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Cracks can be important performance indicators for determining damage processes in new and existing concrete structures. In
recent years, deep convolutional neural networks (CNNs) have shown great potential in automatic crack detection and seg-
mentation. However, most of the current CNNs tend to lose high-resolution details and, therefore, lead to blurry object
boundaries; this results in poor performance for crack images with complex backgrounds in engineering structures. Tis study
proposes a two-stream boundary-aware crack segmentation (BACS) network that combines semantic image segmentation with
semantically informed edge detection explicitly. Firstly, a high-resolution network (HRNet) is utilized in the segmentation branch
for strong high-resolution representations through repeatedly conducting multi-scale fusions across parallel convolutions.
Furthermore, an edge branch is utilized for preserving fne-grained details of elongated thin cracks, which adopts a modifed
dynamic feature fusion (DFF) network to produce more accurate and sharper edge predictions.Te proposed method is evaluated
using a dataset of 1,892 images for three diferent scenarios. Te results show that the mean intersection-over-union (mIoU)
scores reach 79.26%, 68.74%, and 70.31% for pure crack, complex background, and variable-width scenarios, respectively. In
addition, crack width quantifcation is performed to validate the accuracy in terms of engineering practice. Te BACS achieves
high accuracy with an average absolute error of 0.0992mm, which corresponds to approximately two pixels in the images. In
conclusion, the study provides an efective solution for the crack segmentation task, especially for the variable-width scenario,
providing an accurate data foundation for the digital twin of concrete structures.

1. Introduction

Cracks and associated crack patterns can be indicators of the
stress state, loss of durability and reliability, and thus of the
service life of concrete structures. Terefore, certain cracks
and crack patterns also provide important information
about the deterioration of the concrete structure. Existing
cracks can signifcantly accelerate corrosion and expansion
of the reinforcement by the corrosion products and fnally
spalling of the concrete surface, which leads in the end to
a reduction of the load-bearing capacity and the service life
of the reinforced concrete structure. Frequent structural
monitoring with reliable reporting of the condition of the

inspected infrastructures is a necessary procedure to
maintain their long-term service capabilities [1–4]. Manual
inspections, which have been used for decades, are the most
widely used methods for crack detection. However, owing to
the subjective judgment of inspectors and dangerous
working conditions, they are always criticized for being
time-consuming and not sufciently accurate [5, 6].

To overcome these shortcomings, several automated
vision-based techniques for crack detection have been de-
veloped in the past few years. Classical computer vision
approaches, such as image processing techniques (IPTs),
have been introduced to the feld of crack detection [7–12].
IPTs extract features from images through elaborately

Hindawi
Structural Control and Health Monitoring
Volume 2023, Article ID 3301106, 17 pages
https://doi.org/10.1155/2023/3301106

https://orcid.org/0000-0001-8062-9869
https://orcid.org/0000-0001-8443-5033
mailto:jpeshu@zju.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3301106


designed extractors and detect cracks using thresholds or
trained classifers. Still, a major concern is the reliance of
prediction performance on the quality of hand-crafted
extracted features. Tis could be inevitably limited by
subjectivity and domain expertise [13]. Further, a great
number of preprocessed images are required; this makes the
detection process unadaptable, tedious, and inefcient.
Moreover, these hand-crafted extracted features cannot
distinguish between cracks and complex backgrounds in
low-level image cues [14]; thus, they are less applicable in
images with large variations.

Currently, deep learning techniques are driving advances
in computer vision to tackle the drawbacks of classical IPTs;
they can automatically identify intricate structures of large-
scale data using models with multiple processing layers
[15–20]. Convolutional neural networks (CNNs) are the
most widely used models for automated feature learning and
supervised detection [21–26]. Multiple eforts have been
made to implement CNN-related methods in pixel-level
crack detection. Li et al. [27] employed a fully convolu-
tional network- (FCN-) [28] based model for multiple
damage detection, including cracks and spalling. Mei et al.
[29] and Pan et al. [13] adopted DenseNet (as the backbone)
together with loss functions and attention modules, re-
spectively, to segment concrete cracks. Te UNet [30] ar-
chitecture has been used for concrete surface crack
segmentation [31, 32]. Kang et al. [33] utilized an integrated
model based on Faster R-CNN [34] and a modifed IPT for
crack detection and quantifcation. In addition, a two-level
technique consisting of Faster R-CNN and Mask R-CNN
[35] was devised for detecting and measuring the damage on
historic glazed tiles [36]. In addition, the idea of digital twin
of concrete structures has been brought up and damaged
images have been considered as important data for it.

Nevertheless, cracks in engineering practice occur under
various scenarios, and the current crack segmentation
methods often obtain suboptimal detection results, due to
the following reasons. First, most of them focus on crack
detection across monotonous backgrounds, such as pure
concrete surfaces and pavement surfaces. However, fnding
the optimal network architecture to segment cracks with
such complex backgrounds and illumination is difcult,
resulting in more realistic and practical problems. Secondly,
the size of cracks varies dramatically, with an order of
magnitude diference between small and large cracks. Fur-
thermore, the size of certain discontinuous details and the
major section of the crack difer signifcantly for discon-
tinuous cracks; these diferences are crucial for determining
the current stable state of the fracture and whether it will
continue to spread. Tird, in practice, many cracks have
complex topological shapes and very large diferences in
terms of width, as illustrated in Figure 1. Te results of most
existing methods tend to consist of blurry boundaries and
inadequate segmentation, while accurate edge segmentation
is the premise of obtaining the width crack.

Te boundaries of cracks are crucial in crack segmen-
tation, especially for width calculation. After being coupled
with boundary detection, the crack segmentation can be
treated as a multi-task learning (MTL) problem [37]. MTL

could potentially improve segmentation performance if the
associated tasks shared complementary information. Te
evidence has been provided in existing literature for certain
pairs of tasks, i.e., detection and segmentation [34, 38],
segmentation and depth estimation [39, 40], and segmen-
tation and edge detection [41, 42]. Considering these ob-
servations, researchers started designing architectures
capable of learning shared representations from multi-task
supervisory signals, such as cross-stitch networks [43],
multi-task attention networks [44], pattern-afnitive
propagation networks [40], and multi-scale task in-
teraction networks [45]. Tere have been several studies on
the joint learning of semantic segmentation and boundary
detection. Ding et al. [46] and Liew et al. [41] proposed to
learn the boundary as an additional semantic branch to
boost the segmentation performance for scene segmenta-
tion. Marmanis et al. [47] and Liu et al. [48] combined
semantic segmentation with edge detection to reduce the
semantic ambiguity in remote sensing tasks. Tese works
demonstrate the validity of joint learning of segmentation
and boundary detection. However, the joint learning of
boundary detection and segmentation is seldom investigated
in the crack segmentation task. Yamaguchi and Hashimoto
[49] introduced a crack detection method for a concrete
surface image based on a percolation model, yet hand-
crafted features are needed with this approach. FCN and
structured forests with wavelet transform (SFW) were
combined to detect tiny cracks in steel beams [50]; among
them, edge detection was performed using multi-scale
structured forests and wavelet maximum modulus edge.
Although edge detection was utilized to improve crack
segmentation performance, SFW is time-consuming, and
the proposed method is not an end-to-end deep learning
approach.

Crack segmentation is a binary pixel-level classifcation
task. Whether a pixel belongs to cracks largely depends on
high-resolution representation, which contains low-level
information of the image. Here, high resolution refers to
the high-resolution representations in the segmentation
neural network, like SegNet [51], U-Net [30], DeconvNet
[52], and HRNet [53]. Unlike other segmentation tasks, such
as medical and satellite images, high-resolution represen-
tation plays a key role in crack segmentation. However, most
current CNN models tend to lose high-resolution details in
complex scenes and lead to blurry object boundaries [34, 39].

To overcome these limitations and construct a novel
crack assessment framework, this contribution introduces
a two-stream neural network architecture for crack image
segmentation under various scenarios, namely, boundary-
aware crack segmentation (BACS) network. A high-
resolution network (HRNet) [53, 54] is utilized in the
segmentation branch with strong high-resolution repre-
sentations for cracks in complex backgrounds and variable
illumination. A dynamic feature fusion (DFF) network [55],
which assigns diferent fusion weights for diferent input
images and locations adaptively, is utilized in the edge
branch to produce more accurate and sharper edge pre-
dictions. As a result, high-resolution features can be further
improved with the aid of an edge branch to enhance the
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quality of feature representation, contributing to a more
accurate and efcient crack detection process for dis-
tinguishing the crack and non-crack at the pixel level.

Tis paper is organized as follows. In Section 2, the
proposed BACS method composed of two branches is
presented in detail. In Section 3, the BACS is tested in
a concrete crack dataset, and a comparison with the state-of-
the-art methods and quantifcation are presented. Finally,
Section 4 summarizes the concluding remarks.

2. Methodology

Troughout this section, the proposed BACS for crack
segmentation is presented. As depicted in Figure 2, it
consists of two streams of networks. Te frst branch of the
network, namely, segmentation branch, is HRNet. Te
segmentation branch is utilized to extract the overall se-
mantic feature of images. Te second branch, namely, edge
branch, processes edge information in the form of semantic
boundaries. Te edge branch is enforced to only process
boundary-related information using DFF. Semantic features
from the segmentation branch are then fused with boundary
features from the edge branch to produce a refned seg-
mentation result, especially around boundaries. Next, each
of the modules in our framework is described in detail.
Codes and the dataset will be made available at https://
github.com/GaoyangLiu/BACS.

2.1. Segmentation Branch. HRNet is adopted as the backbone
of segmentation branch because it has two advantages in
comparison to existing networks for segmentation tasks. First, it
connects high-to-low resolution subnetworks in parallel, rather
than in series, as it is done in most existing solutions. Tus, it is
possible to maintain the high resolution instead of recovering
the resolution through a low-to-high process, and accordingly,
the predicted result is potentially more precise spatially. Sec-
ondly, most existing fusion schemes aggregate low-level and
high-level representations. Instead, HRNet performs repeated
multi-scale fusions to boost the high-resolution representations
with the help of the low-resolution ones of the same depth and
similar level, and vice versa; this results in high-resolution
representations that are also rich for crack segmentation.
Consequently, the predicted crack segmentation result is

potentially more accurate, especially boosting performance on
thin and small objects in complex backgrounds. Te archi-
tecture is illustrated in Figure 3.

HRNet starts from a high-resolution subnetwork as the
frst stage and gradually adds high-to-low resolution sub-
networks one by one; this strategy forms new stages and
connects the multi-resolution subnetworks in parallel. As
a result, the resolutions for the parallel subnetworks of a later
stage consist of the resolutions from the previous stage and
an extra lower one. Te exchange units across parallel
subnetworks are introduced in a way that each subnetwork
repeatedly receives information from other parallel sub-
networks. Below, there is an example showing the scheme
for exchanging information. Te third stage is divided into
three exchange blocks, and each block is composed of three
parallel convolution units with an exchange unit across the
parallel units, which is shown in Figure 4.

In Figure 4, Cb
sr represents the convolution unit in the rth

resolution of the bth block in the ssh stage, and εb
s is the

corresponding exchange unit. Te semantic information
among diferent branches exchanges in the exchange unit.
Te aggregation of information by exchange unit is illus-
trated in Figure 5.

Te exchange units consist of upsampling and down-
sampling operations across various resolutions. In contrast
to most existing fusion schemes that aggregate low-level and
high-level representations, HRNet repeatedly performs
multi-scale fusions to boost the high-resolution represen-
tations. Tis strategy is suitable for crack segmentation,
where the high-resolution feature plays an important role
with regard to boundary accuracy.

2.2. EdgeBranch. Te goal of edge branch is to extract object
boundaries for guiding the segmentation of boundaries and
thin structures of cracks. To prevent a large loss of image
details due to input downsampling, and particularly for
elongated thin parts, the edge stream processes the original
images directly without resizing. To facilitate edge learning,
the image gradient is appended in the input tensors, which
can be easily computed using the Sobel flter [41, 56, 57]. Te
commonly used 3 × 3 convolution kernels are adopted to
compute the horizontal and vertical gradients Gx and Gy, as
illustrated in the following equations:

(a) (b) (c)

Figure 1: Cracks in various situations: (a) pure crack; (b) complex background; (c) variable width.
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where I is the input image. Te magnitude of a single
channel is obtained by
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Tis procedure is applied to each of the RGB channels.
Te image gradient is the square root of the gradient
summation of each channel.
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G2
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G + G2
B



. (4)

Finally, the gradient is normalized to the range [0, 1].
Some typical crack images and corresponding gradients for
the Sobel flter are shown in Figure 6. It can be seen that the
gradients of cracks with the clean background are with less
noise. However, the Sobel flter does not consider the context
of a pixel, so cracks with complex backgrounds tend to
produce more noise in the gradient output. Te gradient
channel is appended to the RGB image as the fourth channel.
Te concatenated image together with four feature maps
from HRNet in diferent stages is then fed into basic blocks
to include information of diferent stages.Ten, norm blocks
are utilized to reduce the channels to the predicted cate-
gories, which is 1 in this study to denote whether a pixel is
a crack or not.

Te features from multiple scales can greatly beneft the
semantic edge detection task if they are well fused. However,
the prevalent semantic edge detection methods apply a fxed
weight fusion strategy where images with diferent semantics
are forced to share the same weights, resulting in universal
fusion weights for all images and locations regardless of their
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Figure 2: Architecture of the proposed BACS.
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diferent semantics or local context. Te DFF strategy [55],
which assigns diferent fusion weights for diferent input
images and locations adaptively, is adopted in this study.
Tis is achieved using a weight learner that infers proper
fusion weights over multi-level features for each location of
the feature map, and it is conditioned on the specifc input.
In this way, the heterogeneity in contributions made by
diferent locations of feature maps and input images can be
better considered and thus help produce more accurate and
sharper edge predictions. Te detailed architecture of dif-
ferent blocks and edge detection procedure by DFF in the
edge branch is illustrated in Figure 7.

Te feature maps from diferent stages are fed into the
edge branch. After being processed by basic blocks and norm
blocks, four edge feature maps (Fe1, Fe2, Fe3, Fe4) of 1
channel are generated with information from the early to
latter stages of segmentation branch. To better consider the
heterogeneous contributions of feature maps, Fe4 is fed into
the adaptive weight learner to infer proper fusion weights
over multi-stage features. Fe1∼Fe4 are concatenated into
a four-channel feature map. Ten, element-wise

multiplication and category-wise summation are applied
to produce the fnal edge prediction.

2.3. TrainingLoss. Both segmentation and edge branches are
trained with a binary cross entropy (BCE) loss, since there
are only two categories, crack and non-crack, in the dataset.
Te similarity between predicted probabilities and ground
truth is measured by

LBCE(p, p) � − 
N

1
pi ln pi(  + 1 − pi( ln 1 − pi( ( , (5)

where p is the predicted probability, p is the ground truth
label, andN is the total number of pixels.Te ground truth of
segmentation branch is the label of the entire image. Te
edge branch is supervised by the label of the edge only. Te
fnal loss is the summation of losses from segmentation
branch and edge branch.Tat is to say, edge branch serves as
an auxiliary task [58] for crack semantic segmentation. As
a kind of additional regularization, edge branch is expected
to boost the performance of the ultimately desiredmain task.

Downsampling

Upsamping

Feature maps

Figure 5: Aggregation of information for high, medium, and low resolutions.

(a)

(b)

Figure 6: Crack images and the corresponding image gradients from Sobel flter: (a) crack images; (b) image gradients from Sobel flter.
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2.4. Task Afnity between Crack Segmentation and Edge
Detection. In contrast to the single-task methods, joint-task
learning methods yield a promising direction to improve
predictions by utilizing task correlation information to boost
each other. However, the joint learning of multiple tasks can
lead to negative transfer, leading to performance degrada-
tion of a single task if information sharing happens between
unrelated tasks. Te key point is the degree to which tasks
share common structures. A statistical analysis [59] on those
second-order patterns across boundary detection and crack
segmentation is performed to quantify pixel afnities. Se-
mantic pixels are considered similar when they belong to the
same category. Te matching number of those similar pairs
is accumulated with the same space positions across the two
types of corresponding images.

As shown in Figure 8, the afnity pairs (green points) at
the common positions may exist in diferent tasks. Mean-
while, some common dissimilar pairs (red points) exist across
tasks. Take the afnity pairs in Figure 7 for example; pixels
(p1, p2) in the background and pixels (p3, p4) in the crack
labels are afnity pairs in both segmentation and edge labels.
Pixels (p5, p6)withp5 in the edge and p6 in the crack label are
afnity pairs in segmentation labels while dissimilar pairs in
edge labels. Te rate of matched afnity pairs can be calcu-
lated by counting the matched pairs across segmentation and
edge labels and then dividing them by the number of all pixel
pairs. Te rate of matched afnity pairs is 89.4% in this study.
Te statistical result shows that nearly all pairs across two
tasks are of high afnity, which indicates that crack seg-
mentation and edge detection share common structures in
images. Terefore, the edge branch has the potential to boost
the performance of the segmentation branch.

3. Results and Discussion

3.1. Dataset. To improve the generalization and demon-
strate the superiority of the proposed method in various
scenarios, a crack segmentation dataset consisting of three

diferent scenarios is built for this study. Te crack images
that are collected from existing literature, the Internet, and
taken by our team are 1,892 in total. Te dataset is divided
into three scenarios: pure cracks, complex background, and
variable width, containing 1090, 432, and 370 images, re-
spectively. Te cracks in the pure crack scenario are rela-
tively clear with a relatively large width, without background
noise and illumination interference. Most of the images in
the complex background scenario have complex back-
grounds, such as spraying, water stains, honeycomb pitted
surfaces, and other objects. Most of the cracks in the
variable-width scenario have complex topological shapes
that are difcult to segment, such as extremely thin cracks,
cracks with large width diferences, and other cracks with
complex shapes. Te images were divided into two main
subsets: a training set with 1514 images and a testing set with
378 images. Each image is made available to a pixel-wise
segmentation map, which operates as a mask covering the
crack regions. All of the images have a fxed size of 256× 256
pixels. Some examples of typical images corresponding to
the three scenarios are illustrated in Figure 9.

To add segmentation masks to the crack images, the
annotation tool “LabelMe” [60] is utilized for manual an-
notation. Users have the option to zoom in, zoom out, and
annotate a crack by clicking along the boundary to get
precise boundary labels. Figure 10 demonstrates several
examples of images used in the concrete crack dataset, where
the frst, second, and third columns stand for original im-
ages, images with manual labels, and the corresponding
ground truth, respectively.

After pixel-level annotation for the ground truth of the
cracks, edge labels are extracted by applying Euclidean
distance transformation. Euclidean distance transformation
returns the distances to the closest background pixels. With
labeled crack masks as input, the smaller distances corre-
spond to pixels closer to the edge of the binary object. To
avoid discontinuity, the width of edges is set to 2 pixels. Te
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Figure 7: Edge detection procedure in edge branch relying on the DFF: (a) the architecture of basic block; (b) the architecture of norm block;
(c) the architecture of adaptive weight learner in edge branch; (d) the process of feature maps in DFF.
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ground truth of a crack and corresponding edges is illus-
trated in Figure 11.

3.2. Training Process. Te developed model is implemented
using PyTorch and trained on Nvidia GeForce 1080TI GPU
with a memory of 11GB. Transfer learning is utilized in the
segmentation branch with pretrained weights of HRNet on

ImageNet to boost the performance and accelerate the
training procedure. Data augmentation includes image fip,
rotation, and translation. Tere are several hyperparameters
in network training, among which the learning rate is
regarded as the most important one to tune [61]. For
training deep neural networks, selecting a good learning rate
is essential for both better performance and faster conver-
gence. Optimizers that adjust automatically the learning rate

(a)

p2

p1

p3
p4

p5 p6

(b)

p2

p1

p3
p4

p5 p6

(c)

Figure 8: Pixel afnities between crack segmentation and edge detection: (a) the crack image; (b) segmentation labels; (c) edge labels.

Pure crack

Complex
background

Variable width

Figure 9: Images in the dataset under three diferent crack scenarios.
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can beneft from more optimal choices. To reduce the
amount of guesswork regarding the choice of a good initial
learning rate, a learning rate fnder [62] is utilized in our
experiments. Only one epoch is carried out starting with
a very low learning rate (10e− 8 in this study) to a very high
learning rate (10e− 1). Te learning rate is increased after

each processed batch, and the corresponding loss is logged as
shown in Figure 12. Te loss decreases at the beginning, and
then it stops and goes back increasing extremely quickly. It
should be noted that the learning rate that corresponds to
the minimum loss value is a bit too high, since we are at the
edge between improving performance and gradient

(a) (b) (c)

Figure 10: Examples of images used in the concrete crack dataset: (a) original images; (b) images with manual labels; (c) ground truth.

(a) (b) (c)

Figure 11: A crack image and its corresponding ground truth of the crack and edges: (a) the crack image; (b) the crack mask of this image;
(c) the edge mask of this image.
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explosion. Te best learning rate is the point on the graph
with the fastest decrease in the loss [62], which is around the
middle of the steepest descending loss curve. In this study,
the best learning rate is 5.2e− 4 for BACS.

With the optimal initial learning rate, Adam [63] is
employed as the optimizer. Te training schedule of the
learning rate is multiplied by 0.8 every 50 epochs. To avoid
the problem of running out of memory, the batch size is set
to be eight during the training and validation processes.
Figure 13 depicts the change in loss value during the training
and validation processes, which shows that the training
process gradually converges after about 60 epochs.

3.3. Comparison Study with Other Neural Networks. For
experimental evaluation, fve typical models are compared
with BACS: (1) UNet [30], a traditional encoder-decoder
architecture for segmentation; (2) UNet++ [64], an en-
hanced UNet model through a series of nested skip con-
nections; (3) DeepLabV3+ [65], an encoder-decoder
network with atrous convolution; (4) DeepCrack [66],
a deep hierarchical network for crack segmentation; and (5)
Crack-FPN [18], a modifed FPN for crack segmentation.
Te mean intersection-over-union (mIoU) scores of dif-
ferent scenarios are shown in Table 1.

In comparison with the other four methods, BACS
shows superior performance with a similar number of pa-
rameters. Under the pure crack scenario, all methods reach
fne results. Yet, in complex backgrounds and variable-width
scenarios, BACS obtains much better mIoU than the other
methods. Specifcally, the BACS is 7.13% and 12.03% higher
than the lowest UNet model under complex background and
variable-width scenarios, respectively. Latency in the right
column denotes the seconds per image. It should be noticed
that latency is highly dependent on the network architecture
and hardware. Networks with complex architecture and skip
connections, such as DeepLabV3++ and UNet++, are more
likely to have large latencies. DeepCrack obtains the lowest
latency (79ms) among all the models. Te latency of BACS,
172ms, is larger than the backbone HRNet-w32 due to the
edge branch. Overall, the latency is acceptable in a single
1080TI GPU. It is shown that benefting from HRNet in the
segmentation branch, the fused high-resolution features can
be treated as neutralization which aggregates the multiple-
level features from coarse to fne. Additionally, the edge
branch with the DFF can maintain the boundary in-
formation, which is critical for the crack segmentation task.
Terefore, the results of BACS achieve a signifcant per-
formance improvement, especially in the complex back-
ground and variable-width scenarios.

To further investigate the performance of the proposed
BACS compared with DeepCrack, they are trained and
validated on the original DeepCrack dataset. Te result
shows that BACS achieves mIoU of 82.31%, 6.89% higher
than that of DeepCrack.

Some sample images from the three diferent scenarios and
the results for all methods are shown in Figures 14–16. Te
mIoU values (%) are shown on the top of each prediction.
Under the pure crack scenario, all methods perform well.

Under the complex background scenario, the BACS performs
better than the other methods. Owing to the rich high-
resolution features of the HRNet, the BACS produces fewer
false-positive predictions. Moreover, the edge of the predicted
crack is sharper and crisper, benefting from the edge branch
fused information. With the aid of the edge branch and DFF,
BACS produces crisper and more precise segmentation results,
especially along thin cracks. In Figure 17, a typical image under
the variable-width scenario is illustrated; for better pre-
sentation, only the results of BACS and DeepCrack are pre-
sented. Te width of cracks ranges from 1 to 32 pixels, while
crack widths of 2 and 15 pixels are shown in Figure 17(a). It can
be seen that BACS is able to detect very narrow cracks.

3.4. Validity Analysis of the Edge Branch

3.4.1. Ablation Study. In this section, the edge branch, DFF
block, and edge supervision are thoroughly analyzed to
further understand their operation.

Learning rate

Lo
ss 4

3
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6

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

Figure 12: Loss variation as the change of learning rate to get the
optimal initial learning rate.
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Figure 13: Decline of loss in training and validation process.
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In the segmentation branch, the HRNet maintains high-
resolution representations by connecting high-to-low res-
olution convolutions in parallel and repeatedly conducting
multi-scale fusions across parallel convolutions. Te
resulting high-resolution representations are robust and
spatially precise.Tus, the baseline mIoUs are relatively high
in all three scenarios, as shown in Table 2.

When comparing models with and without the edge
branch, the edge information plays a crucial role in the
variable-width scenario. Te edge stream helps guide the
segmentation of thin cracks. Nevertheless, one may argue
that the performance gain from adding the edge branch is
partially due to the increased number of parameters.
Terefore, the two sources of performance boost are dis-
entangled by comparing with a baseline whose network
architecture is the same as the BACS, while the edge su-
pervision is replaced with mask segmentation supervision.
Te ground truth of the edge branch is the same as seg-
mentation branch with mask labels. As illustrated in Section
2.3, the fnal loss is the summation of BCE losses of seg-
mentation branch and edge branch. In the experiment of
edge supervision, the loss of edge branch is calculated by the
BCE loss of predictions and the mask labels. Tis procedure
aims to validate the performance improvement of the edge
branch compared with the network with the same number of
parameters. A comparison study to investigate the efect of
the Sobel flter is also conducted.Without the Sobel flter, the
model performs worse than that with the Sobel flter, par-
ticularly in the pure crack scenario. Tis is due to the fact
that the Sobel flter tends to yield image gradients with less
noise in the pure crack scenario, which provides efective
additional information to the edge branch. A slight per-
formance drop is noticed in all three scenarios in the dataset
when removing edge supervision. Tis verifes our fnding
that the edge branch information is essential to addressing
the crack segmentation task.

3.4.2. Feature Maps among the Two Branches. To further
illustrate the BACS in detail and validate its efectiveness
qualitatively, some intermediate feature maps are presented
in Figure 18. Crack images are fed into the segmentation
branch, yielding four output feature maps from the high-
resolution branch of the HRNet. Four feature maps of each
stage are shown in the downside of the segmentation branch.
Te diferent stages of the convolutional layers obtain dif-
ferent features with various levels of information. Low layers

kept more low-level information; thus, the boundary of the
crack and other dots is clear in the frst two feature maps
from the segmentation branch. However, low layers focus
more on the sharp contrast of images, thereby containing
a large amount of noise. Te top layers obtained more
abstract and global features, which are composed of low-
level features. Tese global features contain much more
semantic and context information, which helps determine
whether a pixel belongs to the crack or background. Since
cracks are often long and thin in noisy backgrounds, the
segmentation performance is more sensitive to low-level
information compared with some other segmentation tasks.
Hence, after maintaining high resolution and repeatedly
performing multi-scale fusions, the HRNet in the segmen-
tation branch is suitable and superior for the crack
segmentation task.

Subsequently, four feature maps are fed into the edge
branch together with the concatenation of crack images and
gradient. Te norm blocks of the edge branch produce raw
edge outputs, which are further fne-tuned by the DFF block,
as illustrated in Figure 18. Te edge prediction of the DFF
block is much better than the raw edge branch output. Te
fnal loss is a summation of the segmentation and edge loss.
As an MTL problem, combining the segmentation and edge
losses can boost the performance of crack segmentation,
which is validated in Section 3.4.1. Considering the im-
portance of low-level information in crack segmentation, the
segmentation and edge branch outputs are concatenated
together and passed to a basic block to produce the crack
segmentation result. Te concatenated tensor with fve
channels is fed into a basic block to produce the fnal one-
channel prediction with the same resolution. With the aid of
the edge branch, the BACS yields more accurate crack
segmentation results and precise crack boundaries.

3.5. CrackWidthQuantifcation. To validate the accuracy of
the proposed method in engineering practice, crack widths
on various concrete surfaces are calculated based on BACS
and compared with the widths obtained by a crack width
observer. Tese crack images are obtained using a smart-
phone in diferent locations. Te crack images and other
measured widths are shown in Figure 19.

Tere are mainly two steps for quantifying the chosen
cracks, i.e., obtaining the pixel widths and mapping them to
actual widths in the measurement unit. In the frst step, the
crack images are fed into the BACS to get the predicted

Table 1: Segmentation results of mIoU on the test set of the crack dataset.

Models Backbone No.
of parameters (million)

mIoU (%)
Latency (ms)

Pure crack Complex background Variable width
UNet ResNet50 32.46 73.51 61.61 58.28 147
UNet++ ResNet50 34.92 73.69 63.84 62.24 192
DeepLabV3+ ResNet50 26.68 74.91 65.17 62.26 274
DeepCrack VGG16 25.27 72.68 61.74 65.04 79
Crack-FPN ResNeXt50 34.71 74.98 64.56 64.90 166
HRNet-w32 — 31.17 76.62 66.38 67.84 121
BACS HRNet-w32 32. 2 79.26 6 .74 70.31 172
Te bold values are the optimal ones in each column.
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cracks, as shown in the second column in Figure 20(b).Ten,
each crack instance is skeletonized using the medial axis
thinning algorithm to extract a one-pixel-wide centerline.
Since the width of a crack often varies along the crack, the

crack widths are evaluated at specifc pixels on the centerline.
For a query pixel on the crack centerline, the crack widths
are computed as shown in Figure 20: (1) the orientation of
the crack at the centerline is calculated by ftting a line to the

Image Ground truth BACS DeepLabV3+ Crack-FPN UNet DeepCrack
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73.11

73.29
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72.83

76.05

75.47

75.03

81.32 76.82

80.75 76.11

80.31 75.92

Figure 14: Comparison between diferent models under pure crack scenario.

Image Ground truth BACS DeepLabV3+ Crack-FPN UNet DeepCrack
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Figure 15: Comparison between diferent models under complex background scenario.
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Figure 16: Comparison between diferent models under variable-width scenario.
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pixel and its neighboring pixels on the centerline; (2) a line
normal to the crack orientation is then created; (3) at both
sides of the crack centerline, the crack boundary pixel that is
closest to the line is extracted; and (4) the distance between
the two pixels is calculated as the crack width in pixels.

Te second step is to map pixel widths to actual widths in
the measurement unit, where the pixel ratio R (pixel/mm)

between the number of crack pixels and the actual width of
the crack is necessary. Considering that the ratio often
changes over the distance of the smartphone camera from
the surface of the detected concrete, the relation between the

ratio and distance is calibrated under laboratory conditions.
As shown in Figure 21, to calibrate the relation between pixel
width and distance from the smartphone to the surface of the
detected target, experiments are performed in a quasi-static
process. Te ftted curve of the relation between the pixel
ratio (R) and distance is illustrated in Figure 22, with which
the pixel ratio of any working distance could be obtained.

Finally, the actual crack widths are calculated using the
following formula:

w(mm) �
p(pixel)

R(pixel/mm)
, (6)

(a) (b)

(c) (d)

Figure 17: A typical image under the variable-width scenario: (a) image; (b) ground truth; (c) BACS; (d) DeepCrack.

Table 2: Results of ablation study for the edge branch and edge supervision.

Models Edge branch DFF Edge supervision Sobel flter
mIoU (%)

Pure crack Complex background Variable width
HRNet No No — — 75.62 66.38 66.84
BACS Yes No Edge Yes 75.71 67.82 69.69
BACS Yes Yes Mask Yes 77.96 68.02 69.84
BACS Yes Yes Edge No 77.02 67.93 68.62
BACS Yes Yes Edge Yes 79.26 6 .74 70.31
Te bold values are the optimal ones in each column.
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Figure 18: Graphical representation of feature maps in the proposed BACS.
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Figure 19: Crack images and widths measured by crack width observer: (a) images; (b) widths by crack width observer.
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(a) (b) (c) (d)

P1

P5

Figure 20: Crack quantifcation in pixels of point 1 (P1) and point 5 (P5): (a) input crack images; (b) predicted cracks; (c) centerlines;
(d) crack widths.

Figure 21: Calibration experiment apparatus.
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Figure 22: Fitted curve of the relation between ratio and distance.

Table 3: Crack width measurement results.

Point index Actual width
(mm)

BACS pixel
width (pixel)

BACS width
(mm)

Absolute error
(mm)

Error rate
(%)

1 1.046 30 1.167 0.121 11.57
2 0.865 25 0.989 0.124 14.34
3 0.783 22 0.884 0.101 12.90
4 1.157 28 1.103 0.054 4.67
5 1.354 36 1.438 0.084 6.20
6 1.021 24 0.958 0.063 6.17
7 0.817 23 0.924 0.107 13.10
8 0.904 26 1.018 0.114 12.61
9 1.883 51 2.011 0.128 6.80
10 2.102 56 2.198 0.096 4.57
Average 1.1932 32 1.269 0.0992 9.29

14 Structural Control and Health Monitoring



where w is the actual width of the crack and p is the
pixel width.

In the experiment, crack widths at ten points of three
diferent cracks are calculated. With a working distance of
150mm, the pixel ratio is 25.35 pixels/mm as estimated by
the curve shown in Figure 22. Te pixel widths predicted by
BACS and actual widths obtained by equation (6) are shown
in Table 3.

Table 3 shows that BACS achieves high accuracy with an
error rate of 9.29%.Te average absolute error of the BACS is
0.0992mm, which is approximately two pixels in the images.

4. Conclusions

A novel two-stream boundary-aware crack segmentation
(BACS) network is proposed in this study, which combines
semantic segmentation with semantically informed edge
detection explicitly. Te segmentation branch using HRNet
aims to acquire strong high-resolution representations for
cracks in complex backgrounds in engineering practice.
Additionally, a modifed dynamic feature fusion (DFF)
network is adopted as the edge branch to boost the per-
formance in elongated thin cracks. Te mIoU in a crack
dataset consisting of diferent scenarios indicates that the
edge branch signifcantly improves semantic segmentation.
Te conclusions are summarized as follows [49]:

(1) With the aid of HRNet in the segmentation branch
that maintains high resolution instead of recovering
the resolution through a low-to-high process, BACS
reaches high performance in crack segmentation
with both clean and complex backgrounds.

(2) Edge branch in BACS that integrates DFF preserves
fne-grained details, especially for elongated thin
cracks. Based on the evaluation metric mIoU, BACS
yields the best value of 70.67% under the variable-
width scenario.

(3) BACS is a feasible and precise deep learning model
for crack quantifcation at arbitrary working dis-
tances. With the crack segmentation results, the
widths obtained by our approach are close to the
actual values, with an error rate of 9.29%. Te av-
erage absolute error of BACS is 0.0992mm, which is
approximately two pixels in the images.

(4) Te proposed method shows superior performance
for the crack segmentation task under difcult
conditions, especially in the variable-width scenario.
Te fndings show a new way of structural inspection
and safety assessment of concrete structures, pro-
viding an accurate data foundation for the digital
twin of concrete structures.
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