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Automatic semantic segmentation of point clouds in railway bridge scenes is a crucial step in the digitization process and is
required for a variety of subapplications including digital twin reconstruction and component geometric quality verifcation. Tis
paper details a method for reliably and efectively segmenting point clouds acquired from complex railway bridge scenes by
unmanned aerial vehicles (UAVs). Te method involves segmenting seven common infrastructure elements in railway bridge
point clouds using an improved DGCNN after processing low-quality point clouds from UAVs with a score-based denoising
algorithm. Te segmentation performance of the network is measured by averaging the intersection to union ratio between the
segmentation results and the true labels of diferent elements, i.e., themean intersection over union (mIoU).Te proposedmethod
is evaluated on three diferent scenes of railway bridges and achieved mIoU values of 99.18%, 90.76%, and 85.84%, respectively, at
three levels of complexity ranging from easy to difcult. Te results demonstrate that the proposed method captures the most
discriminative features from low-quality point clouds, allowing for the accurate and efcient digital representation of railway
bridge scenes.

1. Introduction

Over ffty percent of the high-speed railways constructed in
China are comprised of bridges, making them an in-
dispensable element of railway lines. Construction of bridges
shortens routes, crosses terrain obstacles, and improves the
smoothness of railway lines. To ensure the safety of railway
trafc, it is necessary to establish digital models of railway
bridge infrastructure. Due to their precision, comprehen-
siveness, and efcacy, point clouds have gradually become
the dominant form of scene information representation as
a result of the continuous development of information ac-
quisition equipment and technology. Point cloud segmen-
tation serves as the foundation for a variety of application
domains, including building information modeling (BIM)

reconstruction [1], geometric quality inspection [2, 3], and
construction progress tracking [4].

For practical applications, rapidly obtaining point cloud
data and accurately extracting key components from actual
railway bridge scenes are essential. Te terrains of railway
bridges are typically complex, spanning valleys, and
mountainous regions. Due to terrain limitations and railway
maintenance windows, traditional point cloud acquisition
equipment, such as vehicle-mounted LiDAR and stationary
scanners, can only acquire partial point cloud information.
However, UAVs ofer unique advantages when acquiring
point cloud data for railway bridges. Tey can be equipped
with LiDAR or cameras for panoramic photography and the
collection of point cloud data and multiple-view images.
UAVs are fexible in operation, minimally constrained by
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terrain and railway maintenance windows, and have a broad
data collection coverage, making them an efective solution
for the rapid collection of railway bridge point cloud data.

Semantic segmentation of point clouds for railway
scenes means assigning a classifcation value to each point’s
corresponding infrastructure object. Tus, all points in the
point cloud that correspond to the same object type will
receive the same classifcation value. Tis segmentation step
enables the location of the various infrastructure objects.
Most current railway scene point cloud segmentation relies
on heuristic algorithms [5], including random sampling
consensus (RANSAC) [6], region growing [7], and clus-
tering algorithms based on normal vectors or intensity
features [8, 9]. However, the segmentation performance of
these algorithms is highly dependent on the designer-
specifed parameters, requiring a high level of a priori
knowledge of the point cloud features. Moreover, heuristic
algorithms are typically applied to point cloud types with
a specifc structure (e.g., point clouds with regular geome-
tries such as lines, planes, and spheres). For the task of
massive point cloud data segmentation, heuristic algorithms
typically require an extensive number of costly iterative
computations. In the past, researchers developed heuristic
algorithms for railway scene point cloud segmentation ap-
plications using highly normalized and standardized char-
acteristics. To classify railway cables, for example, the
authors in [10] designed a RANSAC algorithm based on the
height information of the cable relative to the rail structure
and the horizontal distance of the cable relative to the mast,
which relies on highly consistent point cloud structure
distribution features. Reference [11] combined with survey
data to achieve precise location and segmentation of rails in
the point cloud by the railway gauge corner, but the accuracy
is easily afected by the quality of the sampled data and the
accuracy of the survey data. Te authors in [12] proposed
a heuristic method, which frst voxelizes the point cloud
scene tomake the point cloud index regular and then designs
rules to extract diferent railway elements based on a priori
structural spatial distribution information. Tis simplifed
method requires a highly regular railway scene and is un-
suitable for segmenting multiple elements in complex
scenes.

With the increasing maturity of the application of deep
learning technology in the feld of railway infrastructure
[13–15], deep learning-based point cloud segmentation
methods can segment point cloud elements more efciently
than heuristic algorithms and show better adaptability to
complex point cloud scenes. Deep learning-based segmen-
tation methods can be divided into three categories based on
the type of point cloud data employed: projection-based,
voxelization-based, and point-based.

Te projection-basedmethod entails that the point cloud
is converted to a 2D image by projection, and then, the
image is segmented using convolutional neural network to
obtain the classifcation result of each pixel of the image, and
fnally, the pixels are mapped to the actual points to com-
plete the segmentation of the point cloud. In [16], the au-
thors used surface projection to convert the point cloud into
a pseudodistance image and proposed a network

architecture called FarNet to extract the rail structure. Tis
method, however, is not suitable for large-scale and mul-
ticategory point cloud segmentation as it focuses solely on
the spatial information of the rail.

Te voxelization-based methods have the additional
operation of replacing the disordered points with a regular
3D grid of a given size before the segmentation operation as
compared to other methods. In [17], a 3D convolutional
neural network is used to segment the voxelizedmesh, which
labels the point cloud to some extent. However, there are
many invalid meshes for a wide variety of point clouds, and
the grid size has a signifcant efect on the segmentation
accuracy and memory usage.

Te point-based method dominates the current point
cloud segmentation methods [13] because it directly utilizes
the coordinate information (sometimes including color or
intensity information) of the points, maximizing the use of
point cloud data for feature extraction. In [18], the authors
used two network architectures, PointNet [19] and KPConv
[20], to perform segmentation of point clouds of railway
tunnels. Te segmentation results are more accurate and
generalizable than their previous heuristic-based work [21].
However, the method only applies to tunneling scenes and
has a limited number of classifcations. Regarding the
railway infrastructure, the literature [22] proposed a seg-
mentation method based on PointNet++ [23]. Te method
adapts the network architecture to various point cloud
scenes by adjusting the sampling point density and local
feature radius. Te results demonstrate that the method
achieves great segmentation accuracy for better-quality
point clouds acquired by mobile survey systems, but that
the segmentation accuracy for lower-quality point clouds
acquired by UAVs still needs to be improved.

Aiming at the problems mentioned previously, this paper
proposes a deep learning-based method for point cloud
segmentation. Te method is suitable for complex railway
bridge scenes and maintains high segmentation accuracy for
low-quality point clouds acquired by UAVs. Te main
contributions of this paper are summarized as follows:

(i) A point cloud segmentation method based on deep
learning is proposed for segmenting assets associ-
ated with complex railroad bridge scenes. Te
method maintains high accuracy and generaliz-
ability in three scenes with varying segmentation
challenges.

(ii) Te method involves an improved model based on
DGCNN. In contrast, the improved model is more
lightweight and employs a PE-EdgeConv module to
enrich the ordering information of local features in
the point cloud, consequently improving the sen-
sitivity of the model to point cloud features.

(iii) Te method includes a point cloud enhancement
denoising strategy to deal with the low-quality point
clouds acquired by UAVs. Te strategy consists of
two stages: window sliding denoising and contour
enhancement denoising. Te preprocessed point
cloud has a higher point cloud density, more dis-
tinct contours, and nearly no visible scatters.
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Te rest of the paper is organized as follows. Section 2
presents a detailed description of the proposed specifc
method for segmenting the point cloud of complex railway
bridge scenes captured by UAVs. Section 3 demonstrates the
segmentation results of the proposed method under dif-
ferent conditions. Te accuracy, efciency, and generaliz-
ability of the proposed method are discussed in Section 4.
Finally, Section 5 summarizes the results, limitations, and
future perspectives of this study.

2. Methodology

Te proposed method for segmenting point clouds of
complex railway bridge scenes captured by UAVs consists of
three parts: data acquisition, point cloud preprocessing, and
semantic segmentation using the improved DGCNN. Te
overall workfow is shown in Figure 1.

2.1. Data Acquisition. Te dataset used for the point cloud
segmentation task consists of several sections of Chinese high-
speed railway bridges captured by a UAV, with ballastless
track serving as the mainline railway structure. Te dataset
contains three scenes with respective track lengths of 130m,
523m, and 313m. A DJI FC6310R camera mounted on a DJI
M300 RTKUAV captured the images at 30m, 40m, and 40m
above the ground, respectively. Each scene captures 480, 645,
and 283 images, which are saved in JPG format with a res-
olution of 5472× 3648 and includes latitude, longitude, and
altitude information. As illustrated in Figure 2, the multiview
images of diferent scenes are converted into point cloud data
using the 3D reconstruction software DJI Terra (version
2.2.0.15) and saved in the LAS format.

In order to evaluate the generalizability of the seg-
mentation capability of the proposed method, three diferent
types of point cloud scenes are selected in this study. Track
length, ballast or ballastless, roadbed or bridge, and the
number of main lines are the primary distinctions. In ad-
dition, for each of the three scenes, the capture frequency
(image density) and fight altitude of the UAVs are varied in
order to control the diference in point cloud density. Less
challenging the scene, the lower the fight altitude and the
higher the capture frequency.

According to Table 1, the difculty of the point cloud
segmentation task increases from (a) to (c) for each of these
three scenes. Scene (a) is a single-type railway bridge with
the highest point cloud density; scene (b) has the longest
route, with bridges and roadbeds alternating, including three
bridge sections and two roadbed sections, and a moderate
point cloud density; scene (c) has a medium-length route
with two connecting lines on both sides of the main line, and
the track structure of the connecting lines are ballasted track,
with a high background complexity and a low point cloud
density. In conclusion, the element types and point cloud
density of these three railway bridge scenes pose a challenge
to the accuracy and generalizability of the proposed method.

Te objective of this study is to segment the elements in
the point cloud scenes of various complex railway bridges,
including cable, mast, rail, track bed, protective wall,

guardrail, and cluster, for a total of 7 categories, as shown in
the annotations in Figure 3(a). Te raw point cloud data
contain a large amount of background data unrelated to the
segmented elements, which can afect the balance of the
dataset. Terefore, the unrelated background data are re-
moved from the scenes and the segmented elements are
annotated. Te 7 elements marked with diferent colors are
shown in Figure 3(b).

2.2. Data Preprocessing. Although UAVs have signifcant
advantages in terms of image acquisition speed and terrain
insensitivity, the point cloud data obtained from multiview
images are less dense and accurate, noisier, and have less
distinct point cloud contours than data acquired by radar or
laser scanners. For this reason, this paper proposes a point
cloud preprocessing method for large-scale scenes of railway
bridges. Te method has two main purposes: on the one
hand, the coordinate direction of the point cloud is adjusted
by coordinate transformation, and the regular distribution
information of the railway bridge point cloud is utilized to
extract the point cloud blocks with certain physical signif-
icance; on the other hand, a point cloud enhancing
denoising strategy is adopted to reduce the noise level and
enhance the contour of the point cloud, so as to improve the
quality of the point cloud.

2.2.1. Coordinate Transformation. Te initial coordinate
system obtained from the railway bridge point cloud is
usually not suitable for describing the spatial position of the
railway bridge, and thus the point cloud coordinate system
needs to be adjusted. Te adjustment aims to make the X

and Y axis parallel to the width and length direction of the
railway bridge, respectively, while the Z axis is parallel to the
building height and does not need to be adjusted.

Te key to coordinate system adjustment is to calculate
the rotation and translation matrix P of the XoY plane. As
shown in Figure 4(a), frst, two points A(x1, y1) and
B(x2, y2) are manually selected from the point cloud, dis-
regarding the z-coordinates, with the vector (x2 − x1, y2 −

y1) directed parallel (or close to) the bridge direction. Ten,
the distance L between the two points is calculated. Te
coordinates of A and B in the new coordinate system are
A′(0, 0) and B′(0, L), satisfying the relationship in equation
(1):
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Here, θ, a, and b denote the rotation angle, X − axis
translation value, and Y − axis translation value of the new
coordinate system with respect to the original coordinate
system, respectively. Solving the system of equations obtains
the rotation and translation matrix P of the point cloud in
the XoY plane, which is then applied to the initial point
cloud to obtain the transformed coordinates x′ and y′, as
shown in equation:

x
′

y
′

⎛⎝ ⎞⎠ � P

x

y

1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (2)

2.2.2. Point Cloud Enhancing Denoising. Taking a cue from
a state-of-the-art score-based point cloud denoising algo-
rithm proposed in [24], this paper presents a strategy for
enhancing denoising of point clouds. Te algorithm con-
siders the noisy point cloud as a convolution of noise-free
samples with some noisy model and iteratively computes the
gradient direction of the point positions to update the
positions and accomplish denoising.

Te gradient’s direction is dependent on the noise model
and noise-free samples. Te default noise model is Gaussian
noise, and the noise-free samples have an implicit estimate
based on the point cloud’s distribution. For a large-scale point
cloud of a railway bridge scene, the point distribution is het-
erogeneous, whichwill afect the gradient direction of the points
due to an inaccurate estimation of the noise-free samples. Te

point cloud can be denoised in blocks using the trick of window
sliding denoising, which enables each small region of the point
cloud to achieve a more efective denoising efect. A further
feature of the algorithm is that the denoising process does not
reduce the number of points; rather, it denoises by shifting the
points to the surface of the estimated sample. Terefore, this
characteristic of the algorithm can be used to up-sample the
point cloud. Tis is accomplished by adding additional
Gaussian noise to the point cloud after the frst denoising of
each small area, followed by a second denoising to improve the
point cloud’s contour. Examples of denoising results using
diferent strategies are shown in Figure 5.

Compared to (a), (b) obtained after denoising by the
original algorithm has denser points and clearer contours in
Figure 5. However, because the algorithm is a direct
denoising of a large-scale point cloud scene, the denoising
detail is still lacking, and there are still some scatters around
the contours of the point cloud. Te window-sliding
denoising trick efectively makes up for this defciency,
and (c) has signifcantly fewer distinct scatters than (b). After
adding Gaussian noise to (c) for secondary denoising, the
point density in (d) is obviously higher than in (c), and the
contour of the point cloud is further clarifed.

2.3. Network Architecture. Graph-based point cloud seg-
mentation methods are the current mainstream of point-
based methods [5]. DGCNN [25] is a representative network
among the graph-based methods, and it contains the pio-
neering EdgeConv module. Tis module constructs a graph
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Figure 1: Te workfow of the railway bridge point cloud segmentation method based on the improved DGCNN includes three parts: data
acquisition, data preprocessing, and semantic segmentation using the improved DGCNN.
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that dynamically represents the neighborhood relationship
between points at various feature levels. Te EdgeConv
solves the problem of previous studies [19, 23] that focus
only on the point features and ignore the relationships
between points. EdgeConv incorporates the relationships
between points into the point feature extraction process,
making it highly suitable for extracting identical structural
features. Many scholars have improved upon DGCNN to
adapt it to various tasks, achieving signifcant results
[26, 27]. In this study, the DGCNN architecture is improved
to enhance its generalizability when dealing with the
complex railway bridge scenes.

As shown in Figure 6, the improved DGCNN employs
PE-EdgeConv for feature extraction, while multilayer per-
ceptron (MLP) is used to increase and decrease feature
dimensions. Te representation of each point’s features in
multiple dimensions is obtained via shortcut connections. In
the end, the extracted features include both the global and
local features of the input point cloud.MLP is used to decode
the features of each point, generating classifcation scores for
each point belonging to diferent categories.

Te main improvement of the DGCNN network
framework is presenting a PE-EdgeConv module that
contains Pos-Encoding, as shown in Figure 7.Tis module is
similar to the original EdgeConv in that only the MLP layer
contains trainable parameters, and the remaining steps in-
clude common feature processing operations such as k-
nearest neighbors algorithm (k-NN), repeat, subtract, and
pooling, which ultimately outputs a vector representation of
the local features of each point in the point cloud. PE-
EdgeConv difers from EdgeConv in that it includes the Pos-
Encoding operation, which adds neighboring feature or-
dering information to the local feature vector expression,
which more closely matches the actual point cloud’s local
relationships.

Te original EdgeConv module dynamically calculates
the k-neighborhood edge feature set for each point and
uses it as a representation of the relationship between that
point and other points. However, this representation does
not account for the order of diferent point features in the
edge feature set, resulting in the loss of ranking in-
formation for similarity. K-neighborhood sorting is based
on the distance between neighborhood points and the
central point in multidimensional features, refecting the
relationship between the point and the central point to
a certain extent. Tis is described using the position
encoding rules in Transformer [28] and Pos-Encoding to
encode the ranking of various points in the edge
feature set.

For the edge feature Ek ∈ Rk×f of a single point, position
encoding is performed according to the input order, as
shown in equations (3) and (4):

(a) (b)

(c)

Figure 2: Tree scene point cloud data synthesized from multiview UAV images. (a) Scene of a simple segmentation task; (b) scene of
a moderate segmentation task; (c) scene of a difcult segmentation task.

Table 1: Parameters of the three railway scenes.

Items Scene (a) Scene (b) Scene (c)
Track length (m) 130 523 313
Flight altitude of UAVs (m) 30 40 40
Image density (images/m) 3.69 1.23 0.90
Ballastless or ballast Ballastless Ballastless Both
Bridge or roadbed Bridge Both Both
Number of railway lines 1 1 2
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Cable
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Track bed
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(b)

Figure 3: Schematic diagram of 7 segmentation elements. (a) Element annotation in real-world scenes; (b) element annotation in point
cloud scenes. Te diferent elements are defned as follows: cable refers to all visible cables; mast refers to all kinds of masts; rail refers to all
railway tracks; track bed represents the collection of structures under the tracks; protective wall refers to the protective walls of the bridge
section; guardrail refers to the guardrails on both sides of the bridge; cluster refers to the collection of points in the point cloud that do not
have any semantic meaning.
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Figure 4: Coordinate transformation. (a) Before transformation; (b) after transformation.

(a) (b) (c) (d)

Figure 5: Denoising results under diferentmethods. (a) Point cloud before denoising; (b) direct denoising results using the original algorithm; (c)
applying window sliding denoising trick based on the original algorithm; and (d) add Gaussian noise to the result of (c) for secondary denoising to
enhance the point cloud contours. Te example in Figure 5 shows the result of adding 30% Gaussian noise and then secondary denoising.
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In this case, t represents the order of the edge features, i

denotes the encoding dimension, and f indicates the
encoding length, which is the same as the input point feature
length. After encoding, the position encoding of a single
edge feature satisfes pt � [sin(ω1t), cos(ω1t), ..., sin
(ωf/2t), cos(ωf/2t)], and the position encoding represen-
tation of a single point’s edge feature set is Pk ∈ Rk×f. To
utilize the ranking information of the edge feature set, the
position encoding is multiplied by the edge feature, as shown
in equation:

PEk � Pk ⊙Ek. (5)

Here, ⊙ represents element-wise multiplication. By
adding PEk and Ek, the edge feature with both point encoding
information and ranking information is obtained, which is
used as a representation of the relationship between points.

2.4. Design of Training. Tis section presents information
about network training, which includes hardware devices,
point cloud scene division, data formats, learning rate settings,
and some tricks for improving segmentation performance.

2.4.1. Basic Information. Te DGCNN used in this study is
developed based on the open-source framework PyTorch
[29], which employs a modular design, allowing for con-
venient customization of functions to accomplish various
study tasks. During model training, a computer equipped
with an NVIDIA GeForce RTX 4090 GPU, an Intel Core i9-
13900K CPU, and two 32GB DDR4 memory modules is
used for computation.
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Figure 6: Improved DGCNN framework.
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Figure 7: Schematic diagram of the two modules. (a) EdgeConv; (b) PE-EdgeConv.
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2.4.2. Scene Area Division. To facilitate the training and
testing of the network, the areas of the three scenes are divided
as shown in Figure 8. For scene (a), it is divided into four areas
based on the length of the track line; for scene (b), it is divided
into fve areas based on various track foundation support
structures; and for scene (c), it is divided into six areas based
on three diferent track lines and various track foundation
support structures. Diferent areas of the same scene have
roughly equal numbers of point clouds, and at least two areas
have the same number of types of segmentation elements. For
k-fold cross-validation of a single scene, one of the areas is
selected as the test set and the others as the training set.

2.4.3. Dataset Format. Te point cloud obtained from the
multiangle images collected by the UAV contains position
and color information. To ensure generality, the point cloud
segmentation in the railway bridge scene only considers the
position information. Since the point cloud lacks topological
information and is unorganized, this may not be conducive
to the efcient operation of deep learning networks.
Terefore, it is necessary to standardize the format of the
input data. Considering the efciency of computer memory
and tensor operations, the input point cloud data are set to
a multibatch and regularized format.

Input data standardization presents certain challenges.
Referring to previous work [19], the input point cloud area is
divided into B blocks, each of which is called a batch. Each
batch contains N points, and each point has a dimension of
C, which means the input point cloud representation format
is (B, N, C). To ensure that the number of points in each
block is equal, the number of points in each batch is set to
4096, and this is achieved by two operations, furthest point
sampling (FPS) and repeat sampling (RS). Te two opera-
tions correspond to cases where the number of points in
each batch is more or less than the set value, respectively.
Each point contains standard space coordinates (x, y, z) and
global relative coordinates (xg, yg, zg), where xg � x/xm,
and xm denote the maximum x coordinates of all points in
an area. Te meanings of yg and zg are similar.

2.4.4. Warm-Start Cosine Annealing. In the early stages of
network training, a high learning rate can accelerate the
decline of the loss function. To prevent oscillation of the loss
function value, the learning rate must be decreased as the
loss function approaches the global minimum. Te warm-
start cosine annealing strategy [30] can be used to efectively
tune the learning rate, and the variation in the learning rate
can be described by equation:

nt � nmin +
1
2

nmax − nmin( 􏼁 1 + cos
Tcur

Ti

π􏼠 􏼡􏼠 􏼡. (6)

Te relevant variables in equation (6) are explained as
follows: nt denotes the learning rate of the current epoch; nmin
denotes the minimum learning rate; nmax denotes the maxi-
mum learning rate; Tcur denotes the epochs since the most
recent warm restart; Ti denotes the epoch at the next learning
rate restart. Here,Ti can be expressed by the following equation:

Ti � T0 + Ti−1Tmult, i � 1, 2, . . . , n. (7)

In equation (7), Ti denotes the number of epochs in
which the learning rate returns to the initial value for the
(i + 1) th time;T0 denotes the number of epochs in which the
learning rate frst returns to its initial value; and Tmult de-
notes the restart factor of the learning rate, which controls
the speed of change of the learning rate. In order to ensure
that the learning rate will not restart again at the late stage of
training, T0 and Tmult need to be set in relation to the total
epochs of training. In this study, the network is trained for
600 epochs to reach convergence. Setting T0 to 5 and Tmult to
2 will satisfy the requirement.

As shown in Figure 9, the learning rate experiences
multiple iterations during the total epochs, and the learning
rate changes frequently in the early epochs, which enables
the network’s rapid convergence. In the late epochs, the
learning rate changes slowly, which can help the network
converge stably to the optimal value.

2.4.5. Other Tricks. Training and evaluation of the original
DGCNN are based on public point cloud segmentation
standard datasets such as ShapeNetPart [31] and S3DIS [32].
In comparison to these standard datasets, the railway bridge
scenes point cloud is characterized by its broad range of
point clouds, relatively uniform distribution of structures,
and unique railway elements. Tese characteristics can be
utilized in three primary ways to improve the results of point
cloud segmentation:

(i) Reducing the number of decoding neurons.
Reducing the number of decoding neurons makes
the network model more lightweight. Te point
cloud segmentation of the railway bridge scene
consists of 7 elements, which is less than the 16-
element segmentation on ShapeNetPart and the 13-
element segmentation on S3DIS; consequently, the
decoding task of the network is simplifed. Tere-
fore, appropriately reducing the number of
decoding neurons while ensuring the network has
adequate decoding capability can improve the
network’s computational efciency and enhance the
lightweight of the network.

(ii) Adjust the orientation of the input point cloud
blocks.
Te majority of the structures observed in the
railway bridge scene display a linear confguration
and demonstrate symmetrical or parallel associa-
tions. In order to enhance the network’s ability to
extract point cloud features with greater precision, it
is a logical strategy to align the orientation of the
point cloud blocks with the linear structures.

(iii) Choosing an appropriate point cloud block size.

Te larger the block size, the fewer batches in each epoch,
which is equivalent to increasing the batch size. Typically,
the block size is determined frst, and then the batch size is
determined by experiment.Te appropriate block size can be
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selected according to the density of the point cloud. Identical
to the standard dataset, the number of points within a block
in this study is 4096. It is reasonable to set the block size to
2m in order to make the actual number of points in a block
comparable to 4096, given the point cloud density of the
railway bridge scene in this study.

3. Results

Tis section presents the results of point cloud segmentation
using the proposed method under various conditions. First,
the metrics used for evaluating the performance of semantic
segmentation are introduced. Next, the improvement in

segmentation accuracy before and after point cloud
denoising is compared. Ten, the impact of network im-
provement and batch size setting are discussed on the ex-
perimental results. Subsequently, in order to verify the
generalizability of the proposed method to point clouds in
diferent railway bridge scenes, stratifed K-fold cross-
validation between diferent areas was conducted in three
diferent scenes, respectively. Finally, the efect of the
combination of datasets from diferent scenes on the point
cloud segmentation task was evaluated.

In exception of the comparison experiments, the relevant
parameters used in the proposed improved network are
shown in Table 2.

Area 4

Area 1 Area 2 Area 3

(a)

Area 4 Area 5

Area 1 Area 2 Area 3

(b)

Area 4

Area 1 Area 2

Area 5

Area 3

Area 6

(c)

Figure 8: Area division of the three scenes. (a) Dividing four areas by the track length in scene (a); (b) dividing fve areas by diferent track
foundation support structures in scene (b); (c) dividing six areas by three distinct tracks and various track foundation support structures in scene (c).

Structural Control and Health Monitoring 9



3.1. Metrics. As shown in Table 3, the number of points for
each element is unbalanced. Using the accuracy metric on
such an unbalanced dataset may produce misleading results
[34]. To prevent prediction results from being biased to-
wards the majority class in an imbalanced dataset, in-
tersection over union (IoU) and mean IoU (mIoU), as well
as balanced accuracy (bACC), are selected as performance
metrics for point cloud segmentation. In order to facilitate
the discussion of results, this paper focuses primarily on
mIoU or IoU, presenting bACC as supplementary judgment
in the results.

To facilitate comprehension, the symbols used in the
following section are defned below: C is the total number of
classes. TP (true positive) represents the number of samples
that are correctly classifed as positive. FN (false negative)
represents the number of positive samples misclassifed as
negative. TN (true negative) represents the number of
samples that are correctly classifed as negative. FP (false
positive) represents the number of negative samples mis-
classifed as positive.

Te abovementioned metrics are applicable to binary
categorization tasks; for multicategorization tasks, each
categorization element needs to be evaluated individually.
For example, each categorization element can be simplifed
into two categories, the category of the element and the
category of the nonelement, thus converting a multi-
categorization task into a binary categorization task.

Combined with point cloud segmentation explained as
follows: all elements have been labeled before segmenta-
tion, and in the segmentation result, for a particular seg-
mented element C, the number of points correctly
identifed as element C is denoted as TP, and the number of
points incorrectly identifed as other elements is denoted as
FN; for the other elements, the number of points identifed
as labels of other elements is denoted as TN, and the
number of points incorrectly identifed as element C is
denoted as FP.

Te evaluation metrics IoU, mIoU, and bACC are
explained as follows:

(i) IoU
Tis metric is used to evaluate the segmentation
performance of a single class, defned as the number
of common points between the ground truth and
predicted samples for the current class divided by
the total number of points present in both samples,
as shown in equation (8):

IoU �
TP

TP + FP + FN
. (8)

(ii) mIoU
Te mIoU is defned as the average IoU over all
classes, and the network version that achieves the
highest validation mIoU is saved as the best version,
as shown in equation (9):

mIoU �
1
K

􏽘

K

i�1
IoU(i). (9)

(iii) bACC
Tis metric is used to evaluate the overall seg-
mentation performance of a point cloud scene. It is
defned as the average recall rate across each class, as
shown in the following equation:

recall(i) �
TP

TP + FN
,

bACC �
1
K

􏽘

K

i�1
recall(i).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

3.2. Denoising Efect. Tis subsection evaluates the accuracy
improvement of the proposed point cloud denoising method
for the railway bridge point cloud segmentation task. In the
denoising test for scene (b), the details of the denoised point
cloud are shown in Figure 10. Compared to the point cloud
before denoising (a), the denoised point cloud (b) has
a higher density and more distinct shape contours. Com-
pared to the point cloud without denoising, the network
segmentation mIoU of the denoised point cloud is 90.76%,
which is an improvement of 5.03%. Tis indicates that the
proposed denoising method signifcantly improves the
quality of the point cloud and is benefcial for the network to
learn the point cloud features.

max

min

0 100 200 300
Epoch

400 500 600

Le
ar

ni
ng

 ra
te

Figure 9: Curve of learning rate with epoch increase.

Table 2: Relevant parameters used in the proposed improved
network.

Name Variable Value
Input feature (x, y, z, xg, yg, zg) —
Block size l 2m
Epochs — 600
Number of sampling points N 4096
Batch size BS 32
Range of learning rates LR (0, 0.002)

Learning rate fne-tuning strategy Warm-start cosine annealing,
T0 � 5, Tmult � 2

Optimizer Adam [33]
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3.3. Network Improvement. To evaluate the improvement
efect of the proposed method, a comparison experiment is
designed between the proposed method and various net-
works. Scene (b) is the experimental test object, with area 3
serving as the test set and the remaining areas serving as the
training set. Te improved DGCNN is frst compared to the
original DGCNN. PE-EdgeConv and the decoding layer are
the primary diferences between the two networks. Te
experimental results are shown in Figure 11; after 600
epochs, both networks converge. Compared to DGCNN, the
improved DGCNN has a faster loss decrease and a more
stable loss during training, resulting in increased train and
test accuracies. Since the learning rate is restarted and it-
eratively updated during the training process (see 2.4.4 for
details), when the learning rate is abruptly increased, the
update step size of the network parameters will also be
abruptly increased, which ultimately refects a large change
in the classifcation prediction value of the elements,
resulting in an obvious loss peak in Figure 11.

In addition, this paper compares the segmentation re-
sults of other representative state-of-the-art methods on this
paper’s dataset, including PointNet++, KPConv, Point
Transformer, and Swin3D-L. Te results are shown in Ta-
ble 4. Te segmentation mIoU of all three classical networks,
PointNet++, DGCNN, and KPConv, is lower than the
improved DGCNN proposed in this paper. Point Trans-
former uses the self-attentive layer for the 3D point cloud,
which has sequence-independent properties and is thus
suitable for extracting point cloud features. Tis network
achieves the highest segmentation mIoU in the dataset of
this paper. Due to the signifcant diferences in point cloud
quality and segmentation element types between the railway
and indoor datasets, Swin3D-L as a state-of-the-art pre-
training network for indoor scenes does not perform well on

the railway scene dataset in this paper. Finally, the seg-
mentation accuracy of the improved DGCNN proposed in
this paper is slightly lower than Point Transformer; but
compared with the original DGCNN, the segmentation
accuracy is signifcantly improved, which indicates that the
PE-EdgeConv module enriches the local feature ordering
information of the point cloud and efectively improves the
network’s recognition of the point cloud.

Overall, the improved DGCNN in this paper’s dataset
achieves point cloud segmentation accuracy comparable to
that of state-of-the-art networks. Furthermore, the im-
proved DGCNN has a signifcant advantage in model
weight, which facilitates the deployment of point cloud
segmentation applications.

3.4. Impact of Batch Size. Batch size (BS) is a major hyper-
parameter that has a signifcant impact on the performance of
neural networks. Studies [37, 38] have shown that increasing
the BS can signifcantly reduce the network training time and
improve the accuracy and stability of gradient descent.
However, the generalizability of the network will decrease as
the BS increases excessively [39]. In order to balance the
training efciency and generalizability of the network, it is
necessary to select the appropriate BS through an experiment.
Te experiment compares the segmentation results of the
improved DGCNN with four diferent BS settings, and area 3
in scene (b) is selected as the test set and the remaining areas
serving as the train set. To ensure that the network can con-
verge within 600 epochs with diferent settings, the learning
rate is also adjusted proportionally to the BS.

As shown in Figure 12, the results indicate that as BS
increases, the training time spent on each epoch decreases in
a certain linear relationship, but the decrease is weakened.

Table 3: Te percentage of diferent classifcation elements present in each of the three scenes.

Scenes
Category (%)

Total points
Cable Cluster Guardrail Mast Protective wall Rail Track bed

(a) 5.12 31.28 16.11 3.59 8.59 7.94 27.01 3253843
(b) 3.59 27.07 15.99 4.45 11.71 12.61 24.58 4179984
(c) 4.23 39.06 11.77 8.09 7.28 14.96 14.61 2720482

(a) (b)

Figure 10: Comparison of the results before and after denoising. (a) Before denoising, the segmentationmIoU is 85.73%; (b) after denoising,
the segmentation mIoU is 90.76%.
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When BS is less than 32, the mIoU of training and testing
increases as BS increases. When BS is greater than 32, in-
creasing BS improves the training mIoU but decreases the
testing mIoU, which indicates that the network enters an
overftting state. Taking into account the preceding analysis,
it is benefcial for the network to set BS to 32 in order to
achieve a balance between training efciency and
generalizability.

3.5. Cross-Validation of Individual Scenes. Tis section
demonstrates the segmentation accuracy and generaliz-
ability of the proposed method in scenes (a), (b), and (c).
Stratifed K-fold cross-validation experiments are designed
for diferent areas in each scene, as shown in Table 5. All
types of elements in the three scenes achieve high

segmentation accuracy, but there are signifcant diferences.
Among them, scene (a) has the highest segmentation ac-
curacy, scene (b) follows, and scene (c) shows the lowest
segmentation accuracy. Tis is linked to the predicted dif-
fculty of the segmentation task for the three scenes and is
closely related to the complexity of the scenes and the quality
of the dataset. Te point cloud segmentation results for each
scene are shown in Figure 13.

Te point cloud segmentation results for the three scenes
are analyzed as follows:

(i) Scene (a)
In scene (a), the variety of structural types is rela-
tively simple, and their arrangement is more reg-
ular, with high-quality point clouds. As a result, the
segmentation accuracy of each structural element is
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Figure 11: Training and testing results of both DGCNN and improved DGCNN. (a) Train loss; (b) train mIoU; (c) test loss; and (d) test mIoU.

Table 4: Segmentation results of diferent networks in scene (b).

Methods Test mIoU (%) Test bACC (%) Parameters size (MB)
PointNet++ [23] 88.25 93.17 7.18
DGCNN [25] 88.96 93.67 2.45
KPConv [20] 89.36 94.04 14.10
Point transformer [35] 90.9 95.53 7.80
Swin3D-L [36] 83.87 89.68 60.75
Improved DGCNN 90.64 95.31  .1 
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higher, and the mean IoU of individual elements in
diferent areas reaches over 98%.

(ii) Scene (b)
In scene (b), the UAV was shot at a height of
40meters, resulting in a lower point cloud density.Te
segmentation accuracy of each element is signifcantly
lower compared to scene (a). Te track beds in the
bridge section are elevated, while the track beds in the
roadbed section are alignedwith the clusters.Tere are
some diferences between these two labeled track beds,
resulting in a lower IoU value of the training network
for the segmentation of the track beds. In addition, the
rail is easily mistaken for track bed as it is closely
connected to the track bed, resulting in unclear shape
features.

(iii) Scene (c)
Due to the high complexity of scene (c) (see Section
2.1), the uniformity of the dataset is reduced and
there are structural diferences among the same
elements. In addition to the structural diferences in
the roadbedmentioned in scene (b), the distribution
of the masts is more complex, which further leads to
large diferences in segmentation accuracy between
the elements. Although cable is similar in appear-
ance to rail, their segmentation accuracy is main-
tained above 97% in all three scenes due to their
unique positional characteristics as they are located
above the track. Similarly, the guardrail is located on
both sides of the rails and has a signifcant height
diference, resulting in a higher segmentation
accuracy.

In conclusion, the point cloud segmentationmIoU of the
proposed method can be maintained above 85% for all three
scenes with various levels of difculty, and the segmentation
mIoU between diferent areas of a single scene is compa-
rable, indicating good generalizability.

3.6. Testing on the Fusion Dataset. To verify the generaliz-
ability of the dataset, models trained on a single-scene
dataset were applied to the segmentation tasks of the
other two scenes. As shown in Table 6, due to the signifcant
diferences between the three scenes, the segmentation ac-
curacy of the models trained on a single scene is low when
applied to the other scenes. Furthermore, the model’s seg-
mentation accuracy is the lowest when trained on scene (a);
when trained on scene (b) or scene (c), the accuracies are
similar. Tis indirectly indicates that the positions and
shapes of the elements in the diferent areas of the scene (a)
are more uniform, which does not sufciently train the
model’s generalizability. In contrast, the quantities and
shapes of elements in the diferent areas of scenes (b) and (c)
have some variations, which help improve the network’s
generalizability.

Te network trained with a single scene dataset has low
segmentation accuracy for point clouds from other scenes, as
shown in Table 6. In order to address this issue, we designed
a multiscene fusion dataset test experiment in which ffty
percent of the point clouds from scenes (a), (b), and (c) are
removed for multiple combination tests. Te results dem-
onstrate that the merged dataset contains more elements and
data features, which can be utilized to train the network’s
generalizability in various scenes.
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Figure 12: Point cloud segmentation results with four BS settings.
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4. Discussion
In this section, the proposed method will be discussed in
terms of accuracy, efciency, and generalizability with ex-
perimental results.

4.1. Accuracy and Efciency. To improve the accuracy of the
network’s segmentation, we focused on three aspects. First,
in order to improve the quality of the point cloud, we
adopted a large-scale global point cloud denoising strategy.
Also, the secondary denoising is performed by increasing the
number of points in order to increase the point cloud density

and shape contour. In general, as the number of points
increases, the contour of the point cloud becomes more
distinct. However, after reaching a certain level (about 30%
increase), it becomes difcult to improve the segmentation
accuracy of the point cloud and instead increases the
computational burden of point cloud block sampling.
Second, considering that the original DGCNN lacks the use
of edge feature similarity ordering information, we proposed
PE-EdgeConv, which stores edge feature ordering in-
formation by referencing the position encoding in [28]. Tis
allows the network to further learn the depth space distri-
bution features of the point cloud. Finally, we adjusted the

Table 5: Results of segmentation of three scenes in diferent areas.

Scenes Test area
IoU (%)

mIoU (%) bACC (%)
Cable Cluster Guardrail Mast Protective wall Rail Track bed

(a)

1 99.46 99.56 99.92 97.88 99.08 97.76 99.21 98.98 99.51
2 99.61 99.71 99.96 98.43 99.51 98.37 99.32 99.27 99.68
3 99.40 99.82 99.99 97.86 99.60 98.53 99.52 99.24 99.68
4 99.10 99.58 99.95 97.90 99.42 99.10 99.45 99.21 99.63

Mean 99.39 99.66 99.88 98.02 99.40 98.44 99.38 99.18 99.63

(b)

1 98.74 90.27 97.80 91.07 92.92 83.80 86.77 91.62 96.73
2 98.44 88.31 — 92.97 — 82.83 87.63 90.04 95.15
3 98.78 87.84 97.12 90.20 91.70 82.05 86.82 90.64 95.31
4 98.56 88.49 — 92.42 — 84.80 85.86 90.03 95.07
5 98.77 89.63 98.62 90.41 91.96 83.84 87.18 91.49 96.66

Mean 98.66 88.91 97.85 91.41 92.19 83.46 86.85 90.76 95.78

(c)

1 97.50 84.86 — 89.45 — 74.29 — 86.53 92.11
2 96.95 83.45 — 88.23 — 75.45 82.20 85.26 91.05
3 97.04 83.39 — 88.91 — 75.84 — 86.30 91.77
4 97.84 82.84 94.46 89.59 85.99 72.54 — 87.21 92.64
5 96.38 81.55 93.80 86.76 83.95 73.53 82.64 85.52 91.26
6 — 83.70 96.95 88.70 78.84 72.94 — 84.23 90.87

Mean 97.14 83.30 95.07 88.61 82.93 74.10 82.42 85.84 91.62

(a) (b)

(c)

Figure 13: Semantic segmentation results for three scenes. (a) Segmentation result of scene (a); (b) segmentation result of scene (b); and (c)
segmentation result of scene (c).
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size and orientation of the input point cloud blocks
according to theoretical and practical application scenes and
reduce the number of neurons in the decoding layer of the
network. Tis efectively improves the efciency of network
training. It should be noted that the larger the point cloud
block is, the number of sampling points needs to be in-
creased proportionally to avoid losing point cloud accuracy.
However, as the number of points increases, the memory
consumption for computing and storing the k-nearest
neighbor set grows rapidly [40].

4.2. Generalizability. Te proposed method exhibits similar
point cloud segmentation accuracy across various areas
within the same scene, demonstrating generalizability.
Terefore, when dealing with similar sections of the same
route, it is possible to consider using datasets from some
areas for training and then segmenting the remaining areas.
Tis method can reduce the data and time costs of network
training and enhance the feasibility of point cloud seg-
mentation in practical railway bridge applications. However,
for scenes of diferent routes, the scene elements normally
difer signifcantly, and the segmentation accuracy is rela-
tively lower when the trained model is directly applied (see
Table 6). We believe that the low accuracy is due to the
insufcient richness of the model’s training set for other
scenes. To verify this hypothesis, we constructed a simple
fusion dataset to train the network, and the results dem-
onstrate a signifcant increase in the segmentation accuracy
of the diferent scenes. In order to improve the generaliz-
ability of the network in diferent scenes, it will be necessary
for future applications to collect point cloud data from
a variety of scenes as a training set for the network. In
addition, the incorporation of multisource data, such as
images and LiDAR [41], can be considered to improve
segmentation precision.

5. Conclusions

Tis paper proposes a point cloud segmentation method
based on improved DGCNN. Te method is used to ac-
complish the complete process of automatically segmenting
the relevant elements of railway bridges from the point

clouds synthesized from multiview images of UAV. Te
relevant elements include cable, mast, rail, track bed, pro-
tective wall, guardrail, and cluster. Te proposed method is
improved in several aspects such as point cloud quality,
network architecture, data input, and training details, which
efectively improves the accuracy and generalizability of the
network for point cloud segmentation.

Te proposed method achieves 99.18%, 90.76% and
85.84% segmentation mIoU in three diferent complexity
scenes from low to high. Te segmented elements clearly
display the structural composition and location information
of the railway bridge, and the segmented results can be used
as a building information model (BIM) basis for the railway
digital twin, providing a feasible solution for related railway
applications including asset management, geometric quality
inspection, and construction progress tracking.

Te point cloud segmentation method proposed in this
paper shows good generalizability for diferent railway
bridge scenes; however, the time-consuming and laborious
acquisition and manual labeling of the required training sets
make it difcult to be rapidly deployed for actual inspections.
Physics-based virtual models are urgently needed to be
developed for synthesizing standardized training sets of
railway scenes with richer elements, driving more efcient
deployment of deep learning methods. In addition, trans-
forming supervised DGCNN to semisupervised or even
unsupervised methods is also an efective improvement
direction for reducing the cost of manual labeling.
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