the gain matrix G is obtained by minimizing equation
(21) which is a conditional weight balanced optimal solution
of output y(t) and control force u(t), then the performance
will not be as well as the optimal solution of equation (17).
Terefore, this paper further presents an updating iterative
procedure to obtain the optimal design value that mini-
mization of equation (17) is achieved.

Once the gain matrix G � kd1 cd1􏼂 􏼃 calculated by static
output feedback of equations (20a)–(20c) is a conditionally
optimal gain matrix that can always improve the dynamic
response of the system but not reach the overall optimum,
the controlling stifness kd1 and controlling damping co-
efcient cd1 can be used to update the initial stifness kd0 and
initial damping coefcient cd0 of the TMD as follows:

kd0 ⟶
updating by

kd0 + kd1, (23)

cd0 ⟶
updating by

cd0 + cd1. (24)

Te corresponding matrices, such as c, k and state-space
matrices, are therefore updated collectively. After the TMD
design parameters in the system matrix (kd0 and cd0) are

Gain matrix
G

Responses

Passive control system

Outputs
Vszs (t)

wf (t)

Partial interaction 
force u (t)

Structure with 
TMD

Excitation shaping 
flter

White-noise
w (t)

Augment system

Figure 3: A schematic diagram of the augment system and passive control system.

Table 1: Output matrices corresponding to optimization objectives.

Output target Output matrix

(A) Te i-th foor displacement of the structure Cs � d 01×(N+1)􏽨 􏽩

Ds � [0]

(B) Te i-th foor velocity of the structure Cs � 01×(N+1) d􏽨 􏽩

Ds � [0]

(C) Te i-th foor acceleration of the structure Cs � d − m− 1k − m− 1c􏽨 􏽩

Ds � dm− 1b

(D) Te i-th model displacement of the structure Cs � 0 Φ1×N 01×(N+1)􏽨 􏽩

Ds � [0]

d � 01×(N+1− i) 1 01×(i− 1)􏽨 􏽩 is the i-th foor output location vector of the structure. Φ1×N is the i-th mode shape of the bare structure.
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updated by the obtained gain matrix, a newly conditionally
gain matrix G can be recalculated by static output feedback
to process a new update.

Trough an iterative updating operation, the condi-
tionally gain matrix G must converge and approach 0 or
smaller than a positive microvalue ε (kd1 ≈ 0 and cd1 ≈ 0).
Tis means that even if the control force is applied,
a better objective function cannot be obtained through the
static output feedback. Particularly, the TMD design
parameters (kd0 and cd0) in the system matrix are now
updated to the optimal design parameters because the
controlling stifness kd1 and controlling damping co-
efcient cd1 are zeros. Terefore, the iterative operation is
complete.

3.3. General Optimal Design Method of a Passive Tuned Mass
Damper. Te iterative procedure combined with static
output feedback is as follows:

(1) Given the structural parametersms, cs, ks, and TMD
mass md, the initial stifness kd0 and damping co-
efcient cd0 of TMD are determined. Te system
matrices m, c, k, b, and e in confguration space are
subsequently constructed.

(2) Te state-space matrices As, Bs, Es are established.
Te output matrices Cs and Ds (Table 1) and the
corresponding output vector Vs are determined.
Furthermore, the excitation shaping flter is selected
or omitted as required.

Construct augment state-space matrix
A, B, E, C, D, F, V

Choose a control force regulator
R

Calculate weighting matrix and quadratic initial condition matrix
Q, N, Z0

Solve equations (20a)–(20c) to obtain gain matrix
G = [kd1 cd1]

Check gain matrix G ≈ 0

kd
opt = kd0

cd
opt = cd0

If Yes If Not

Complete

If
unsolvable

Static output 
feedback

Updating iterative 
procedure

Construct state-space of the system and acquire excitation shaping filter
As, Bs, Es, Cs, Ds, Fs, Af , Ef , Cf , Df

Acquire structure parameters and preselect TMD mass to construct 
structure with TMD system matrix in configuration space

m, c, k, b, e––

Updating
updating by

kd0 kd0 + kd1

updating by
cd0 cd0 + cd1

System Matrix
k, c– –

Figure 4: Te fow chart of a designing optimal TMD by static output feedback and updating iterative procedure.
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(3) Te augment state-space system matrices according
to equations (11)–(13) are constructed.

(4) Te weighting matrices, Q and N, and the initial
condition Z0 are calculated according to equations
(18) and (19) and Table 2.

(5) A regulator weight R for the weighting R is selected.
(6) Equations (20a)–(20c) of static output feedback is

solved simultaneously to obtain a conditionally
optimal gain matrix G � kd1 cd1􏼂 􏼃. If simultaneous
solving fails, we return to Step 5 to modify regulator
weight R.

(7) Each element of the conditionally optimal gain
matrix G is examined that approaches 0 (i.e., smaller
than ε). If any element does not approach 0, updating
of kd0 and cd0 in c and k is proceeded using equations
(23) and (24), and then return to Step 3. Conversely,
if all elements approach 0, the optimal design pa-
rameters of TMD are determined as k

opt
d � kd0 and

c
opt
d � cd0, and the design procedure is completed.

Te proposed design procedure is compiled in Figure 4.
It is worth remarking that the gain matrix solving by static

output feedback is not a sparse gain matrix and its elements are
just equal to the undetermined TMD design parameters. In the
iterative process, the updating gain matrix G always converges
toward zero. Tis is because the solution of static output
feedback ensures that the obtained gain matrix always im-
proves the system response.Te required control efort reduces
after the updating. Terefore, even though the gradient of the
objective function of every step is not calculated in the iterative
process, the presented updating method is workable.

Furthermore, the selection of the regulator R of static
output feedback is only related to iterative convergence speed
but not to the fnalized optimal design value. Tis is also
because the gain matrix G is converged to zero eventually in
the updating procedure, so the role of the regulator R in static
output feedback is diminished. Te control efort is reduced
during the iterative process; therefore, as long as the value of R
is selected appropriately such that the simultaneous solution
of equations (20a)–(20c) is available, the regulator R is un-
necessary to change in the subsequent iterative process.

In the iterative procedure, the R is frst recommended to
attempt a small positive value. Usually, there is no simul-
taneous solution when choosing a too-small value of R for
equation (20a); therefore, the R-value can choose a small
value for frst attempt and then be gradually enlarged until
the solution of equation (20a) is available. Tus, an ap-
propriate regulator R to make a faster convergence of it-
erative procedure can be obtained.

Te limitation of the proposed method is that the static
output feedback control algorithm is used to design a linear
time-invariant (LTI) system, so the structural mass,
damping, and stifness are unvaried during the design
process. To apply the proposed method to design a linear
TMD on a nonlinear structure, an equivalent linearized
structural model must be adopted frst.

4. Validation of SDOF Structure
Implemented with a Tuned Mass Damper

Taking a SDOF structure implemented with the TMD as an
example, after the TMD is installed, it is a 2-DOF system.
Te TMD location vector d � 1 − 1􏼂 􏼃, the system dis-

placement vector x(t) �
xd(t)

xs(t)
􏼢 􏼣, the mass matrix

m �
md 0
0 ms

􏼢 􏼣, the damping matrix c �
cd0 − cd0

− cd0 cd0 + cs

􏼢 􏼣,

and the stifness matrix k �
kd0 − kd0

− kd0 kd0 + ks

􏼢 􏼣 are consid-

ered. e is the external force disturbance vector. If the external

force on the system is wind force, then e �
0
1􏼢 􏼣. If the

external force is an earthquake force, then e �
− md

− ms

􏼢 􏼣. Te

equation of motion of equation (6) can be established
according to the corresponding system matrices.

Te equation of motion is transformed into state-space
expression and expressed as equation (7). In this section, the
excitation shaping flter is neglected so that the external
disturbance is considered a random excitation. Ten, the
system state is expanded to
zsT(t) � xd(t) xs(t) _xd(t) _xs(t)􏼂 􏼃. In equation (8), the
active control force is u(t) � GVszs(t) where G � kd1 cd1􏼂 􏼃

is the undetermined gainmatrix. TMD relative displacement
confguration vector is expressed as vrd � 1 − 1 0 0􏼂 􏼃, and
TMD relative velocity confguration vector is expressed as
vrv � 0 0 1 − 1􏼂 􏼃, so the TMD relative state output matrix

is Vs �
1 − 1 0 0
0 0 1 − 1􏼢 􏼣. Te output location vector of the

structure is expressed as d � 0 1􏼂 􏼃, so the weighting ma-
trices, Q and N, of the objective function can be established
according to diferent optimization objectives as shown in
Table 1.

Warburton [12] and Korenev and Reznikov [13] proposed
certain analytic solutions of a SDOF undamped structure
implemented with TMD. Tigli [16] also proposed the analytic
design formula for SDOF damped structure. Tese optimal
design formulae aim at the objective mean square response
minimization under random excitation, such as the minimi-
zation of the area under a specifc frequency response function.
According to static output feedback, the external disturbance
assumes to be the impulse loading in the time domain during
derivation. In addition, by Parseval’s theorem, the H2-norm
optimization of the impulse function in the time domain is
equal to the frequency response function in the frequency
domain as follows:

‖H‖2 � 􏽚
∞

0
h

T
(t)h(t)dt􏼔 􏼕

1/2

�
1
2π

􏽚
∞

− ∞
H

H
(ω)H(ω)dω􏼔 􏼕

1/2
,

(25)
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where h (t) is the impulse response of the system;H (ω) is the
frequency response function of the system; the superscript H
denotes the conjugate transpose of the matrix.Terefore, the
optimal design method proposed in this paper is identical to
the mean-square response minimization under random
excitation if the excitation shaping flter is neglected. When
designing the optimal design parameters of TMD of a SDOF
structure, it should be equal to the analytic solution by
[12, 13, 16].

Te mass of the SDOF structure ms is 29485 kg, and the
structure frequency is assigned 0.5Hz for numerical sim-
ulation. Expect for undamped structure, for the case of
damped structure, the structural damping ratio is selected
0.05. To discuss the cases of diferent TMD mass ratios
(Rm � md/ms), the mass ratio variation range is 0.005∼0.1.
Te common design parameters of TMD, i.e., optimal fre-
quency ratio Rf � fd/fs (fd is the natural frequency of
TMD) and the optimal damping ratio ζd � cd/2

�����
mdkd

􏽰
of

TMD, are calculated for comparison. To obtain the optimal
TMD design parameters under random disturbance, the
excitation shaping flter is neglected in this section. After the
optimal design parameters k

opt
d and c

opt
d of TMD are obtained

by following the procedure of Figure 4, the optimal fre-
quency ratio R

opt
f of TMD and the optimal damping ratio

ζoptd of TMD are further calculated. Te numerical error of
the obtained design parameters respected to the analytic
solution is defned as

R
err
f � R

opt
f − R

anal
f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (26.1)

ζerrd � ζoptd − ζanald

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (26.2)

where the analytic solutions of Ranal
f and ζanald can be obtained

from [12, 13, 16].
Te cases of (1) structural displacement or velocity

minimization under wind force, (2) structural velocity
minimization under wind force, (3) structural acceleration
minimization under wind force, and (4) structural dis-
placement minimization under earthquake forces are ana-
lyzed and compared with the analytic solutions of mean-
square response minimization to verify the proposed
method.

4.1. StructuralDisplacementandVelocityMinimizationunder
White-Noise Wind Force. For the case of minimizing
structural displacement of an undamped structure under
wind force, the output vectors of structural displacement are
C � 0 1 0 0􏼂 􏼃 and D � [0]. Te system weighting matrix
Q � CTC and the weighting matrix of the coupling termN �

CTD can then be obtained accordingly by equations (18) and
(19). Te quadratic initial condition can also be obtained

from Table 2, that is, Z0 �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/ms

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. After the cor-

responding matrices are established, a control force weight
that the solution of equations (20a)–(20c) could be available
is set up, e.g., R � 10− 5 ∼ 10− 7. Te microvalue of the
convergence condition is also assigned, e.g., ε � 10− 10. Te
errors of the obtained design parameters respected to
Warburton’s formula [12] are illustrated in Figure 5.

As shown in Figure 5, for the undamped structure, all the
errors of the design parameters are extremely small. Te
optimal TMD parameters obtained by the proposed method
can be regarded identical to the analytic solution proposed
by Warburton [12].

In addition to minimizing structural velocity under wind
force, the output vector is just changed as C � 0 0 0 1􏼂 􏼃 so
the output y(t) in equation (13) becomes structural velocity.
Te optimal TMD parameters can also be obtained by the
proposedmethod. In this scenario, for undamped structures,
the errors of the design parameters obtained by the proposed
method are so small that they can be regarded as equal to the
analytic solution proposed by Warburton [12]. For the
damped structure, the errors of the obtained design pa-
rameters respected to Tigli’s formulae [16] are illustrated in
Figure 6. Te errors are also quiet small. Te optimal TMD
parameters obtained by the proposed method can be
regarded identical to the analytic solution proposed by Tigli
[16].Te accuracy and feasibility of the proposedmethod are
verifed.

4.2. Structural AccelerationMinimization underWhite-Noise
Wind Force. In this case, the output vectors of structural
acceleration are C � kd0/ms − (kd0/􏼂 ms) − (ks/ms)(cd0/ms)−
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Figure 5: Numerical error of proposed method for the case of minimizing structural displacement under wind force: (a) error of optimal
TMD frequency ratio, and (b) error of optimal TMD damping ratio.
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(cd0/ms) − (cs/ms)] andD � [1/ms]. After the corresponding
matrices are established, a control force weight, e.g.,
R � 10− 4 ∼ 10− 6 is set up. Te microvalue of the convergence
condition is also assigned, e.g., ε � 10− 10. Ten, the optimal
TMD parameters can be determined by using the method
proposed in this paper. For the undamped structure, Figure 7
shows the errors of optimal parameters obtained by the pro-
posed method with respect to the modifed solution proposed
by Korenev and Reznikov [13] (Appendix C). Te optimal
TMD parameters obtained by the proposed method show that
the results exhibit well consistency with the analytic solutions
proposed by Korenev and Reznikov [13].

4.3. Structural Displacement Minimization under Random
Earthquake Force. In the base excitation case, the output
vectors of structural displacement are C � 0 1 0 0􏼂 􏼃 and
D � [0], and the system weighting matricesQ andN can then
be obtained by equations (18) and (19). Te external distur-
bance is base acceleration, so the quadratic initial condition

Z0 �

0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Table 2). After the corresponding matrices

are established, a control force weight that the solution of
equations (20a)–(20c) could be available is set up, e.g.,
R � 10− 6 ∼ 10− 8. Te microvalue of the convergence condi-
tion is also assigned, e.g., ε � 10− 10. Ten, the optimal TMD
parameters can be obtained by the proposed method.

For the undamped structure, the optimal parameters
obtained by the proposed method are equal to the analytic
solution proposed by Warburton [12]. Figure 8 shows the
errors of optimal parameters obtained by the proposed
method with respect to the Warburton’s [12].

By comparing these cases with the mentioned references,
the feasibility of the H2-norm optimization according to the
proposed method is validated.

5. Numerical Demonstration of Optimal Tuned
Mass Damper Design Problems

Tere is no explicit design formula available in reference to
a SDOF structure implemented with a TMD for the H2-
norm minimization of velocity or absolute acceleration of
the structure under impulse or random earthquake force.
For these cases, the proposed method can provide the op-
timal TMD design parameters. Te results are compiled as
a design look-up tables over common range for engineers.
Te design method proposed in this paper can apply the
optimal TMD design for the MDOF structure. Terefore,
a MDOF structure equipped with the TMD is also verifed
for optimal design in this section.

5.1. StructuralVelocity orAbsoluteAccelerationMinimization
under Random Earthquake Force. To minimize the struc-
tural velocity of a SDOF structure implemented with a TMD
subjected to the earthquake force, the output vectors of

structural velocity are C � 0 0 0 1􏼂 􏼃 and D � [0]. On the
other hand, for the case of minimizing the absolute accel-
eration of the structure subjected to earthquake forces, the
output vectors of absolute acceleration are C �

kd0/ms − (kd0/ms) − (ks/ms) (cd0/ms) − (cd0/ms) − (cs/􏼂

ms)] and D � [1/ms].
After the corresponding matrices Q, N and Z0 are

established, a control force weight R, for which the solution
of equations (20a)–(20c) could be available, is selected.Ten,
the optimal TMD parameters to minimize structural velocity
or absolute acceleration can be obtained separately using the
proposed method. As a design reference for engineers, the
parameters are listed in Tables 3 and 4.

It is worth mentioning that the efectiveness of a theory
regarding the energy transferred from earthquake input to
building structures during a single impulse has been dem-
onstrated in revealing the characteristics of the energy
transfer function [40]. In recent years, Akehashi and
Takewaki [41, 42] have further proposed using double im-
pulse or pseudomultiple impulse, considering the near-fault
or resonance efect of long-duration excitations, to capture
the critical response of structures.

5.2. Design of Optimal Tuned Mass Damper Installed on a 5
Stories Structure Subjected to Earthquake. In some cases, the
MDOF structure cannot always be directly simplifed to
a SDOF structure, or the simplifed SDOF is likely to have
larger diferences than the original MDOF structure. Te
proposedmethod applied for aMDOF structure subjected to
earthquake is demonstrated in this section. An illustrated
case of a 5-story structure [43] is presented in Figure 1. Te
mass matrix, damping matrix, and stifness matrix of the
structure are shown in Table 5. Notably, the stifness matrix
of the structure is a full matrix because the stifness matrix
sources are from system identifcation. Te TMD is installed
on the 4th foor. Te design objective is to reduce the re-
sponse of the top-foor slab of the structure under
earthquake force.

Moreover, if the Kanai–Tajimi spectrum is used as the
excitation shaping flter [44], where ωg and ζg are the
ground parameters of the flter, the state-space represen-
tation of the shaping flter is given as

Af �
0 1

− ωg
2

− 2ζgωg
􏼢 􏼣; Bf �

0
− 1􏼢 􏼣;

Cf � − ωg
2

− 2ζgωg􏽨 􏽩 and Df � [0].
After the TMD is installed on the 4th foor of the

structure, the system becomes 6-DOF.Te mass of the TMD
is selected as 2.8 kg. Te TMD location confguration vector
d1×6 � 1 0 − 1 0 0 0􏼂 􏼃. A scaled Kanai–Tajimi spectrum
parameters for this case have ωg � 15  rad/s and ζg � 0.4.
Te Kanai–Tajimi spectrum is shown in Figure 9.

If the optimization objective is to minimize the top-
foor absolute acceleration response, the output matrices
Cs � d − m− 1k − m− 1c􏽨 􏽩, Ds � dm− 1b and R � 1.0 are
assigned. After applying the proposed method as shown in
Figure 4, the obtained optimal stifness of TMD k

opt
d is
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87.5943 N/m and the optimal damping coefcient c
opt
d is

3.3220 N-s/m. Te design results are compared with Den
Hartog’s formulae [10]. As the frequency response
function of the top-foor absolute acceleration is shown in
Figure 10, the top-foor absolute acceleration of the frst
mode can be reduced efectively. Te H2-norm of the top-
foor absolute acceleration is reduced to 11.3147 from
14.8156 in the case without TMD, which is slightly better
than the design using Dan Hartog’s formulae of 11.3306.
Figure 11 shows the H2-norm convergence versus the
iteration steps of the illustrated case. As shown in

Figure 11, the iteration converges after 171 steps. Tis
verifes that the proposed method can be used in MDOF
structure, and the TMD can be installed on any foor.

5.3. Design of Optimal Tuned Mass Damper Installed on a 60
StoriesHigh-Rise StructureSubject toWindLoads. A 60-story
outrigger building, located on the St. Francis Shangri-La
Palace in the Philippines, was chosen for the numerical study
of a high-rise building incorporating a TMD subjected to
wind loads. Te structure has a height of 210m and is
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Figure 6: Numerical error of proposed method for the case of minimizing structural velocity under wind force: (a) error of optimal TMD
frequency ratio, and (b) error of optimal TMD damping ratio.
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Figure 7: Numerical error of proposed method for the case of minimizing structural acceleration under wind force: (a) error of optimal
TMD frequency ratio, and (b) error of optimal TMD damping ratio.
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Figure 8: Numerical error of proposed method for the case of minimizing structural displacement under white-noise base excitation: (a)
error of optimal TMD frequency ratio, and (b) error of optimal TMD damping ratio.
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modeled as a cantilever beamwhich includes 60 translational
and 60 rotational DOFs (total 120 DOFs). Te building has
a total mass of 29,750 tons and the outrigger is not con-
sidered in this numerical study. Te natural frequencies of
the frst three structural modes are 0.185Hz, 1.145Hz, and
3.146Hz, respectively.Te structural damping ratio of 0.01 is
assumed for each mode under wind loads. For more details
on the outrigger building, readers are suggested to refer to
Chang et al. [45] and Wang et al. [9, 46]. Te Davenport
wind spectrum of the outrigger building was evaluated by
Wang et al. [47]. To consider the Davenport wind spectrum

as an excitation shaping flter, a 4-order rational transfer
function is ftted as follows:

T(s) �
9.371s

3
+ 226.8s

2
+ 801.96s + 7.294

s
4

+ 32.923s
3

+ 174.35s
2

+ 58.987s + 1.9937
.

(27)

Figure 12 illustrates the power spectrum of the Dav-
enport spectrum and the ftted rational transfer function.
Te rational transfer function is subsequently converted to
a state-space model, as shown in equation (10), enabling the

Table 3: Optimal TMD design parameters of structural velocity minimization under random earthquake force.

Rm

Structural damping ratio ζs
0 0.01 0.02 0.05

Rf ζd Rf ζd Rf ζd Rf ζd
0.001 0.999001 0.015803 0.998428 0.015800 0.997656 0.015795 0.994176 0.015772
0.005 0.995025 0.035267 0.993874 0.035253 0.992528 0.035235 0.987350 0.035163
0.01 0.990099 0.049752 0.988524 0.049725 0.986758 0.049693 0.980347 0.049570
0.02 0.980392 0.070014 0.978239 0.069962 0.975900 0.069903 0.967817 0.069689
0.05 0.952381 0.109109 0.949178 0.108985 0.945806 0.108851 0.934735 0.108399
0.10 0.909091 0.150756 0.904905 0.150522 0.900574 0.150277 0.886778 0.149479

Table 4: Optimal TMD design parameters of absolute acceleration of the structure minimization under random earthquake force.

Rm

Structural damping ratio ζs
0 0.01 0.02 0.05

Rf ζd Rf ζd Rf ζd Rf ζd
0.001 0.999251 0.015805 0.999093 0.015805 0.998937 0.015806 0.998505 0.015807
0.005 0.996268 0.035289 0.995919 0.035289 0.995573 0.035290 0.994592 0.035294
0.01 0.992571 0.049814 0.992082 0.049814 0.991599 0.049814 0.990223 0.049823
0.02 0.985282 0.070187 0.984604 0.070187 0.983935 0.070189 0.982030 0.070207
0.05 0.964212 0.109772 0.963199 0.109773 0.962203 0.109778 0.959381 0.109826
0.10 0.931541 0.152540 0.930231 0.152543 0.928949 0.152554 0.925341 0.152659

Table 5: System parameters of a 5-story structure [43].

Mass matrix ms (kg)

19.57 0 0 0 0
19.57 0 0 0

19.57 0 0
sym. 19.57 0

19.57

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Damping matrix cs (N-s/m)

15.93 − 14.28 0.11 0.46 0.06
34.26 − 16.46 − 1.04 0.30

36.22 − 15.61 − 0.79
sym. 37.46 − 13.67

47.19

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Stifness matrix ks (N/m)

14621 − 22962 7463 1169 − 211
52688 − 36587 5481 1612

58344 − 35825 4549
sym. 58596 − 36564

77108

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Modal frequencies fs (Hz) Mode 1 to 5
0.915 3.371 7.107 10.657 12.728

Modal damping ratios ζs
Mode 1 to 5

0.02
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excitation shaping flter to be applied to each excitation
input and combined with the MDOF structure in-
corporating the TMD system.

A TMD with a mass of 200 tons is installed on the top of
the 60-story building. Te mass ratio of the TMD with
respect to the fundamental structural modal mass is ap-
proximately 2.7%. When the proposed method is applied to
minimize the top-foor displacement response as the opti-
mization objective, the obtained optimal stifness of TMD
k
opt
d is 255.4863 kN/m and the optimal damping coefcient

c
opt
d is 36.3526 kN-s/m. Te structural displacement fre-
quency response function is shown in Figure 13 and
compared with Den Hartog’s design results. As shown in
Figure 13, the top-foor displacement of the tuningmode can
be reduced efectively. Furthermore, the H2-norm of the
structural displacement is reduced from 20.92×10− 4 to
9.58×10− 4, an improvement over Dan Hartog’s result of
9.64×10− 4.

Te 60-story tall building is modeled as a cantilever
beam. Terefore, the top-foor slab of the building will
exhibit some rotational behavior due to fexural de-
formations. However, according to the study of Liu et al.
[48], this rotational behavior can be neglected if the
structure is within the elastic range, i.e., if the drift ratio of
the building is less than 1/200. Moreover, this TMD system
is mainly efective in reducing structural vibration for the
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frst mode due to the location, such as the top of the
building. Figure 14 illustrates the translational and rota-
tional mode shapes of the structural DOFs, where each
systemmode shape has vector norm of one. In this case, the
TMD is designed to tune to the frst mode of the structure.
Terefore, the frst mode of the structure has been sepa-
rated into two smaller mode shapes, but there are almost no
benefts for the other mode shapes. If TMD is desired to
reduce vibration in other modes. In that case, the TMD can

be optimized by using the higher modal displacement of the
structure as the weight matrix for case (D) in Table 1 and
placing the TMD on the foor where the most signifcant
building drift of the desired mode occurs. To reduce the
vibration of tall buildings across multimodes, Wang et al.
[49] proposed a solution that involves using the frequency-
independent dampers and negative stifness devices for this
60-story outrigger building, which can enhance all struc-
tural modes simultaneously.
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Figure 14: Mode shapes of the DOFs of high-rise building with/without the TMD: (a) translational modes, and (b) rotational modes.
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6. Conclusions

By appropriately reconfgurating the parameters in the
design of passive TMD, the optimization problem for pa-
rameter design can be transformed into an optimization for
the nonsparse control gain matrix in static output feedback
(also called direct output feedback) of active control. Given
this, a general design method is proposed which combines
the static output feedback and updates iterative procedure.
Te followings are concluded for this paper:

(1) Te optimal TMD design method proposed in this
paper applies to SDOF or MDOF structures, un-
damped, or damped structures and can be used for
structures subjected to random wind loads or
earthquake excitations. Depending on the chosen
design objective, the corresponding weighting ma-
trix can be casted accordingly based on the selected
output matrices. Additionally, the excitation shaping
flter can be incorporated in system as required.

(2) According to Parseval’s theorem, the optimization
result obtained in time domain by the proposed
method is equivalent to the optimization of the
mean-square response in frequency domain.
Terefore, the numerical simulation results dem-
onstrate that the optimal parameters of a SDOF
structure equipped with the TMD are consistent with
the analytic solution in references. Te obtained
design parameters can meet the mean square min-
imization (i.e., H2-norm minimization) of the ob-
jective under random external force.

(3) Since the reconfgured control gain matrix is not
a sparse matrix, the static output feedback optimi-
zation procedure can be used to solve the optimal
gain matrix. Te optimal gain matrix for static
output feedback is dependent on the initial quadratic
condition of the system. To achieve the mean square
minimization objective, an analytic initial quadratic
condition is presented. Tis paper also explains how
to obtain the analytic initial quadratic condition
from state-space external force location matrix.

(4) In the updating iterative procedure, as the required
control efort is reduced after the parameter
updating, the gain matrix can thus converge to 0.
When the gain matrix approaches 0, the design
parameters have been updated to the optimal one.

Tis means that even if the active control force is
attempted to apply in this situation, a better objective
cannot be obtained so the zero gain matrix is given
by static output feedback.

(5) Te regulator weight R applied for static output
feedback is only related to the convergence speed in
the iterative procedure but not infuence optimal
design parameters of TMD after updating. Tis is
because the role of the regulator R in static output
feedback is diminished when the gain matrix ap-
proaches 0. As long as the regulator weight R is
appropriately selected and the simultaneous solution
of static output feedback is available, the regulator
weight R is not required to be changed in the iterative
procedure.

(6) Te optimal design parameters for TMDs that
minimize the velocity and absolute acceleration of
the SDOF structures under random earthquake force
are presented for engineers’ reference. Examples of
designing TMDs for a 5-story MDOF structure
subjected to earthquake and a 60-story MDOF
structure subjected to wind loads, both considering
excitation shaping flter, are also demonstrated in
this paper.

Appendix

A. Derivation of Constrained
Objective Function

To minimize the following objective function:

J � 􏽚
∞

0
zT

(t)Qz(t) + 2zT
(t)Nu(t) + u

T
(t)Ru(t)􏽨 􏽩dt,

(A.1)

when subject to the system dynamics

_z(t) � Az(t) + Bu(t),

u(t) � GVz(t),

z(t) � e
(A+BGV)tz(0),

(A.2)

where z(t) is the state vector of the system; u(t) is the output
feedback control force;Q,N and R are the weightings; z(0) is
the initial condition. Equation (A.2) is substituted in
equation (A.1) to obtain

J � z(0)
T

􏽚
∞

0
e

(A+BGV)Tt Q + 2NGV + VTGT
RGV􏼐 􏼑e

(A+BGV)t
dt􏼔 􏼕z(0). (A.3)

Usually, a constant positive semidefnite matrixH can be
found to ensure system stability, such that the system re-
sponse approaches 0 as time approaches infnity, i.e.,
limt⟶∞ zT(t)Hz(t) � 0. Te objective function optimi-
zation problem of equation (A.3) can be transformed into an
initial value problem as follows:

J � z(0)
THz(0) � tr HZ0􏼈 􏼉, (A.4)

where tr{.} is the trace operation of a matrix. Z0 � z (0) z (0)T
can be treated as a quadratic initial condition matrix. Te
calculation of constant positive semidefnite symmetric
matrix Hmust satisfy the state equation and its propagation
solution of equation (A.2). Terefore, the Lagrange
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multiplier L is used to substitute the constraint condition.
Te constrained objective function J

′ is derived as

J
′

� tr HZ0 + L (A + BGV)
TH + H(A + BGV)􏽨􏽮

+ Q + 2NGV + VTGT
RGV􏼐 􏼑􏼐 􏼑􏽩􏽯.

(A.5)

B. Solution of Lyapunov Equation

A Lyapunov equation meets the following form:

AX + XAT
+ Q � 0, (B.1)

where A matrix is stable (the real part of its eigenvalue is
smaller than 0) and Q matrix is a positive defnite matrix,
then equation (B.1) has the unique positive defnite matrix
solutionX. To solveX, the Kronecker product can be applied
to change the abovementioned equation to

[I⊗A + A⊗ I]vec(X) + vec(Q) � 0, (B.2)

where⊗ is an operation of Kronecker product, and vec (.) means
the matrix is arranged by column vectorization. Terefore, vec
(X) can be obtained from equation (B.2) by inverse matrix
operation. Ten, vec (X) is rearranged by matricization of
a square matrix X to complete the computation.

C. Correction of Damping Ratio Formulae

Te optimal TMD design formula of structural acceleration
mean-square minimization for a SDOF undamped structure
under random wind force was proposed by Korenev and
Reznikov [13].Te optimal frequency ratio design formula is
expressed as follows:

R
opt
f �

��������
1 − 0.5Rm

􏽰
. (C.1)

Te original optimal damping ratio design formula has
no real number solution when the mass ratio is large and is
corrected as follows:

ζoptd �

���������������������

Rm 1 − 0.25Rm( 􏼁

2 2 − Rm( 􏼁 1 − Rm + Rm
2

􏼐 􏼑

􏽶
􏽴

. (C.2)
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