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Machine learning has become increasingly popular for modeling dam behavior due to its ability to capture complex relationships
between input parameters and dam behavior responses. However, the use of sophisticated machine learning methods for
monitoring dam behaviors and making decisions is often hindered by model uncertainty and a lack of interpretability. Tis paper
introduces a novel model for dam health monitoring, focused on monitoring radial displacement and seepage, using optimized
sparse Bayesian learning and sensitivity analysis. Te model hyperparameters are optimized using an intelligent optimization
method integrating the multi-population Rao algorithm and blocked cross-validation, while sensitivity analysis is employed to
calculate the relative importance of input variables for a better understanding of the dam’s state. Te efectiveness of the proposed
model is verifed by using long-term monitoring data of a prototype concrete arch dam. Te results confrm that the proposed
model provides satisfactory performance on both the point predictions and the interval predictions for dam structural behaviors
while obtaining efective explainability.

1. Introduction

Concrete dams play a crucial role in food control, power
generation, water supply, and irrigation and are thus sig-
nifcant assets in the social and economic domains. Over
their service lifetime, these structures are exposed to diverse
operational and environmental loads, including rare or
extreme events such as earthquakes, prolonged droughts,
and severe fooding. Moreover, the overall performance of
concrete dams may gradually decline over time due to
a range of factors, including hydraulic erosion, age-related
deterioration, and other factors. Te displacement and
seepage are important indicators that can intuitively refect
the structural performance of a concrete dam. Trough

analysis of historical monitoring data, it is possible to de-
velop a data-driven model that can efectively monitor the
structural response of a dam and thereby provide early
warning of any anomalies.

Hydrostatic-season-time (HST) and hydrostatic-tem-
perature-time (HTT) are common statistical models for
monitoring dam structural responses [1]. Tese models
utilize measured reservoir water height, seasonal parameters
(or temperature data), and time-related parameters as input,
with dam displacement as the output. To monitor dam uplift
or seepage behaviors, rainfall parameters are incorporated as
additional model inputs [2].

Te advent of artifcial intelligence has spurred in-
creasing interest in the use of machine learning techniques
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for dam health monitoring [2–5]. Various MLmethods have
been utilized for data-driven modeling of dam structural
behavior, such as feed-forward neural networks [6–9], ex-
treme learning machines [10–12], recurrent neural network
(RNN) [13–15], support vector regression (SVR) [16–19],
Gaussian process regression [20–22], and decision trees-
based ensemble models [23–25]. Besides, some novel data-
driven methods or models have been proposed for dam
health monitoring, including switching Kalman flter [26],
dynamic time warping [27], panel data model [28], cloud
model [29], correlated multi-target stacking [30], and spa-
tiotemporal association mining [31]. Recently, the concept
of automated machine learning (AutoML) has been also
applied in dam response prediction. AutoML allows the user
to search among a range of machine learning methods with
optimized hyperparameters and identifes the best one [32].

Based on the literature reviewed above, it is evident that
most existing methods in the feld of dam health monitoring
provided deterministic values (i.e., point prediction) for dam
structural behaviors, without adequately accounting for the
uncertainties associated with these results. Uncertainty
quantifcation (UQ) plays a key role in monitoring and
decision making during the dam operation period [33–35].
Te uncertainties in dam engineering are mainly divided
into two categories, i.e., aleatoric and epistemic uncertainty,
where the former is referred to as the data noise, and the
latter is associated with the model uncertainty (i.e., the
uncertainties of model input, structure, and parameters)
[36]. Probabilistic predictions are generally considered more
valuable and reliable than point predictions, as they provide
information about the predicted values in the form of
prediction intervals. Tese intervals capture the uncertainty
associated with the predictions and can be particularly useful
for decision making and risk management under a UQ
framework.

Another signifcant concern in the feld of probabilistic
prediction is model explainability. While existing probabi-
listic prediction methods [20, 37] often provide accurate
results, they can be considered black-box machine learning
models, lacking the ability to provide practitioners with
information about the inner workings or features of the
model. Although some data mining methods have been used
in the monitoring of dam structural behaviors to determine
the relative importance of each input [23, 38, 39], their
applicability to probabilistic machine learning methods can
be limited.

Te objective of this study is to establish an explainable
probabilistic prediction model that is capable of providing
reliable and efcient prediction intervals of concrete dam
behaviors, as well as visualization of input infuencing
variables, thereby ofering a tool for risk-based decision
making in dam health monitoring. To fulfll these objectives,
an optimized sparse Bayesian learning (SBL) approach is
proposed for generating high-quality prediction intervals,
with the model hyperparameters determined via the in-
tegration of the Rao algorithm with blocked cross-
validation. To address the issue of model explainability,
a new sensitivity analysis technique is employed to display

the infuencing features of model inputs. In summary, the
main novelties and contributions of this paper are as follows:

(i) Developing a Bayesian-based probabilistic model to
make interval predictions of concrete dam struc-
tural behaviors.

(ii) Presenting an efcient optimization framework for
selecting model hyperparameters adaptively.

(iii) Utilizing novel sensitivity analysis techniques to
render the dam health monitoring model
explainable.

(iv) Verifying the performance of the health monitoring
model by comparing it with other popular ML-
based models.

Te remainder of the paper is summarized as follows.
Section 2 provides the relevant theory and the imple-
mentation procedure of the proposed monitoring model.
Te case study and detailed performance evaluation are
demonstrated in Section 3. Finally, the concluding remarks
and future work are presented in Section 4.

2. Methodology

Te sparse Bayesian learning, strategy of hyperparameter
optimization, and sensitivity analysis-based data mining
approach are the important components of the proposed
dam health monitoring model. Te basic theories of algo-
rithms and the implementation procedure are introduced in
the following subsections, and the diagram of the model
framework is shown in Figure 1.

2.1. Sparse Bayesian Learning. Sparse Bayesian learning
(SBL) is a nonparametric and probabilistic machine learning
method. SBL shares a similar form to SVM, but its operation
speed is faster and provides more fexibility for the choice of
the basis function [40]. Moreover, SBL provides the prob-
abilistic output by estimating the probabilistic density of the
weights of kernel functions, which can quantify the un-
certainty of the prediction results.

Given the input dataset DSBL � (Xi, yi)|, i � 1, 2, · · · , N},
the quantitative relationship betweenXi and yi computed by
SBL is as follows:

yi � SBL Xi;w(  + εi, (1)

where X is the matrix of the infuencing variables of the dam
structural behaviors, y is the measured displacement or
seepage,w denotes the weight vector, and εi ∼ N(0, σ2) is the
error term. Considering the predictive uncertainty, the
model output yi follows the normal distribution:

p yi Xi,w, σ2
  � N SBL Xi;w( , σ2 . (2)

Te output of SBL is represented by the linearly weighted
sum of N kernel functions, which is shown below:

y � 
N

i�1
wiK Xi,X(  + w0, (3)
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where wi denotes the weight value and K(Xi,X) denotes the
kernel function.

For the N input vectors, the likelihood of output y is
expressed as follows:

p y|w, σ2  � 2πσ2 
− N/2

exp −
1
2σ2

‖y − Φw‖
2

 , (4)

where y � (y1, · · · , yN)T represents target vector, w �

(w0, . . . , wN)T represents weight vector, Φ � [ϕ(X1), . . . ,

ϕ(XN)]T is the N × (N + 1) design matrix, and
ϕ(Xi) � [1, K(Xi,X1), . . . , K(Xi,XN)]T.

It is noted that the maximum likelihood estimation of
the unknown parameters w and σ2 above could lead to
overftting. To overcome this problem, efective practice is
imposing a set of explicit priors over these unknown pa-
rameters to constrain the variation, as shown below:

p(w|α) � 
N

i�0
N wi

0, α− 1
i , (5)

where α is a vector containing N + 1 hyperparameters that
implies how far from zero each weight is allowed to deviate.

Based on Bayesian posterior inference, the posterior
distribution over w is obtained as follows:

p w|y, α, σ2  �
p y|w, σ2 p(w|α)

p y|α, σ2 

� (2π)
− (1+N)/2

|  |
− 1/2 exp −

1
2
(w − μ)

T


− 1

(w − μ) ,

(6)

where the posterior covariance is  � (σ − 2ΦTΦ + A)− 1 with
A � diag(α0, α1, . . . , αN) and the mean vector is
μ � σ− 2 ΦTy.

For the uniform hyperpriors over σ2 and α, the learning
of SBL is transformed to maximizing p(y|α, σ2) as follows:
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Figure 1: Framework of the proposed dam health monitoring model.
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p y|α, σ2  �  p y|w, σ2 p(w|α)dw

� (2π)
− N/2 σ2I + ΦA− 1ΦT




− 1/2

exp −
1
2
yT σ2I + ΦA− 1ΦT

 
− 1
y .

(7)

Values of σ2 and α are obtained iteratively by using the
following formulas:

αi( 
New

�
ci

μ2i
σ2i 

New
�

‖y − Φμ‖
2

N − ici

, (8)

where ci denotes the ith posterior mean weight that can be
defned by ci ≡ 1 − σ2i Σii and Σii represents the ith diagonal
element of the posterior weight covariance.

With the convergence of the iterative process, the most
probable (MP) values of α and σ2 at termination are denoted
as αMP and σ2MP. For the trained SBL model, the predictive
distribution given the new inputs X∗ is as follows:

p y∗
y, αMP, σ2MP  �  p y∗

w, σ2MP p w|y, αMP, σ2MP dw.

(9)

In equation 9, considering both terms in the integrand is
Gaussian distribution, the predictive mean y∗ and variance
σ2∗ are computed by

y∗ � μTϕ X∗( , σ2∗ � σ2MP + ϕ X∗( 
T

 ϕ X∗( , (10)

where y∗ denotes the mean value of predictive distribution
while the uncertainty of predictive distribution is quantifed
by variance σ2∗. Once the signifcance level α is determined,
the prediction interval under the confdence level (1 − α)% is
obtained:

L
(α)

, U
(α)

  � y∗ − z1− α/2σ∗, y∗ + z1− α/2σ∗ , (11)

where L
(α) and U

(α) denote the lower bound and upper
bound, respectively. z1− α/2 is determined by the signifcance
level α. For example, the 95% prediction interval of dam
structural behavior is [y∗ − 2σ∗, y∗ + 2σ∗], while the 99%
prediction interval is [y∗ − 3σ∗, y∗ + 3σ∗].

Various kernel functions can be adopted in SBL mod-
eling [40], such as Gaussian, linear, polynomial, and sigmoid
kernel functions. In this paper, the widely used Gaussian
kernel KG is adopted in SBL, as follows:

KG Xi,X(  � exp − Xi − X
����

����
2/2l

2
 , (12)

where l denotes the kernel width, which is the hyper-
parameter of SBL. It is noted that a small value of the kernel
width may lead to a low convergence speed and overftting
problem. Conversely, a large value of kernel widthmay cause
underftting [41]. Terefore, it is necessary to determine the
suitable values of l to improve the model performance. Te
technical details of hyperparameters optimization are in-
troduced in the next subsection.

2.2. Tuning Hyperparameters Using MP-Rao Algorithm and
Cross-Validation. It can be inferred from equation (3) that
the hyperparameters of SBL have infuential efects on the
prediction performance. To prevent overftting and obtain
sensible hyperparameters with less human intervention, the
modifed Rao algorithm called the multi-population Rao
algorithm (MP-Rao) and blocked cross-validation [42] are
integrated. MP-Rao is a parallel and metaphor-less opti-
mization algorithm, which contains the common controlling
parameters (i.e., population size and the number of itera-
tions) and is improved based on the Rao-3 algorithm [43].
Te main principle of the Rao algorithm and its variant lies
in that the obtained solutions get away from the worst
solution and move closer to the best one. Once the target
function of optimizing model hyperparameters is given, the
target values are dynamically updated based on the difer-
ences between the best candidate, the existing one, and the
worst solution as follows:

xj,k,i
′ � xj,k,i + r1,j,i xj,best,i − xj,worst,i



  + r2,j,i xj,k,i  or xj,l,i



 − xj,l,i  orxj,k,i  , (13)

where xj,k,i is the value of the jth variable for the kth
candidate during the ith iteration, r1,j,i and r2,j,i are the
random numbers within the range of [0, 1], xj,best,i repre-
sents the value of the jth variable for the best candidate, and
xj,worst,i represents the value of the jth variable for the worst
candidate. Te term |xj,k,i  or  | − (xj,l,i  or xj,k,i) indicates the
stochastic interaction among the population, where the

current solution xj,k,i is compared with a randomly selected
solution xj,l,i. If the target function value of kth solution is
smaller than that of lth solution, then “xj,k,i  or xj,l,i” be-
comes xj,k,i. Otherwise, “xj,k,i  or xj,l,i” becomes xj,l,i.

Compared to the original Rao algorithm, the MP-Rao
algorithm splits the entire population into p subpopulations,
and the solution xj,k,i in each subpopulation is
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independently updated by equation (13) in parallel.
Terefore, the algorithm is expected to reach an optimum
solution.

Moreover, to balance the model ftting and predictive
performance, the weighted mean squared error of prediction
in cross-validation (WMSEcv,k) is built as the target function:

WMSEcv,k �
1
K



K

k�1
α1


N
i�1,k yi,v − yi,v 

2

N
+ α2


N
i�1,k yi,t − yi,t 

2

N
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (14)

where N is the number of samples, K is the number of folds
in blocked cross-validation (K is determined as 5 in this
research), yi,v denotes the predicted value of the inner
validation samples, yi,v denotes the measured value of the
inner validation samples, yi,t denotes the simulated value of
the inner training samples, and yi,t denotes the measured
value of the inner training samples. α1 and α2 are controlling
weight coefcients (α1 + α2 � 1, 0< α1 < 1, 0< α2 < 1). Te
values of α1 and α2 are set as 0.3 and 0.7, respectively [11].

After the optimization of hyperparameters, SBL utilizes
the obtained optimal parameters to perform the prediction
task on the new testing set. Te procedure of the adaptive
hyperparameter tuning is summarized in Algorithm 1.

2.3. Evaluation Metrics for Model Performance. Both point
prediction metrics and interval prediction error metrics are
adopted for evaluating the performance of the proposed
probabilistic model. Te formulas for the error metrics are
introduced in the following subsections.

2.3.1. Point Prediction. Correlation coefcient (r), nor-
malized root mean squared error (NRMSE), and mean
absolute error (MAE) are selected as point prediction
metrics, which have been defned in the literature [3, 11].
While for r, the larger value is preferable (i.e., closer to 1.0),
for NRMSE and MAE, the smaller values indicate the better
performance of the model. It is worth noting that NRMSE
(shown in equation (15)) is a normalized indicator based on
the RMSE, which can be used to compare the model pre-
diction performance on diferent response variables.

NRMSE �
1

max(y) − min(y)
·

�������������

1
N



N

i�1
yi − yi( 

2




, (15)

where yi denotes the ith measured value and N is the sample
number.

2.3.2. Interval Prediction. To assess the efectiveness of the
prediction intervals obtained from probabilistic prediction,
the prediction interval coverage probability (PICP), nor-
malized mean prediction interval width (NMPIW), and
coverage width-based criterion (CWC) are chosen [44].

Prediction interval coverage probability denotes the
percentage of data points lying within the yielded intervals:

PICP �
1
N



N

N�1
pi, pi �

1, yi ∈ L
(α)

i , U
(α)

i ,

0, yi ∉ L
(α)

i , U
(α)

i ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where yi denotes the measured value, N denotes the total
amount of the target variables, and U

(α)

i and L
(α)

i are the
upper and lower values of the ith prediction interval, re-
spectively. Teoretically, PICP should be close to the con-
fdence level (1 − α)% [44]. However, this hardly happens
due to the infuence of outliers in testing samples, model
uncertainty, and imperfect model training (i.e., overftting or
underftting).

NMPIW is another important metric that measures the
average width of the interval, as follows:

NMPIW �
1

Nξ


N

N�1

U
(α)

i − L
(α)

i , (17)

where ξ denotes the range of the target variable. If the width
of the achieved interval is too small, the corresponding PICP
would be lower, and more target variables would lie out of
the yielded prediction interval. Conversely, the larger in-
terval width would make the prediction interval invalid as
the abnormal variations of the dam behavior are not easily
detected.

It is recognized that a reliable monitoring model should
provide high-quality prediction intervals, achieving high
coverage of the measured value under the scenario of
a narrow-width interval. CWC is a comprehensive metric for
evaluating the prediction intervals in terms of the coverage
probability and interval width:

CWC � NMPIW · 1 + ηe
− λ(PICP− μ)

 , η �
0, PICP≥ μ,

1, PICP< μ,


(18)

where μ denotes the nominal confdence level associated
with prediction intervals. λ denotes the penalty parameter,
which should be large enough, and λ is assumed as 5 in this
study. η is a boolean variable. If PICP is less than the nominal
confdence level, CWC would be large regardless of the
width of prediction intervals. On the contrary, if PICP is
equal to or greater than the nominal confdence level, then
η � 0, and NMPIW would be the controlling parameter. As
a result, the reliability of the obtained prediction intervals
increases as the CWC decreases.

Structural Control and Health Monitoring 5



2.4. Interpretation of Dam Behaviors Using Sensitivity
Analysis. Te primary shared trait between SBL and other
black-box ML models is their lack of transparency, meaning
that the inner workings of the model are difcult to com-
prehend. Inspired by the pioneering work of Cortez and
Embrechts [45], the sensitivity analysis (SA) method is in-
troduced to mine the hidden information from the dam
monitoring data. Te SA is commonly considered a post hoc
data mining algorithm [46]. Its primary principle involves
computing relative importance scores for the managed inputs
to clarify the inner workings of a model [47]. Tese scores
quantify the sensitivity of each feature on the model outputs.
A comparison of the scores among diferent groups of input
variables unveils the importance granted by the model to each
of such input variables when producing its outputs.

Te detailed procedure of the SA is summarized in
Algorithm 2, where M and N represent the number of
infuencing variables and the sample number, respectively,
m denotes the number of subgroups (each subgroup con-
tains at least one infuencing variable, m≤M), X(N×M)

(j)

denotes the generated meta-inputs by holding all the vari-
ables at their mean values except the jth infuencing variable
(j≤m), and yi(j) denotes the corresponding ftted results.

In sensitivity analysis, a larger RIS indicates a greater
infuence of the load efects on dam structural behavior. In
Algorithm 2, the variance and average absolute error (AAE)
are adopted to build sensitivity factors (SV(j) and SAAE(j)), as
follows:

SV(j) �
1

N − 1


N

i�1
yi(j) − y 

2
,

SAAE(j) �
1
N



N

i�1
yi(j) − y



,

(19)

where yi denotes the measured value, yi(j) denotes the ith
ftted value (posterior mean value), y denotes the median
value of the target variable y, y denotes themean value of the
target variable y, and N is the sample number.

2.5. Te Procedure of the SA-OSBL Model for Dam Health
Monitoring. In this section, an explainable probabilistic
model for monitoring concrete dam structural behaviors
based on SA-OSBL is proposed. Te detailed steps are de-
scribed below, and the fowchart of the model imple-
mentation procedure is shown in Figure 2.

2.5.1. Step 1: Generating the Model Input and Output.
Generate the model inputs of the dam structural behaviors
using hydrostatic, temperature, aging, and rainfall-related
variables based on in situ monitoring data of the dam (see
equations (20) and (21)).

2.5.2. Step 2: Splitting the Data. Te dataset is divided into
the training set and testing set, where the former is utilized
for the construction of the OSBL-based probabilistic model,
and the latter is utilized for the validation of the model’s
efectiveness. Before model training, the samples are stan-
dardized in the range of [0, 1] using the min-max nor-
malization approach.

2.5.3. Step 3: Optimizing and Training the Model. Te kernel
parameters of the model are estimated via the framework
combining the MP-Rao algorithm and blocked cross-
validation (5-fold). Ten, the SBL model is trained using
the optimized hyperparameters based on the training
dataset.

Inputs: Te training dataset DSBL and search range of hyper-parameters l.
Outputs: Te optimal hyperparameter lopt
Initialize: Population size np, sub-population size nsp.
for j � 1, · · · , np do
for  i � 1, · · · , nsp do
(∗) Compute the target function value f using equation (14).
Identify the best and worst solutions, respectively.
Update the solutions by equation (13), and compute the new target function value f′.
if f′ <f  then
Accept the new solution, f � f′.

else
Reject the new solution.

end  if
if Te termination condition is achieved then
Output the search results in ith sub-population.

else
Return to the key step (∗).

end  if
end  for
Find the best solutions fi among nsp sub-populations.

end  for
Find the best solutions fj from np populations, as well as lopt.

ALGORITHM 1: Pseudocode of hyperparameter tuning for SBL model.
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2.5.4. Step 4: Validating the Performance of the Simulation.
Te training and testing samples set are fed into the OSBL
model to obtain the ftted and predicted results, respectively.
Ten, evaluate the simulation performance of the moni-
toring model comprehensively based on diferent error
metrics and interval prediction metrics.

2.5.5. Step 5: Interpreting theModel. Te relative importance
scores for diferent groups of infuencing variables are

computed via the sensitivity analysis based on the historical
monitoring data, to ofer the interpretation of the dam’s
structural behaviors.

3. Case Study

In this paper, a double curvature arch dam located in the
south of France is chosen as a case study. Te dam is owned
by EDF and was fnished in 1960. Te arch dam consists of
13 blocks, and the maximum dam height above the

Initialize the parameters of MP-RAO
Split the population into nspsub-populations

Training and optimization of SBL model
Initialize the parameters of MP-RAO

Find the best and worst solutions
in ith sub-population

Update the hyperparameters solutions
in ith sub-population

Accept the new
solution

Reject the new
solution

Whether new solution is
better than the old one?

Data collection, prepocessing
and segmentation

Training set Testing set

Establishing optimized SBL model

Computing the prediction intervals of the
dam structural behaviors

Evaluation of the prediction performance
using error metrics

Start

Computing RIS of infuential variables via
sensitivity analysis

End

Output the global optimum solution
(hyperparameters)

Is the maximum
iteration reached?

Pa
ra

lle
l c

om
pu

tin
g

Yes

No

Model interpretation and validation

Figure 2: Flowchart of the model implementation procedure.

Inputs: Te training dataset DSBL � (X(N×M)
i , yi)|i � 1, 2, · · · , N .

Outputs: Relative importance score RISj(j � 1, 2, · · · , m).
Initialize: Divide X(N×M) into m subgroups, m≤M.
for j � 1, . . . , m do

Generate the jth meta-inputsX(N×M)
(j) .

Compute the jth outputs: y(j) � SBL[X(N×M)
(j) ].

Compute the jth sensitivity factors S(j).
end  for
for k � 1, . . . , mdo

Compute the relative importance score: RISk � S(k)/
m
k�1S(k) × 100%

end  for

ALGORITHM 2: Pseudocode of the sensitivity analysis for model interpretation.
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foundation is about 45m with the crest length being 166m.
To monitor the dam service status, the dam is equipped with
a comprehensive monitoring system and instruments.
Figure 3 presents the layout of the dam pendulum moni-
toring instruments.

3.1. Data Collection and Preparation. Te radial dam dis-
placement and seepage of the arch dam are taken as
modeling targets. For the radial dam displacement, the
measurements of pendulums on the central block are se-
lected, where CB2 denotes the radial displacement between
the altitudes 236m (dam crest) and 196m (dam toe), while
CB3 denotes the radial displacement in the foundation
between the altitudes 195m and 161m. It is noted that the
positive value of the radial displacement indicates the
movement of the monitoring point to the downstream di-
rection. For the seepage, the fow rate is measured using
a weir located in the gallery at the downstream dam toe. Te
measured seepage is the total amount of water originated
from diferent locations including the seepage from sur-
rounding rock, potential leakages in concrete cracks, and
moisture transport in concrete. Te dam behavior data are
measured and collected regularly, and the time series of the
long-term monitoring data are illustrated in Figure 4.

Te corresponding ambient data include the water level,
temperature, and daily rainfall (see Figure 5). Since the dam
is located on the top of a glacial threshold, the reservoir water
height is zero once the water level is lower than 196m. Te
air temperature is not measured at the location of the dam.
Terefore, the ambient temperature is provided by in-
terpolation based on the measured temperature near the
dam region, where the interpolation takes into account the

altitude of the dam and is computed on a mesh of 1 km2.
Daily rainfall precipitation is collected from a rain gauge
located about 5 km from the dam. Te time series of the
in situ monitoring data covers a period of thirteen years (i.e.,
from January 2000 to December 2012). Te data from the
frst ten years (i.e., from January 2000 to December 2009) are
used for model training and calibration, while the remaining
data (from January 2010 to December 2012) are used for
testing. Te detailed statistical information of the measured
data is summarized in Table 1.

It is widely accepted that the structural behaviors of the
concrete dam are mainly infuenced by hydrostatic load,
temperature load, rainfall efect, and aging efect [3]. For the
hydrostatic load, the reservoir water height-related pa-
rameters Hi(i � 1 ∼ 4) or the segmented moving averages of
the reservoir water height [24] are selected as factors. Te
calculation of temperature efects depends on the layouts of
the thermometers; considering that the ambient temperature
is continuous and available, the segmented moving average
of ambient temperature [48] is selected to characterize the
temperature efect for displacement and seepage. Likewise,
the segmented moving average of daily rainfall is selected to
characterize the rainfall efect of seepage [39]. Te aging
efect refects the irreversible changing characteristics of dam
behaviors, which can be quantitatively represented by the
linear, logarithmic, exponential, or hyperbolic functions
regarding the time variable t [20].

Consequently, a total of fourteen factors are selected to
build the input variables for displacement modeling, which
are comprised of four hydrostatic load factors, six tem-
perature factors, and four time factors (aging factors), as
follows:

Xδ � xδ1, xδ2, · · · , xδ14 

� H, H
2
, H

3
, H

4
, T0, T1− 2, T3− 7, T8− 15, T16− 30, T31− 60, θ, ln θ, 1 − e

− θ
 ,

θ
θ + 1

  ,

(20)

where H is the reservoir water height, T0 denotes the
measured air temperature of the monitoring day, Tp− q de-
notes the moving average air temperature from p to q days
before the monitoring day, t represents the cumulative day
numbers from the initial day to the monitoring day, and
θ � t/100.

As for seepage, the lag efect of external load is con-
sidered. Terefore, six hydrostatic load factors, six tem-
perature factors, and six rainfall factors are selected to build
the input variables, as shown in equation (21). Based on the
engineering judgment, the time factors are discarded as
there is no signifcant trend change in seepage time series.

Xs � xs1, xs2, · · · , xs18 

� H0, H1− 2, H3− 7, H8− 15, H16− 30, H31− 60, T0, T1− 2, T3− 7, T8− 15, T16− 30, T31− 60

R0, R1− 2, R3− 7, R8− 15, R16− 30, R31− 60,

(21)

where H0 denotes the reservoir water height of the monitoring
day, R0 denotes the measured daily rainfall of the monitoring
day, and Hp− q and Rp− q denote the moving average values of

reservoir water height and daily rainfall from p to q days before
the monitoring day, respectively. Te meanings of the rest
symbols are the same as those in equation (20).
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3.2. Hyperparameter Optimization and Model Training.
Te kernel width l is automatically determined using the
proposed optimization framework, in which the search
range of kernel width l is (0.1,5.0]. As for initial parameters
in the MP-Rao optimization algorithm, the population size
np and subpopulation size nsp are set to 40 and 20, re-
spectively. Te classical particle swarm optimization (PSO)
and the Rao-1 algorithm (Rao) are adopted for performance
comparison, where the population size of PSO and Rao is set
to 20. As for initial parameters in PSO, c1 and c2 are set to 1.4
and 1.6, respectively. For all the algorithms, the maximum
number of iterations is 40.

Figure 6 illustrates the convergence curves of WMSEcv,k
error function using diferent optimization algorithms. It is
obvious that MP-Rao performs best in terms of convergence
rate and searching capability, indicating that the proposed
MP-Rao algorithm-based optimization framework for
hyperparameter tuning is reliable and efective. Based on the
optimization results, the hyperparameters of OSBL used for
modeling CB2, CB3, and seepage are 2.46, 2.50, and 2.59,
respectively.

3.3. PerformanceComparison onPoint Prediction. Te ftting
and prediction results using OSBL for CB2, CB3, and
seepage are shown in Figure 7, which provides an intuitive
refection on the goodness of ft via time series plots and
scatter plots. Te corresponding error metrics(r, NRMSE,
and MAE) are also summarized in Table 2. Based on the
results, it is clear that the ftting and prediction results of
radial displacement are better than those of seepage, and the
prediction deviations are larger than ftting deviations.

In this research, three kernel-based regression algo-
rithms, namely, KELM, RBFNN, and GPR, are chosen as
benchmark models to compare the point prediction per-
formance with that of OSBL. In KELM, the Gaussian kernel
is selected as the kernel function, and the regularization
parameter C along with kernel width are two hyper-
parameters to be optimized [11]. Gaussian kernel is also
applied in the RBFNNmodel, the number of hidden neurons
is the same as the number, and the spread value is the
hyperparameter that needs to be optimized [48]. In GPR,
diferent covariance functions are tested and the squared
exponential covariance function is fnally adopted in the
model. Te kernel width and noise term are the main pa-
rameters of GPR, which can be estimated by solving the
maximum likelihood estimation problem [20, 21].

Te long-term prediction results of the radial dis-
placement and seepage using diferent models are shown in
Figure 8. It can be observed that all models perform well on
the displacement prediction task, and the predicted values
are close to the measured values.

Table 3 summarizes the error metrics, with the best
values highlighted in boldface. As seen, the OSBL obtains the
smallest NRMSE and MAE values in the three tasks, out-
performing the other three models in terms of prediction
accuracy.

3.4. Performance Comparison on Interval Prediction. In this
research, OSBL is compared with the GPR and multiple
linear regression (MLR) in terms of the quality of the
achieved prediction intervals. GPR is regarded as the
probabilistic ML model that can provide interval prediction
directly by the prediction mean and prediction variance.
Specifc methods for prediction interval generation using
GPR can be found in [20, 49]. For the MLR model, the
internal coefcients are achieved through the least square
method, and the prediction interval is achieved through the
confdence interval method [50], where the ftting residuals
should be normally distributed.

In the application of the established interval prediction-
based health monitoring model, the confdence level is set to
99% (i.e., α � 0.01). Te PICP, NMPIW, and CWC metrics
of the prediction intervals are summarized in Table 4 with
the best results highlighted in boldface. It is observed that the
PICP values of OSBL in the case of CB2 and CB3 are almost
close to the preset confdence level. Besides, the NMPIW
values of the OSBL model are smaller, suggesting that the
predicted intervals are narrower in each scenario. Based on
the CWC results, it is concluded that OSBL is the best model.
It is also found that the GPR model performs worst in the
case of CB3 while the MLR model performs the worst in the
cases of CB2 and seepage. Notably, the prediction interval of
the MLR model in the case of seepage is invalid because the
prediction intervals are too wide with the NMPIW value
even larger than 1.0.

Figures 9 and 10 illustrate the obtained prediction in-
tervals for displacement for the OSBL and GPR models,
respectively. As seen, most of the displacement points are
within the prediction interval except for a few abnormal
values. Te obtained prediction intervals for seepage are
illustrated in Figure 11. Combined with results listed in
Table 4, it can be seen that nearly 30% of the seepage points

Table 1: Statistical information about the dam behaviors and ambient data.

Data category
(unit) Maximum Minimum Mean Monitoring frequency Data amount

CB2 displacement (mm) 15.95 − 27.48 − 6.79 1.5 weeks 688
CB3 displacement (mm) 3.91 − 5.00 − 0.33 1.5 weeks 681
Seepage fowrate (L/min) 26.46 0.01 6.54 1.5 weeks 661
Reservoir water height (m) 41.15 0 28.02 1 day 4749
Temperature (°C) 18.35 − 13.35 5.01 1 day 4749
Daily rainfall (mm) 88.00 0 2.15 1 day 4749
Te provided data are automatically checked, and there is no need for data cleaning.
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Figure 6: Comparison of convergence curves using diferent optimization algorithms.

Table 2: Error metrics of simulation results obtained from OSBL.

Monitoring point
Training set Testing set

r NRMSE MAE r NRMSE MAE
CB2 0.990 0.032 1.060 0.968 0.069 1.602
CB3 0.992 0.041 0.269 0.973 0.066 0.341
Seepage 0.771 0.101 1.848 0.574 0.178 3.303
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are not within the prediction interval achieved by GPR,
which is likely caused by the uncertainties of data noise and
model discrepancy. Compared with GPR, the reliability of
OSBL is much improved as the PICP value of OSBL is 0.122

larger than that of GPR. It is observed that the peak values
(i.e., regarded as potential anomalies) are not within the
prediction intervals, indicating that the models can be ap-
plied for early warning of dam seepage. In summary, the
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Table 3: Error metrics of point prediction results obtained from diferent models.

Model
CB2 CB3 Seepage

r NRMSE MAE r NRMSE MAE r NRMSE MAE
OSBL 0. 68 0.06 1.602 0. 73 0.066 0.341 0.574 0.178 3.303
KELM 0.925 0.095 2.145 0.946 0.086 0.389 0.463 0.193 3.424
RBFNN 0.954 0.098 2.311 0. 73 0.075 0.380 0.569 0.179 3.390
GPR 0.944 0.083 1.920 0.945 0.087 0.440 0.432 0.202 3.445
Note: the best values are marked in boldface.

Table 4: Quantitative evaluation of interval prediction results obtained from diferent models.

Model
CB2 CB3 Seepage

PICP NMPIW CWC PICP NMPIW CWC PICP NMPIW CWC
OSBL 0.951 0.26 0.5 4 0.962 0.25 0.557 0.833 0.612 1. 50
GPR 0. 71 0.347 0.729 0.894 0.329 0.861 0.711 0.656 3.303
MLR 0.932 0.341 0.797 0. 81 0.336 0.687 0. 22 1.809 4.348
Note: the best values are marked in boldface.

Measured value

Prediction interval
Predicted value

2013-012012-012011-012010-01
Time (year-month)

-30

-20

-10

0

10

20

CB
2 

(m
m

)

(a)

Measured value

Prediction interval
Predicted value

2013-012012-012011-012010-01
Time (year-month)

-30

-20

-10

0

10

20
CB

2 
(m

m
)

(b)
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efectiveness and reliability of the prediction intervals
achieved by OSBL are confrmed, and OSBL outperforms
GPR due to its smaller CWC values.

3.5. Model Interpretation. Figure 12 shows the RIS of three
groups of input variables using two sensitivity measures,
with the relative importance of hydrostatic load, tempera-
ture, time, and rainfall efects visualized by the bar plot. A
larger RIS indicates a greater infuence of the load efects on

dam structural behavior. However, it is important to note
that the RIS cannot quantify the absolute contribution of
each group of variables to displacement or seepage.

Te RIS results using two sensitivity measures are very
similar, revealing that the hydrostatic load has the greatest
impact on displacement variation near the dam crest (CB2),
followed by the efect of temperature, while the time efect
(aging efect) is insignifcant. Additionally, the efect of
temperature on the displacement variation at the dam toe
(CB3) is notably smaller than that on CB2. It is also observed
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that seepage is more sensitive to the hydrostatic load
compared to the rainfall efect, suggesting that changes in
reservoir water height dominate seepage variation.

From Figures 4 and 5, it is found that the radial dis-
placements and reservoir water height have positive correla-
tions, and there are no signifcant time-varying characteristics
in radial displacements. According to the dam engineering
mechanics knowledge, temperature-induced deformation at
the dam foundation is smaller than that at the dam crest due to
the smaller variations in temperature at the dam foundation
compared to the dam crest. Similarly, aging-induced de-
formation at the dam foundation is commonly larger than that
at the dam crest due to the foundation creep and restraint
efects of the dam abutment. As for seepage, the reservoir is the
main source of the leakage and it is reasonable that the reservoir
water height is the most infuencing factor of the seepage.
Terefore, the interpretation results in Figure 12 are generally
consistent with engineering experience and knowledge, con-
frming the efectiveness of the proposed sensitivity analysis.

4. Conclusions and Future Work

In this paper, we proposed an explainable probabilistic
model for monitoring concrete dam displacement and
seepage, which was validated using long-term monitoring
data from an arch dam. Te model provided the satisfactory
performance of simulation and anomaly detection for dam
behaviors, and the conclusions are summarized as follows:

(1) Te proposed OSBL model is superior to KELM,
RBFNN, and GPR models in terms of goodness of ft
and interval prediction results. Meanwhile, OSBL
provided better interval prediction results compared
to GPR and MLR models.

(2) Te OSBL model efectively quantifed uncertainty
through dynamic prediction intervals, where the
widths of the prediction intervals varied at diferent
periods. Te upper and lower limits of the intervals
served as real-time monitoring indices for dam
structural behaviors.

(3) A novel sensitivity analysis-based data mining ap-
proach was integrated with the proposed OSBL to
enhance the model’s explainability. Te in-
terpretation results, presented as relative infuence
scores for diferent groups of input variables,
revealed that reservoir water height had the greatest
infuence on dam displacement and seepage, while
the impact of rainfall was negligible.

Te proposed model is proved to be a competitive tool
for dam health monitoring. For future work, the following
remarks can be considered:

(1) Develop the multi-output SBL model to monitor
multi-point displacement or seepage of the dam
simultaneously.

(2) Incorporate interval metrics into the model training
to improve performance and produce more reliable
prediction intervals.

(3) Combine the OSBL model with numerical methods
(e.g., fnite element modeling) to establish the data-
mechanical hybrid-driven model for dam health
monitoring.
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