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A vibration data-driven structural defect identifcation and classifcation technique is developed using frequency response under
random excitation and a hierarchical neural network. A system of artifcial neural networks (ANNs) is trained using fnite element
simulation-based synthetic data to reduce the need for many sensor measurements required otherwise. Principal component
analysis (PCA) is employed to compress the high dimensionality of the vibration response data and eliminate the noise efect in the
training and testing. Frequency responses data dimension for the structure with defects such a crack from stress concentration,
rivet hole expansion, and attached foreign object mass such as ice accumulation in aircraft wing or fuselage are reduced using PCA
and fed to a classifer network. Te probabilistic decision output from the classifer network and the compressed data are then fed
to the next levels of estimator networks, where each network is dedicated to the individual type of defect for the estimation of the
defect parameters corresponding to that class of defect. Te methodology is applied to a stifened panel structure. Te cracks and
rivet hole expansions are introduced in the rivet line of the stifener, and the foreign object mass is attached to the panel surface.
Te results show that it is possible to classify the defects and further estimate the defect parameters with good accuracy and
reliability. It was observed that the damage classifcation network had an accuracy of roughly 95%. Te damage localization
network for crack as well as rivet expansion had average absolute error of around 2. Te damage severity network was also able to
performwell with amean absolute error of about 0.34 for crack length detection and 0.22 for expanded rivet damage. However, the
damage localization and severity prediction networks were quite challenging to train in the presence of multiple damages and need
further development in the network architecture.

1. Introduction

Defect and damage detection in mechanical structures have
emerged as an important area of research. Tis is consid-
ering the requirements of structural health monitoring
(SHM) for next-generation aerospace, marine, and civil
structures. Here, we use the term defects as a general term
where damage is a particular type of irreversible change
induced by a loading process resulting in the performance
degradation or measurable change in the material and or
geometry. Increasing emphasis is being placed on damage-
tolerant structural design with improved safety standards
through better manufacturing, quality control, and a para-
digm shift from purely of-line inspection to on-line
monitoring with integrated sensors [1, 2]. Understanding

the structural response under various loads is central to this
idea beyond the load-case analysis that is used mostly during
the design. Te vibration-based defect identifcation ap-
proach reviewed by Doebling et al. [3] pointed out the
modern developments toward vibration-based damage de-
tection. Te approaches evolved from the initial studies in
the of-shore oil industry [4].Te damage detectionmethods
in mechanical structures can broadly be divided into two
main groups. One employs physics-based models, and the
other employs numerical/measured data-driven models.
Both methods aim to fnd changes in the structural response
and determine the change in the system properties such as
stifness, mode shape, and frequency change [5].

With the advancement of machine learning-based al-
gorithms, damage detection in structures is also carried out
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with the help of vision-based systems [6, 7]. Vision-based
system has been used for crack detection in concrete using
SDDNet [8], real-time detection using fast CNN [9],
encoder-decoder based crack detection [10], crack detection
in roads [11, 12] along with the emergence of several neural
networks focusing on crack detection such as CrackNet
[13–15] etc. However, this type of monitoring approach
cannot be applied to structures with damages where placing
a camera might not be feasible or with damages which are
not easily visible from outside. For such systems, vibration-
based approach is more suited that employs methods for
extracting information based on changes in the vibration
data to determine the damage parameters. Moreover, these
are generally more easier to place (such as embedded sensors
[16]) as well as a cheaper alternative.

Vibration-based damage detection technique often
converts the vibration data into the frequency domain.
Frequency response is easiest to obtain in real time with
a moving time window as they require only a small number
of sensors at locations having a high sensitivity (observ-
ability) to the probable damages [17]. Numerous diferent
frequency response-based algorithms to identify damage
have been reported in the literature and evaluated in
practical applications. Useful results have been obtained in
damage identifcation from numerically simulated fre-
quency response data [18]. Te literature related to damage
detection using the shifts in the natural frequency is also
quite extensive [19, 20]. However, there are practical limi-
tations of applying frequency change as a damage indicator
when the mode shapes around the excitation frequencies are
not sensitive to the local distortion in the displacement or
strain feld due to localized damage as well [21–23]. Un-
expected changes in the natural frequencies are often at-
tributed to the additional mechanisms of local stifening,
material hardening, and nonlinear harmonics produced due
to contact dynamics [24, 25]. Te use of a higher-order
gradient beyond the order of strain shows some advantages
in amplifying the localizing damage fngerprint, which is
otherwise not observable [26, 27]. Tis is helpful in a the-
oretically ideal situation. However, this could be limited by
the observability or the spatial resolution of the recon-
structed feld from sensor data or the fdelity of a simulation,
and sometimes can create spurious results due to higher-
order spatial derivative calculations or spectral de-
composition (e.g., FFT or wavelet transformation) [28].
Using such response data in a machine learning process may
deteriorate the prediction capabilities unless special strate-
gies based on physics-based criteria on fltering/reducing the
data are evolved [29, 30]. In summary, the use of entire
frequency response spectra directly along with an efective
dimensional reduction of the data to eliminate unrelated
features and remove noise/artifacts can have an advantage in
machine learning-based damage detection strategies.

Formulating an analytical model with an acceptable level
of accuracy often requires considerable efort, making such
approaches less attractive. Data-driven methods for damage
detection have increasingly become a practical choice as it is
easier to circumvent the complexity of physics model-driven
processes. Another advantage of choosing a data-driven

approach is that it can be easily automated. Over the
years, there has been a substantial efort toward developing
structural health monitoring (SHM) algorithms for me-
chanical structures. Several techniques have been applied for
damage detection, classifcation, and parameter estimation,
such as support vector machines [31–34], neural networks
[35–42], and hierarchical neural networks [43–45]. Data
compression strategies along with hierarchical networks
have also been reported [46–48].

Te neural networks must be frst trained using training
datasets. In most real-world applications, training data is
hard tomake available initially, and the input to the system is
complicated in nature and contains a lot of uncertainties.
Te input cannot be measured at every location except for
a few points where the sensors are placed. Te system in
a real-world situation is generally complex in nature. Te
system might require to be reduced, and system properties
might have to be assumed in a manner they can be repre-
sented at par with synthetic data or model data. Tus, the
model order reduction is an essential aspect of representing
system parameters in the context of a live dataset. Also, the
data collected using sensors such as accelerometers and
strain gauges may contain a lot of noise. Because of the
variabilities in the manufacturing process, the system re-
sponse will have certain statistical characteristics. Tus,
collecting highly accurate live data for the training of neural
networks is cumbersome.

Synthetic data can be produced through numerical
simulation, controlled experiments, feld trials, or using
machine learning algorithms. However, in the controlled
environment of a laboratory, the difculty to control the
damage parameters, the cost, and the time required to gather
adequate training data makes these methods unfeasible.
Synthetic data generation through fnite element software or
analytical formulation is cost-efective, and the damage
parameters are much easier to control. With the improve-
ment in computational power in recent years, it is easier to
generate artifcial data for several damage cases in a short
period of time [49–52]. In the recent years, generative
adversarial networks (GAN [53]) have gained a lot of
popularity in generating synthetic data, and there have been
studies [54, 55] on the possibility of using GANs to generate
synthetic data. Tey deal with topics such as generating
synthetic images for damage detection concrete structure
[56], for road damage detection [57], generation of vibration
data for damages [54], multiclass detection of damage in civil
structures [58], regeneration of lost data to make up for
sensor malfunctions [59], and detection of anomalous data
from malfunctioning sensors [60]. GANs are still under
active research, and their applicability is limited by the fact
that they need real data to generate more synthetic data. So,
they cannot be applied in areas where it is not possible to
carry out experiments due to the high costs involved. Also,
there is only a scarce amount of recorded data which is
publicly available for the researchers that make the use of
GANs quite restricted.

In our present study, the proposed damage identif-
cation method is based on a simulated frequency response
generated. Te synthetic data are generated from fnite
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element software, and the process of generation of
training data for multiple damage cases was automated
from MATLAB code. PCA has been used to reduce the
frequency response data dimension. A further challenge
in utilizing frequency response data for damage classif-
cation and identifcation is the infuence of measurement
points [61]. In our present study, we assumed all the
damages are likely to develop around the stifener, and
sensors have been placed in the vicinity of these points. A
random Gaussian white noise signal is used as a vibration
input force signal to simulate a typical aircraft fuselage
stifened panel vibration in real time. Te number of such
diferent random input signals is limited to ten to limit
computational time for generation of the synthetic data.
Te central idea of this work is the hierarchical network of
ANNs which has not been reported in the literature so far.
Tere are many diferent methods when it comes to the
individual ML algorithms for damage detection, and there
are comparisons of these ML algorithms in the literature
as well. Most the papers in this context deal with either
damage detection [62–64] or damage localization/severity
prediction [65] aspect individually. Te novelty of this
paper is to propose a way of organizing simple ANN
networks in a way that they can detect multiple damage
types followed localization and severity prediction alto-
gether within a unifed framework. Tere are a total of six
neural networks used in the current framework, some of
which are regression networks, and some are classifers. At
frst, the compressed data are fed to a damage classifer
network to classify the type of damage (rivet loosening,
crack, and mass addition). Based on the damage classi-
fcation, the frequency response data are fed to the re-
spective identifer network to estimate the location and
severity of the probable damage class. Tereby, a more
robust and improved damage identifcation scheme is
obtained.

In the next section, the modelling of the system and the
scheme used for generation of synthetic data along with data
compression technique is discussed. Te third section dis-
cusses in detail about the architecture of the hierarchical
system of neural network used, their confguration, and
training and testing aspect of each of them. Te fourth
section presents the results and discussion of the current
work followed by the conclusion.

2. Modelling and Simulation Setup

A stifened Aluminum panel (Figure 1) geometry is dis-
cretized using the fnite element meshing software Hyper-
mesh. Te panel of dimension 1500mm× 1150mm× 2mm
has an L-angle placed halfway and riveted with the help of 34
rivets. We used CQUAD4 shell fnite elements for the mesh
and rigid 1D element (RBE3 connector) for modelling rivet
connection around the holes in the plate and the L-angle.
Te plate is assumed to be on all-edge fxed support. Te
panel was excited at the center through 10 diferent random
excitations generated through MATLAB. Te acceleration
and strain values from 8 nodal locations (sensor locations)
on the panel were used for machine learning.

2.1. Damage Modelling. We consider three cases of damage
in the present study: crack emanating from a rivet hole, rivet
hole expansion, and mass addition on the panel. Te crack
was simulated by releasing the element edge nodes along the
crack path. For simulating the rivet hole expansion, the
diameter was changed by mesh morphing. In these ways, the
base model was kept the same.

Multiple rivet hole expansion was also simulated using
the same way. Mass addition (e.g., ice formation) was
simulated by calculating the equivalent thickness of alu-
minum which would have equal mass as that of mass added
on the panel and adding to the panel thickness (mass ad-
dition has been assumed to take place on the complete area
of the panel).

2.2. Generation of Synthetic Data. A function was written in
MATLAB, which automated the generation of synthetic
data. Te MATLAB function fed the value of the damage
parameter corresponding to the damage case into Hyper-
mesh, following which the model was updated accordingly.
Tis updated model was analyzed in fnite element solver
MSC NASTRAN, and the generated output data were
exported back into MATLAB environment. Te simulation
output data consisted of the acceleration and strain at the
preselected node location, and the corresponding frequency
response function was computed. Each simulation took
about 40minutes of CPU time to run in a quad core Xeon
processor. Tis was repeated for all the damage cases for ten
sample random force signatures as listed in Table 1 with the
run time for each damage case. Te overall time required to
generate the complete simulation data was 730 hours. Te
location of nodes from which the acceleration and strain
data were collected was chosen based on expected sensi-
tivities by analyzing the fnite element data. A fowchart of
the synthetic data generation steps is shown in Figure 2.

For the stifened panel structure, full-size frequency
response data, which covers, for example, a frequency range
of 0 to 1000Hz, contain 2,00,000 frequency samples. Tis
would mean 2,00,000 input nodes in the neural network for
each measurement point. Such large numbers of input
points cause severe problems in training convergence.
Terefore, PCA is applied to the damage fngerprints to
reduce size and flter noise.

2.3. PCA of the Frequency Response Data. Te large size of
frequency response data is a major obstacle for neural
network training. In order to use only a few damage pa-
rameters that are feasible for neural network training, the
input data dimensionmust be greatly reduced. In the current
work, principal component analysis has been used. Principal
component analysis (PCA) [66, 67] is a statistical procedure
that identifes the principal directions or basis space in which
the data vary. A useful application of PCA is reducing the
problem’s dimensionality in cases where eigenvalues spread
over a wide range. It allows identifying the principal di-
rections in which the data vary. Principal components are
entirely equivalent to fnding the eigenvectors of the co-
variance matrix. Tere is a principal component
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corresponding to every eigenvalue. Te corresponding ei-
genvalue depicts the variance of that principal component,
and the principal components with the largest variances are
the most important (Figure 3).

Using PCA, the original set of variables in an M-
dimensional space can be transformed into principal
components in a P-dimensional space (P<N) by consid-
ering only the frst few eigenvalues. Let H(ω) denote the n x
m-dimensional frequency response matrix where n is the
number of samples and m is the number of variables that is
already centered. To calculate and reduce the data using
PCA, we frst calculate the correlation matrix. We can defne
a correlation matrix of size m x m such that

C �
1

(n − 1)
HTH. (1)

Te frequency response matrix H can then be decom-
posed into the singular value decomposition as follows:

H � UΛVT
, (2)

where U and V are matrices of eigenvectors and are or-
thogonal, and Λ is a diagonal matrix with eigenvalues λi

arranged in descending order. Putting this back into (1), we
obtain

(a) (b)

(c)

Crack along the
highlighted line

Expanded rivet hole

(d)

Figure 1: (a) Finite element model of a stifened panel, (b) nodal points for collection of the acceleration signal, (c) nodal points for
collection of strain signal, and (d) crack emanating from rivet hole and expanded rivet hole.

Table 1: Specifcation of damage scenarios.

Damage case Number
of simulation samples Damage parameter set Computational runtime (hours)

Rivet expansion 340 17 locations× 2 diameters× 10 random input signals 227
Crack 680 34 locations× 2 lengths× 10 random input signals 454
Uniform mass addition 60 6 variations in thickness× 10 random input signals 40
Healthy panel 10 10 random input signals 7
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Figure 2: Flowchart of frequency response data-driven damage detection scheme.
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(3)

Te matrix Λ2 contains the eigenvalues at the diagonal
positions. To extract the frst p principal components out of
the total m principal components, the frst p columns of U
and the frst p x p entries of the matrixΛ can be selected.Te
fnal PCA matrix can be written as follows:

P � UPΛP. (4)

Te original signal can also be reconstructed from re-
duced principal components as follows:

XP � UPΛPVP
T

. (5)

Te “princomp” function in MATLAB is utilized to
project the damage fngerprints onto their principal com-
ponents. Te number of measurement points on the stif-
ened panel is eight, which includes four triaxial
accelerometers and 4 unidirectional strain gauges. Triaxial
accelerometer gives translational acceleration at the point of
measurement in all three Cartesian directions, and unidi-
rectional strain gauges measure strain in the direction of its
length. Terefore, the total no of measurement points sums
up to 16 (12 accelerations, 4 strains). For the damage sce-
nario, the measurement matrix would be of dimension
2,00,000×16. Such a huge amount of data is reduced into
100×1 damage vector with the use of PCA. Te most sig-
nifcant Eigenvalues and corresponding eigenvectors are
considered, and the remaining values are discarded.Te frst
seven principal values contribute to 99.999% of the vari-
ability in the data, thus projecting huge measurement data of
dimension 2,00,000×16 onto just 100 principal compo-
nents, where the frst 84 components relate to the acceler-
ation, and the last 16 correspond to strain. Figure 4 shows
the principal components for crack at diferent rivet

locations. Te diferences are clearly observable. Figure 5
shows principal components variation for diferent types of
damage.

3. ANN Architecture and
Computational Scheme

Te ANN-related theoretical details are reported in the
literature [68]. Te most popular class of multilayer feed-
forward neural networks is the multilayer perceptron, in
which each computational unit employs either the threshold
function or the sigmoid function. Multilayer perceptron [69]
can form arbitrarily complex decision boundaries and
represent any Boolean function. Te development of the
backpropagation learning algorithm to determine weights
has made these networks the most popular. Figure 6 shows
the proposed perceptron network for damage detection
(with classifcation) and damage identifcation (with pa-
rameter estimation). For each data category, the input
samples are divided into three sets: training, validation, and
testing datasets. Tis is done according to a partitioning
system termed chessboard selection. Each damage case is
divided into sets according to Table 2. While the network
adjusts its weights from the training samples, its perfor-
mance is supervised by utilizing the validation set to avoid
overftting. Te network training stops when the validation
set error reaches a minimum and begins to increase. At this
point, while the error of the training set continues to de-
crease, the network’s generalization ability is lost, and
overftting occurs.

Te sample details for each damage category type are
listed in Table 3. Before each dataset is presented to the
network, the input data are scaled to range from −1 to +1.
Data scaling is important to ensure that the distancemeasure
accords equal weight to each sample. It also helps the
network to converge in a shorter time. Furthermore, the
input and output data must comply with the transfer
function of the hidden layer and output layer. For this study,
the hyperbolic tangent sigmoid transfer function, which
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Figure 4: Principal components for crack at diferent rivet locations.
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operates in the range of −1 to +1, is selected for hidden
layers, and a linear transfer function is chosen for the
output layer.

Te number of neurons in the hidden layer is chosen
following the geometric pyramid rule; neurons in the hidden
layer nodes should decrease in number from the input layer
to the output layer. We design the detection/classifer net-
work with 100-25-3 distribution of hidden layer nodes and
employ the conjugate gradient learning algorithm. For the
identifer/estimator networks for crack and rivet expansion
localization, we designed a 100-10-34 and 100-50-27 dis-
tribution of hidden layer nodes, respectively. Both crack and
rivet localization networks are trained with the Bayesian
regularization learning algorithm. Te identifer/estimator
network for mass addition prediction is designed with 100-
10-6 distribution of hidden layer nodes and the scaled
conjugate gradient learning algorithm. For the identifer/
estimator network for crack and rivet expansion severity
prediction, we designed a 100-25-2 distribution of hidden
layer nodes, with the scaled conjugate gradient learning
algorithm. To obtain the best results, each network is trained
up to ffteen times with diferent initial weights and bias
values. Furthermore, iteration reduces the absolute error for
the training set and increases the error of the validation set,
which implies that the network starts overftting the data and
thereby loses its generalization ability.

3.1. Detector/Classifer Network. Te compressed frequency
response via PCA is fed to the classifer network (Figure 6).
Te output of this neural network is in the form of binary
data corresponding to the type of damage detected (Table 4).
Te training performance of the classifer network is shown
in Figure 7. Te learning algorithm converged after 1500
epochs with the least mean square validation error of 0.09.
Te number of retrainings is arbitrary and selected on a trial-
and-error basis till convergence is satisfactory.

3.2. Identifer/Estimator Network. Te hierarchical network
architecture described above was used to predict the location
and severity of the damages in the last level of networks
based on the input from the classifer network. For the rivet
damage severity representation purpose, a binary vector of
size n× 1 characterizes the location of rivet expansion
damage, where n� 34 indicates the number of rivets. Adams
learning algorithm is used for training all the above neural
networks. Te network training performance graphs for the
crack localization and expanded rivet localization are shown
in Figure 8. Te localization algorithm takes about 10000
epochs to fnd the best solution. Te performance parameter
monitored is the mean absolute error, which is approxi-
mately 2 indicating the capability of the network to estimate

the cracked rivet with ±2 location. Te crack length pre-
diction network took 800 epochs to reach the best perfor-
mance. To test the performance of both networks, the data
samples are randomly divided into training and validation. It
is observed from Table 5 that both the individual estimator
networks for crack localization and rivet expansion locali-
zation can map the compressed frequency response data to
damage characteristics with reasonable accuracy. However,
the network was found to be lacking in its capabilities to
learn multiple rivet expansion localization or crack location.
Te networks may not always pinpoint the exact location,
but it can direct to a location of rivet close to the actual
damage.

Next, after the damage is localized, the compressed data
are fed to the other estimator networks for the respective
damage severity prediction. Figure 9 shows the training
performance graphs for crack length prediction and ex-
panded rivet diameter prediction networks. Te minimum
absolute error for crack length prediction network was 0.3
and 0.2 for expanded diameter prediction network. Table 6
shows the predicted parameter value for damage severity
from the validation dataset for crack length, and the network
was able to estimate the crack length with good accuracy.
Table 7 shows the predicted values for the rivet expansion. In
this case, the predicted values are quite close to the actual
values. Te undamaged reference rivet diameter is 3mm.
Te rivet diameter of the rivets 16 and 21 was changed from
3mm to 3.3mm and 3mm to 4mm, respectively. Te
predicted values are quite close to the actual values.

Te estimator network for mass addition on the stifened
panel is trained and tested in terms of uniform layer
thickness as the parameter. Tis classifcation of damage is
analogous to the frost/icing conditions on the aircraft wing
or fuselage panels. Te allowable thickness of the ice layer in
our dataset is limited to 3mm [70]. Te thickness from
0 (healthy) to 3mm (max. allowable) in steps of 0.5mm is
trained and tested. Te thickness of layer variation is ad-
justed to the panel density. Te network output is a binary
form, as shown in Table 8.

Te performance of the neural network is shown in
Figure 10. Te Adams optimizer algorithm with the mean
absolute error as the performance index shows the optimal
performance of the network after 2000 epochs. An exami-
nation of fve random sample data from the training dataset
is given in Table 9 and used for testing. All the sample data
are classifed appropriately, except sample number 4.

4. Results and Discussion

In this section, we analyze the results of damage detection,
classifcation, and parameter estimation using both simu-
lated data from the stifened panel on the hierarchical
compressed learning network as trained above. As discussed
in the previous section, the subnetworks in the layers are
trained to sufcient accuracy to predict the damage to the
structure when subjected to new data from simulations.
Figure 11 shows the output of the classifer network. Te
classifcation of the diferent damage type was an easy task
resulting in only a few misclassifcations.

Table 2: Percentage of data for use for training and testing the
ANN.

Training (%) Validation (%) Testing (%)
60–65 15 20–25
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Te output of the crack location prediction estimator is
shown in Figure 12. Te output of the Figure 12(a) shows
that the crack locations could be detected around the region
of the damage. Te average error between the predicted and
actual crack location was around ±2 rivet positions. In the
presence of more than one crack, the location estimation
task complicates even further resulting in lower accuracy.
After this, the crack size estimator network was trained. Te
crack was length set to be either 4mm or 5mm along with
some undamaged cases also. Te output of the estimator
network for crack size shown in Figure 12(b) indicates that
the crack length estimation was satisfactory. Te dataset
consisted of only one crack at a time. Te mean absolute
error on the validation dataset was 0.34. Similar procedure

can also be adopted multiple cracks as well with various
crack lengths.

Te trained networks are also tested for multiple rivet
expansion on the stifened panel, as shown in Figure 13.
Figure 13(a) shows the predicted location of expanded rivet
compared with actual location of the damage. As compared
to the earlier case of crack, detection of expanded rivet was
found to be more difcult, and thus, a higher value of the
absolute mean error was present. Te absolute mean error
for the validation dataset was around 2 which indicated that,
on average, the network was able to localize the damage
within ±2 rivet position of the actual damage. Figure 13(b)
indicates the result from the estimator network. Te rivets
were either expanded to 4mm or 5mm compared to the
reference diameter of 3mm.Te estimator network was able
to predict the diameter with good accuracy resulting in mean
absolute error 0.22 for the validation dataset. As with the
crack case, in this case also, it was observed that the presence
of two expanded rivet proved to be difcult to train with the
given number of data points.

A 1.5mm thick mass layer was added uniformly to
generate simulation data for mass addition to the panel and
test the network. Te classifer network was able to predict
the correct class of damage with high probability (Figure 11).
Since the uniformity of mass addition on the panel is
considered in the present network, only the thickness of the
additional mass is used as the parameter for estimation, and

Table 3: Data samples for each category of damage.

Data category Data set Sample vol. Remarks

Classifcation network
Training 826 (65%) 34 crack× 2 crack len.×10 signals 26 rivet exp.× 2 dia.×10 signals 10 healthy,

6 mass× 10 signalsValidation 190 (15%)
Testing 254 (20%)

Crack network
Training 544 (80%)

34 crack× 2 crack lengths× 10 signalsValidation 68 (10%)
Testing 68 (10%)

Rivet expansion network
Training 364 (70%)

26 rivet exp.× 2 dia.×10 signalsValidation 78 (15%)
Testing 78 (15%)

Mass addition network
Training 52 (80%)

6 mass additions× 10 signalsValidation 7 (10%)
Testing 7 (10%)

Table 4: Damage state representation in binary form.

Damage type Binary form of damage
Crack 1 0 0
Rivet expansion 0 1 0
Mass addition 0 0 1
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Figure 7: Training error minimization characteristics of classifer
network.

Table 5: Testing performance of the estimator networks.

Data sample Actual rivet no. Estimator network output
(a) Crack location identifcation (crack originating from rivet)
01 0 0
02 6 8/5
03 11 14
04 20 24
05 28 32
(b) Rivet expansion location identifcation
01 0 2
02 10 9
03 24 19
04 15 13/17
05 31 27
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Figure 8: Training error minimization characteristics of estimator network for (a) crack localization and (b) expanded rivet localization.

Table 6: Testing performance of the estimator networks for crack length prediction (crack size measured from rivet hole edge).

Data sample no. Actual
crack size (mm)

Estimated
crack size (mm)

01 4 4.5489
02 5 5.3627

Table 7: Testing performance of the estimator networks for rivet diameter prediction (reference diameter is taken as 3mm).

Data sample no. Actual
rivet size (mm)

Estimated
rivet dia. (mm)

01 3.3 3.2311
02 4 4.1079
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Figure 9: Training error minimization characteristics of estimator network for (a) crack length prediction and (b) expanded rivet diameter
estimation.
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location-related parameters were not used. As discussed in
the previous section, the damage index for mass thickness
parameter was presented in binary with 0.5mm interval.
Terefore, for 1.5mmmass thickness, the damage index was
plotted as shown in Figure 14 for damage states on x-axis.
Tis result demonstrates that for 6 out of the 7 damage cases,
the network was able to predict the added mass value with

acceptable level of accuracy. Overall, all these predictions
appear quite accurate even after considering the probability
of detection and likelihood estimation aspects.

Tere were total of 6 diferent simple learners used in the
current work for various tasks. Te accuracies of these
networks are shown at a glance in Table 10. Except for the
frst classifcation network, the accuracy has been shown in

Table 8: Binary representation of mass addition in terms of additional layer thickness.

Tickness (mm) Binary form
0.0 0 0 0 0 0 0
0.5 1 0 0 0 0 0
1.0 0 1 0 0 0 0
1.5 0 0 1 0 0 0
2.0 0 0 0 1 0 0
2.5 0 0 0 0 1 0
3.0 0 0 0 0 0 1
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Figure 10: Training error minimization characteristics of mass addition network.

Table 9: Random sample from the training dataset used for testing the estimator network for additional mass thickness.

Data sample no. Actual thickness (mm) Predicted thickness (mm)
1 0 0.06
2 0.5 0.63
3 1.5 1.74
4 1.5 1.68
5 2 1.8
6 2 0.86
7 3 2.75
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Figure 12: (a) Te output of crack location prediction network is shown for a validation dataset. Te lower half of the fgure shows the
location of actual crack damage, and the upper half indicates the predicted location. (b) Bar plot of the crack size prediction.
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Figure 14: Mass addition prediction on the panel.

Table 10: Te accuracy metric of all the neural networks used.

Neural net category Accuracy metric
Classifcation network 95.4%
Crack location 1.5 (mean absolute error)
Crack length prediction 0.34 (mean absolute error)
Rivet location 2 (mean absolute error)
Rivet diameter expansion 0.22 (mean absolute error)
Mass addition 0.32 (mean absolute error)
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terms of mean absolute error. Te reported values are cal-
culated using a validation dataset which was not used for
training the network.

5. Conclusion

Tis study demonstrates the feasibility of a hierarchical
sensing-based classifer-estimator network designed for
simulation data-driven learning regarding structural dam-
ages, which are usually hard to detect due to nonuniqueness
and nonstationarities in high-dimensional vibration data.
We frst analyze the data compression characteristics and
principal components derived from random vibration fre-
quency response data.Te data are fed in a classifer network
and parallelly provided to further layers of estimator net-
works for damage parameter estimation. A simultaneous
classifcation and parameter estimation approach leads to
interesting ways of developing probabilistic detection and
likelihood estimation of the damage parameters. Te net-
work architecture and data representation are designed so
that the demonstrative examples give useful insight into the
synthetic data-driven training at various levels of the hier-
archical network. We also show a detailed analysis of the
network test outcome and capabilities to localize specifc
damages and estimate the damage parameters by the
network.

Diferent learning rules are used for diferent neural
networks within the developed architecture to obtain en-
hanced performance. Te Bayesian regularization learning
rule produces a good network performance even with
a small training dataset but at the expense of computational
power during training. It was observed that retraining the
networks several times would improve their performance
characteristics. It was observed that damage parameter
estimation (damage location and severity) is a challenging
task that needs further work to improve accuracy. Te
simulation is also required for the damage at each location
and damage severity which does not scale well in cases
when the damage can occur at any location. In the current
study, a single damage case is considered at a time. For
future work, multiple simultaneous damage scenarios will
be needed, potentially with a probabilistic approach, and
a comparative study of the performance of diferent ML
algorithms should be considered. Te current study also
indicates the limitations in generating simulation data
based on supervised learning algorithms. Te present study
opens up the need for further investigation on various
synthetic data generation-related aspects such as in-
troducing uncertainties and noise in the simulation dataset,
scaling and transforming in PCA for learning across
completely diferent structural geometries, mesh granu-
larities, diferent damage cases etc., and transitioning to
recursive training and testing processes as the network
expands in dimension and the learning space.
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