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Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various
abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user in-
teraction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection
method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is
proposed in this paper. Tis method simulates intelligent human decision making in two steps. First, the original data are
reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is
extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency
domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data.
Second, a CNN-LSTMmodel is constructed and trained which utilizes CNN to extract local high-level features of input sequence
and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data
features. For verifcation, the method was applied to the automatic classifcation of continuous monitoring data for 42 days of
long-span bridge, and the average accuracy of the classifcation results exceeded 94% and the detection time was 78minutes.
Compared with existing methods, this method can detect abnormal data more accurately and efciently and has a stronger
generalization ability.

1. Introduction

Vibration-based structural health monitoring (SHM) [1]
methods involve tasks such as structural modal analysis [2],
model updating [3, 4], damage detection [5–7], and safety
assessment [8, 9]. Te analysis results rely heavily on having
accurate and high-quality vibration data. However, in real-
time and long-term SHM systems, the vibration data col-
lected automatically might be abnormal owing to sensor
faults and the transmission or storage failures caused by the
harsh environment [10], especially after long periods of
service. Anomalous data will almost certainly result in in-
correct identifcation results and false warnings. In addition,

when these anomalies are mixed with data related to
emergency events, such as earthquakes, ship collisions, or
trafc accidents, they will also interfere with the early
warning capability of the SHM system. Terefore, identi-
fying and locating abnormal data is an essential pre-
processing step for vibration data analysis.

Data anomaly detection, based on physical model
construction and probabilistic prediction, is a common and
efective strategy. For example, Tiyagarajan et al. [11] de-
tected the abnormality of a sensor based on the autore-
gressive integrated moving average (ARIMA) model and
provided a fault warning. Li et al. [12] proposed a rapid
sensor fault identifcation method based on the generalized
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likelihood ratio and correlation coefcient. Wan and Ni [13]
employed a Bayesian modeling method using Gaussian
processes (GPs) to detect abnormal data via probabilistic
prediction of the structural stress response. However, as
system complexity and uncertainty increase, especially when
massive and continuous monitoring data exist, it is chal-
lenging to fnd explicit models with appropriate parameters
that remain computationally efcient [14].

Considering that the continuous monitoring of struc-
tures can produce massive amounts of data, data-driven
methods, which do not require a physical model of the
system, have become more popular in recent years. For
example, deep learning methods such as CNN models and
LSTM models have been widely used in the feld of SHM
[15–28]. Tese methods have the greatest potential to learn
from monitoring data containing abnormal data and to
automatically diagnose various abnormal patterns.
According to the algorithm features, basic model, and input
data type, the corresponding methods can be divided into
three categories.

Te frst includes computer vision methods, which take
advantage of visualizing monitoring data. For example, Bao
et al. [15] converted time-series signals into images, inputted
them into a deep neural network (DNN), and then trained
the model to detect anomalies. Tang et al. [16] fused the
frequency-domain features, constructed a dual-channel
image, and incorporated a CNN to complete the identif-
cation and classifcation of abnormal acceleration data. Mao
et al. [17] converted time-series data into a Gramian angular
feld image and identifed abnormal data using a combina-
tion of a generative adversarial network (GAN) and
autoencoders. However, segmenting and converting signals
into images to extract features is time-consuming, and it is
difcult to process continuous long-term monitoring data.
Most importantly, it is easy to lose key information during
the visualization process.

Te second type uses a time-series prediction model to
detect abnormal data by observing the diference between
the actual and predicted values. For example, Zhang et al.
[18] used historical normal data to train a separate LSTM
network for each sensor and then set a threshold for the
prediction error of the network to detect anomalies. Vos
et al. [19] combined LSTM with a class of support vector
machines and separated the abnormal data collected during
the durability test of the reduction gearbox from the
normal vibration signal according to the residual signal
between the actual and predicted values. Tis type of
method is usually limited because it works only on specifc
sensors and is difcult to extend to other datasets. Fur-
thermore, it cannot be used for more detailed classifcation
of multiple anomalies. In addition, it is challenging to
directly use the original data to generate forecast data in
terms of calculation cost.

Te third employs a time-series classifcation model to
detect abnormal data. Yang et al. [20] constructed a new
time series by extracting nine feature indexes from the
original data and combined this result with a bidirectional
long short-term memory (Bi-LSTM) neural network model
to classify and locate GPS data anomalies. Zhang and Lei [21]

extracted the maximum and minimum values of accelera-
tion data by downsampling to reduce the dimension of input
samples and classifed anomalous data in combination with
a 1D-CNN. For confusing patterns, Zhang et al. [22] used
statistical features to reclassify the intermediate results of
CNN model recognition. Based on the shape of the original
time series, Arul and Kareem [23] combined the shapelet
transform with a random forest classifer to detect anomalies
in SHM data. Although these approaches are efective, some
problems still need to be addressed. Te resampled feature
signal lacks the frequency-domain information of the
original signal. In addition, when quantitative feature in-
dicators, such as the maximum and mean values, are used as
training samples, the model will only be efective on datasets
with specifc structures, which means that the generalization
ability of the model is low.

To address the above challenges, there remains a need
for an efcient method with a strong generalization
ability to automatically detect abnormal data. Inspired by
existing methods, this study proposes a vibration data
anomaly detection method based on CNN-LSTM
models. Tis method reconstructs and marks original
data by extracting multiple feature information from the
time and frequency domains, and the reconstructed
samples have more obvious generality and smaller size,
which will improve the classifcation efciency of the
classifer. Tis method combines the advantages of both
CNN and LSTM models, utilizing CNN to extract local
high-level features of input samples and inputting new
continuous high-level feature representations into LSTM
to learn global long-term dependencies. Terefore, the
combined model can more accurately learn abnormal
features in vibration data. Te example results for long-
span bridges show that the proposed method has a higher
efciency, accuracy, and generalization ability compared
to previous methods.

Te remainder of this paper is organized as follows.
Section 2 describes the framework of the proposed method
in detail, including the feature sequence extraction method
and the working principle of the CNN-LSTMmodel. Section
3 presents a detailed example of a long-span suspension
bridge. Te results show that the proposed method is both
efcient and accurate. Section 4 provides further discussion.
Finally, concluding remarks are given in Section 5.

2. Methodology

An overview of the proposed data anomaly detection
method based on the CNN-LSTM model is shown in Fig-
ure 1. First, the proposed feature sequences are extracted
from the time and frequency domains of the segmented data.
Te size of the original monitored data is signifcantly re-
duced, which helps to improve the classifcation accuracy
and efciency. Second, a CNN-LSTM model that applies
time-series analysis is constructed and trained for anomaly
data classifcation. Finally, with well-trained models, these
potential anomalies can be automatically detected in the test
set composed of actual structural vibration data, which can
replace manpower in large-scale data detection.
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2.1. Data Pattern Classifcation. Vibration monitoring data
can be divided into seven categories based on local char-
acteristics [15]: normal, trend, outlier, drift, square, missing,
and minor. As shown in Figure 2, typical vibration signals
with only a single feature are presented. Figure 2(a) shows
the normal pattern data as a reference. Figures 2(b)–2(d)
show the outlier pattern, trend pattern, and drift pattern of
abnormal vibration data. In this study, we found that the
number of samples of pure trend pattern and drift pattern
caused by sensor failure is very small, and they usually
appear in the same sample mixed with outlier pattern. As
shown in Figure 3, it is difcult to accurately defne this
mixed data pattern, and this mixed pattern is widespread
and numerous. Considering that these three types exhibit
strong asymmetry in the time domain and poor in-
terpretability in the frequency domain compared to normal
data, this study categorizes them into one category: outlier
pattern. Figures 2(e) and 2(f) show two abnormal patterns:
square and missing, of which the data of the former are like
a square wave, and the latter is completely or partially
missing. Figure 2(g) shows the abnormal data of the minor
pattern and the normal monitoring data collected by ad-
jacent sensors during the same period. Compared to the
normal data, the amplitude of the minor pattern was very
small in the time domain. Terefore, the dataset used in this

study divides vibration monitoring data into fve categories:
normal, outlier, square, missing, and minor. In addition,
when a sample has multiple anomaly features, it corresponds
to only one real label. Tis requires prioritizing each type of
vibration data for a single classifcation. In this study, the
missing pattern had the highest priority, followed by outlier,
square, minor, and normal with the lowest priority.

2.2. Feature Sequence in Time Domain. In this study, the
feature sequence of the vibration data in the time and fre-
quency domains was extracted as reference indexes for
classifcation.

In the time domain, the feature sequence is obtained
from the profle of the vibration signals, which is approx-
imately symmetric about the time axis. Te structural vi-
bration is generally an up-and-down reciprocating motion
around the equilibrium position, and the absolute values of
the up-and-down amplitudes are approximately equal. For
the vibration data under environmental excitation, the upper
and lower peaks are approximately symmetric with respect
to the time axis. For the vibration data under the heavy
vehicle load, there is usually a higher peak followed by
a slightly lower peak, and the vibration data are also sym-
metrical. Tis symmetry can be expressed using two
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Figure 2: Visualization of various types of vibration data: (a) normal; (b) outlier; (c) trend; (d) drift; (e) square; (f ) missing; (g) minor.
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Figure 3: Visualization of widely distributed mixed pattern data.
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envelope curves, as shown in Figure 4. In the fgure, the gray
curve represents the original data, the red curve represents
the upper peak envelope, and the blue curve represents the
lower peak envelope. Amplitude symmetry manifests as the
symmetry of the envelope curves. However, this symmetry is
not strictly a point-to-point correspondence in sequence; for
example, point 1 in the fgure corresponds to point 2, and
point 3 corresponds to point 4. Te reason for this is the
existence of a vibration phase diference.

Taking the outlier as an example, when there are obvious
anomalies in the data, the symmetry is broken, as indicated
by the light blue dotted line box in Figure 5(b), and the
absolute values of the upper and lower peak envelopes difer
considerably. Terefore, we can estimate the symmetry of n-
dimensional vibration data to detect abnormal patterns. Te
specifc method is to extract the residual signal between the
upper peak envelope yu ∈ Rn×1 and lower peak envelope
yl ∈ Rn×1 of the original signal to refect this symmetry. Te
original signal is considered symmetrical about the zero axis,
and the residual signal is generated using the following
formula:

r � r1, r2, · · · , ri􏼂 􏼃,

ri �
y

i
u + y

i
l

􏼌􏼌􏼌􏼌􏼌
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(1)

where i is the serial number of the sampling window, and
when the window size is m, n � i × m is satisfed. yi

u and yi
l

are the maximum value of the upper peak envelope and the
minimum value of the lower peak envelope in window i,
respectively, as shown in Figure 5. xi

u and xi
l are the max-

imum value of the upper peak envelope and the minimum
value of the lower peak envelope, respectively, on window i
after removing outliers from the original data, as shown in
Figure 6. Here, the outliers are defned as elements that difer
from the local average value by more than six times the local
standard deviation within the specifed window i. Te ele-
ment at the location of the outlier is replaced by the local
average value and the peak envelope is recalculated. Te
purpose is to change the residual signal into a signal
composed of dimensionless relative values, and the relative
value of the residual is not signifcantly reduced owing to the
removal of local outliers. In addition, for missing data, all
“NAN” and “INF” values are replaced with zero to avoid
calculating invalid values using equation (1). Equation (1)
shows that when yi

u and yi
l calculated in window i have the

same sign or when the two have diferent signs but their
absolute values difer greatly, symmetry will be lost, and the
calculated residual value will be greater than 1. When the
two have diferent signs but their absolute values are ap-
proximately equal, the residual value will be very small and
less than 1.

Te peak envelope of each data pattern is shown on the
left side of Figure 7, and the middle shows a comparison
between the upper and lower peak (taking the absolute
value) envelopes of each data pattern. When the data exhibit
a normal pattern, the ftting results of the two curves are

better. In contrast, when outlier values exist in the data, the
ftting efect is very poor. Te ftting results are the best for
the square pattern. For the missing pattern, the values of the
two curves are zero. When the data have a minor pattern,
this ftting efect worsens. Te residual signal of each data
pattern calculated using equation (1) is shown on the right
side of Figure 7. Most residual values of the normal samples
are below 1. For the residual signal of the outlier pattern,
some values are much greater than 1, showing multiple
peaks, while the value of the square residual is far less than 1,
the value of the minor residual is slightly greater than 1, and
the value of the missing residual signal is always zero. Based
on these diferences, we can take the residual signal as the
feature sequence of the vibration data in the time domain. It
has the advantage of having a much smaller size than the
original data.Te size of the feature sequence can be reduced
by adjusting the size of window i; as shown, we take the size
of each window asm, thereby reducing the size of the feature
sequence from n to n/m.

2.3. FeatureSequence inFrequencyDomain. In the frequency
domain, the feature sequence is obtained from the spectrum
curves directly. Te normal vibration data collected by SHM
can refect the dynamic characteristics of the structure,
which is highly interpretable in the frequency domain and
shows clear multi-peak characteristics, as shown in
Figure 8(a). However, for various anomaly patterns, the
characteristics of their power spectral density (PSD) curves
are signifcantly diferent from those of normal data. For the
outlier data, the PSD curve has no obvious peak, and the
energy is concentrated near zero, as shown in Figure 8(b).
For the square data, the PSD curve exhibits an obvious frst-
order peak, as shown in Figure 8(c). When the data are
completely missing, the PSD curve is 0. When the data are
partially missing, the form of the PSD curve depends on the
type of data that are not missing, as shown in Figure 8(d).
Te minor pattern is similar to that of the outlier pattern,
and the PSD curve has no obvious peak value and thus
cannot be analyzed. Terefore, the PSD sequence is taken as
the feature of the vibration data for anomaly detection. To
ensure consistency with the length of the feature sequence in
the time domain, the frst i values of the PSD are used to
construct the feature sequence and normalize each sample.
Te Fourier transform number can be adjusted to ensure
that the feature sequence is within the frequency range of
interest of the structure.

2.4. CNN-LSTM Network Model. Te CNN-LSTM model
structure [29] is mainly composed of input, convolutional,
max pooling, reshape, LSTM, and output layers, as shown in
Figure 9. In this study, the input layer in the fgure consists of
two feature sequences extracted from the original vibration
samples. Each feature sequence is a one-dimensional time
series; therefore, themodel input is a 2× imatrix.Te feature
series data are fed into the CNN convolution layer for
convolution calculation, and high-level sequences of data
features are extracted. Te extracted feature matrix is pooled
by the max pooling layer.Te feature map is fattened to fuse
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the time- and frequency-domain features of the data. Ten,
input the fattened vector to the LSTM layer to capture the
long-term dependence of the window feature sequence.
Finally, the output of the LSTM layer is connected to the
fully connected layer, and the softmax layer is used to classify
the vibration anomaly characteristics to complete the
anomaly detection process.

2.4.1. Convolutional Neural Network. Te convolutional
neural network constructed in this study uses one-
dimensional convolution, which involves a flter vector

m ∈ Rk×d sliding over a sequence x ∈ RL×d and detecting
features at diferent positions j. In Figure 9, the red dotted
box represents the detected area, and the direction of the red
arrow represents the sliding direction of the flter vector. For
each position j in the sequence, we have a window vector wj

with k consecutive value vectors, denoted as

wj � xj, xj+1, · · · , xj+k−1􏽨 􏽩, (2)

where, xj ∈ Rd denotes the d-dimensional vector for the j-th
value in the input sequence. A flter m convolves with the
window vectors at each position in a valid manner to
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generate a feature map e ∈ RL− k+1, where each element ej of
the feature map for window vector wj is produced as follows:

ej � f wj ⊗m + b􏼐 􏼑, (3)

where ⊗ denotes element-wise multiplication, b ∈ R is
a bias term, and f is a nonlinear transformation function. In
this study, we selected the ReLU function [30].

Te pooling layer is set after the convolution layer to
continue reducing the dimension of the feature map ei and
improve the operation speed. For the pooling operation, max
pooling is selected. Te pooling window scans ei from top to
bottom, as shown in the blue dotted box in Figure 9, selects
the maximum value in the pooling window as the output of
this position, and fnally obtains a smaller feature map ci.

Te CNN-LSTM model uses multiple flters to generate
multiple feature maps. For n flters with the same length, the
generated n feature maps can be rearranged as feature
representations for each window wj.

C � c1; c2; · · · ; cn􏼂 􏼃. (4)

Here, ci is the feature map generated with the i-th flter
and pooling and “;” represent column vector concatenation.
Each row Cj is a new feature representation generated from n
flters and pooling for the window vector at position j, as
indicated by the green dotted line box in Figure 9. Flatten C
into a one-dimensional feature sequence by row, and the
new successive window feature sequence representations are
then fed into the LSTM.

original
lower peak

upper peak
residual

Normal

Outlier

Square

Peak envelope Upper peak &
lower peak (negative)

Residual signal

Minor

Missing

20

0

-20
A

cc
el

. (
cm

/s
2 )

A
cc

el
. (

cm
/s

2 )
A

cc
el

. (
cm

/s
2 )

A
cc

el
. (

cm
/s

2 )
A

cc
el

. (
cm

/s
2 )

20

0

-20

10

0

-10

40

0

-40

-20

20

0.2

0

-0.2

20

10

0

-10

40
20

0
-20

20

10

0

-10

20

10

0

-10

0.4

0.2

0

-0.2

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

15000 300000

150 3000

150 3000

150 3000

150 3000

150 3000

1

0.5

0

20

10

0

1

0.5

0

1

0.5

0

3

2

0

1

Figure 7: Te residual signal of various data patterns.

Structural Control and Health Monitoring 7



2.4.2. Long Short-Term Memory Networks. LSTM [31] is
a variant of recurrent neural network (RNN), as shown in
Figure 10, and is used to solve the disadvantage that the
standard RNN cannot learn long-term dependencies. Te
LSTM architecture has a range of repeated modules for each
time step, similar to a standard RNN. At each time step, the
output of the module is controlled by a set of gates in Rd as

a function of the old hidden state ht − 1 and the input at the
current time step xt: forget gate ft, input gate it, and output
gate ot. Tese gates collectively decide how to update the
current memory cell ct and current hidden state ht. We use
d to denote the memory dimension in the LSTM, and all
vectors in this architecture share the same dimension. Te
LSTM transition functions are defned as follows:
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it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁,

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑,

qt � tanh Wq · ht−1, xt􏼂 􏼃 + bq􏼐 􏼑,

ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁,

ct � ft ∗ ct−1 + it ∗ qt,

ht � ot ∗ tanh ct( 􏼁,

(5)

where σ is the logistic sigmoid function with output in [0, 1],
tanh denotes the hyperbolic tangent function with output in
[−1, 1], and “∗” denotes element-wise multiplication. LSTM
is explicitly designed for time-series data to learn long-term
dependencies; therefore, we choose to use LSTM upon the
convolution layer to learn such dependencies in the se-
quence of high-level features.

2.4.3. Loss Function. Te loss function is applied to update
the network parameters. It evaluates the classifcation ac-
curacy of the network by measuring the error between the

discrete probability distributions of the real and predicted
classes. Te cross entropy is used as the objective function in
this study and is defned as

H � −
1
N

􏽘

N

i�1
pi
′ ln pi( 􏼁( 􏼁,

pi � softmax qi( 􏼁 �
exp qi( 􏼁

􏽐
k
l�1 exp ql( 􏼁

,

(6)

where qi denotes the i-th result of the output layer; k denotes
the number of classifcation categories; pi represents the
prediction label of qi, which is calculated using the softmax
function; pi

′ represents the i-th element in the real label and
all labels are one-hot encoding; and N is the total number of
samples.

2.4.4. Performance Index. In the statistical analysis of binary
or multiple classifcations, accuracy, precision, recall, and
the F1 score are commonly used to measure the accuracy of
network classifcation prediction:

accuracy �
TP + TN

TP + FN + FP + TN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2∗
precision∗ recall
precision + recall

∗ 100%,

(7)

where TP denotes “true positive” (the actual value is true,
and the classifer also predicted true); TN denotes “true
negative” (the actual value is false, and the classifer also
predicted false); FP denotes “false positive” (the actual value
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is false, but the classifer predicted true); and FN denotes
“false negative” (the actual value is true, but the classifer
predicted false). Te accuracy is generally used as an overall
evaluation for all classes. Precision evaluates reliability based
on the classifcation results. Recall can be regarded as a re-
liability evaluation based on the ground truth. Finally, the F1
score is the harmonic mean of precision and recall.

3. Example

3.1. Bridge Overview. Te proposed method was applied to
the structural monitoring data of a suspension bridge with
a main span of 888m in China. A permanent health
monitoring system was installed on the bridge, including
seven bidirectional acceleration sensors evenly installed on
the upstream side to monitor horizontal (H1–H7) and
vertical (V8–V14) vibrations. Te other seven unidirectional
sensors (V1–V7) were evenly arranged on the other side [32]
to monitor only the vertical vibration of the bridge, as shown
in Figure 11. Te sampling frequency of the sensor is 50Hz.

3.2. Description of Datasets. In this study, the acceleration
data from 21 sensors for half a month (May 1–15, 2020) were
utilized to build the anomaly detection training dataset. Te
original continuous data were divided at 10-minute intervals
without overlapping windows, and the size of a single sample
was 1× 30000; a total of 2160 sets of time-series measure-
ments for each sensor were obtained. Samples were classifed
and marked based on their characteristics in the time and
frequency domains. Te examples in Figure 12 demonstrate
that variations existed ubiquitously in all patterns. Te
middle of each category example in the fgure is the original
signal, the upper row is the residual signal used to char-
acterize the time-domain feature, and the lower row is the
PSD sequence used to characterize the frequency-domain
feature. Te actual dataset is severely imbalanced, which
means that the number of normal samples far exceeds that of
abnormal samples. Previous studies have shown that im-
balanced datasets usually cause overftting to the major
classes and underftting to the minor classes [16]. Terefore,
the number of samples of outlier pattern andmissing pattern
can be expanded manually by randomly adding outliers to
outlier pattern data and clearing part of normal pattern data,
respectively, to avoid the impact of dataset imbalance on
recognition accuracy, as shown in Figure 13. In addition, the
number of normal samples was reduced to balance the
proportions of various types in the dataset. Table 1 describes
the number and features of normal data and the four types of
abnormal data in the application dataset used in this study.

3.3. Model Training and Experimental Results. Python Sci-
ence Suite, TensorFlow, and Keras were employed to build
an improved CNN-LSTM model architecture with GPU
acceleration. Te processor and graphics card of the hard-
ware platform were Intel Core i9-12900K and Nvidia
GeForce RTX 3080Ti, respectively. According to the pro-
posed method, anomaly detection was performed on the
bridge monitoring dataset. First, the training and validation

sets were divided according to a ratio of 7 : 3 to constitute the
fnal dataset. We trained the entire model by minimizing the
cross-entropy error and used the Adam optimizer to au-
tomatically adjust the learning rate. After repeated tests, the
model parameters were adjusted; the fnal model parameters
are listed in Table 2. In addition, according to the size of the
dataset used in this study, the number of training samples in
each batch was determined to be 64, and the dropout rate
was set to 0.5 to prevent overftting. 12600 training samples
were fed into the CNN-LSTM model for training. Defne
a stop trigger to determine the number of epochs. If the
validation errors do not improve in the last 10 steps, the
training can be stopped. Te fnal model training was
completed after 100 epochs. As the number of epochs in-
creased, the overall training accuracy showed an upward
trend; in contrast, the overall training loss showed
a downward trend, as shown in Figure 14. After 100 epochs,
the accuracy converged to approximately 0.996, and the loss
value converged to approximately 0.014. Te changes in the
accuracy rate and loss value in the verifcation set are also
shown in the fgure.

Figures 15(a) and 15(b) show confusion matrices for
inspecting the classifcation results, where diagonal elements
are the numbers of correct classifcation results, and their
corresponding recall rates are provided in brackets. In both
the validation and training sets, the recall rate of each pattern
reached more than 96%, and the total accuracies of the
training and validation sets were 99.83% and 97.87%, re-
spectively. Table 3 lists the results of various performance
indexes of the model on the validation set. In terms of
precision, the missing pattern had the highest accuracy at
99.8%, whereas that of the outlier and minor patterns was
96.83%. Te square pattern had the highest recall rate and
F1 score.

In Figure 16, the correctly classifed samples in diagonal
cells essentially display a stationary single feature according
to the pattern, whereas the incorrectly classifed samples in
nondiagonal cells mostly display multiple features of the
actual pattern and incorrect prediction patterns. For ex-
ample, in M (4, 1) (the cell in the fourth row and the frst
column of the confusion matrix), the missing pattern
samples are incorrectly predicted as normal pattern samples
because they have good symmetry, few missing values, and
frequency domain characteristics consistent with normal
pattern data. In M (2, 1), M (2, 3), and M (2, 5), when the
outlier pattern removes a few outliers, it shows the features
of normal, square, and minor patterns, respectively. InM (5,
2), there are very few outliers in the minor pattern, causing it
to be incorrectly predicted as the outlier pattern. In addition,
there were a few errors caused by manual classifcation, such
as M (3, 1) and M (5, 1).

4. Discussion

4.1. Comparison with Other Methods. To verify the im-
provement of the proposed anomaly vibration data detection
model compared with existing methods, several existing
models were additionally tested on the dataset of this study.
When the model achieved the optimal result under multiple
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tests, the total accuracy, loss value, and total time con-
sumption were selected as the measurement standards, as
listed in Table 4.

Te one-dimensional CNN model [21] consists only of
a convolution layer and a fully connected layer, and the
specifc parameters are consistent with those in the proposed
model. Te total accuracy rate on the training set was only
88.78%; however, because of the simple network structure,
the training time was the shortest. Te CNN model [15, 16]
consists of two layers of 2D convolution, two layers of 2D

pooling layer, and a fully connected layer. Te input of the
model was set as a 128×128-pixel grayscale image, which
was constructed from the dataset of this study. Te accuracy
of the model was 89.43%, but the construction and
importing of images consumed considerable time. For
massive quantities of monitoring data, additional image data
will also occupy a large amount of memory. As shown in
Table 4, processing 18,000 pictures in the dataset took
583.3 seconds, whereas extracting the residual signal and
PSD sequence of data took only 238.8 seconds.

Table 1: Description of data patterns.

No. Data patterns Feature description Quantity

1 Normal Te time response is a normal oscillation curve; the envelope has high symmetry;
frequency response presents multiple peaks 3600 (20%)

2 Outlier Te time response has obvious outliers, trend, or drift; the envelope has no
symmetry; the frequency response has no obvious peak 3600 (20%)

3 Square Te time response is like a square wave; the envelope is close to a horizontal line; the
frequency response shows a single obvious peak 3600 (20%)

4 Missing Most or all of the time responses are missing, most or all of the envelope values are
zero, and the frequency response depends on the part that is not missing 3600 (20%)

5 Minor Te time response is a slight vibration; the envelope has no symmetry; the frequency
response has no obvious peak 3600 (20%)

Table 2: Description of parameters of the LSTM-CNN model.

Network layer Parameter setting Activation function Output size
Input layer — — (None, 300, 2)

1D-convolutional layer
Size of convolution kernel: 3× 2

Number of channels: 16
Stride: 1

ReLU (None, 298, 16)

Max pooling layer Pooling window: 2×1
Stride: 2 — (None, 149, 16)

Reshape layer — — (None, 2384)
LSTM layer Number of nerve cell: 100 Tanh (None, 100)
Fully connected layer — — (None, 100)
Output layer — Softmax (None, 5)
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Figure 14: Te change of accuracy rate and loss value: (a) accuracy rate; (b) loss value.
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Moreover, the output of the fully connected layer of the
two models was visualized through t-SNE [33]. As shown in
Figure 17(a), the features of the same type of samples in the
proposed method were relatively clustered, and the features
of diferent types of samples were clearly distinguished.
However, the features of the minor and normal patterns
extracted by CNN, as shown in Figure 17(b), were severely
confused owing to the visualized images, which did not
contain the frequency-domain information and amplitude
information of the data. As shown in Figure 18, it is difcult
to classify these two classes solely by using images in the time
domain. Te LSTM model [19] and bidirectional LSTM (Bi-
LSTM) model [20] were also used to realize time-series
classifcation by connecting the fully connected layer, with
accuracy rates of 89.02% and 94.46%, respectively. Te
training time of the Bi-LSTM model was more than twice
that of the LSTM model. Te CNN-LSTM model had the
highest accuracy and lowest loss value. Te front convolu-
tion and pooling layers shorten the size of the feature se-
quence, resulting in a shorter training time compared with
that of the LSTM model. Terefore, compared with existing
methods, the proposed method has higher efciency and
accuracy.

4.2. Data Anomaly Detection for Long-Term Monitoring.
To further validate the performance of the proposed method
on long-term monitoring data, the acceleration data of the
suspension bridge collected from nontraining sets were
continuously input into the program, and the trained model

was used to complete the detection of abnormal data.
Figure 19(a) shows the distribution results of the data
patterns detected by the model collected using the SHM
system of the suspension bridge from May 16 to June 27,
2020. Evidently, these data patterns have certain spatial and
temporal distribution rules in space and time. Normal data
are the most widely distributed data and constitute the main
data patterns.Te outlier pattern is distributed on individual
sensors and continuously distributed in a certain period of
time, as shown in the blue part of H1 channel area 1 in the
fgure. Te square pattern is displayed on all sensors or all
vertical vibration sensors in a certain period of time, as
shown in the yellow part of areas 2 and 3 in the fgure.
Finally, the missing pattern is similar to the square type. It
appears on all sensors in a certain period, as shown in the
black part of area 4 in the fgure. Te entire SHM system was
temporarily down during this period, so the sensors did not
record any data. Te H3 channel of area 5 mainly includes
the minor pattern. Te slight vibration indicates that the
sensor has been seriously damaged, and the data collected by
it are clearly abnormal. In addition, these anomalies also
occur sporadically at other times or on other sensors.

To verify the reliability of the proposed method, all data
samples were manually detected and marked for com-
parison with the proposed detection results. Te results are
shown in Figure 19(b). Te distributions of these abnormal
data in time and space were consistent with the model
detection results. Figure 20 shows the counting results of
the model test results and actual data types. Te recall rate
for all patterns was above 90%. For the normal pattern,
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Figure 15: Confusion matrix: (a) training set; (b) validation set.

Table 3: Performance indexes of the LSTM-CNN model on the validation set.

Class Anomalous patterns Precision (%) Recall (%) F1 score (%)
1 Normal 97.33 98.06 97.69
2 Outlier 96.83 96.30 96.56
3 Square 98.63 99.81 99.22
4 Missing 99.80 96.20 97.97
5 Minor 96.83 99.00 97.90
Accuracy 97.87%

Structural Control and Health Monitoring 13



0.7% of the normal samples were incorrectly classifed as
belonging to the minor pattern. 0.5% were incorrectly
classifed as the outlier pattern, 5.3% of outlier samples
were incorrectly classifed as minor patterns, 1.3% were
incorrectly classifed as missing patterns, and square pat-
terns were mainly incorrectly classifed as normal patterns.
Of the missing patterns, 7.7% were incorrectly classifed as
outlier patterns, and 8.3% of the minor patterns were

incorrectly classifed as outlier patterns. Terefore, the
recall rates of these two patterns were lower than those of
other patterns. Te total accuracy rate of the data was
97.5%, and the average detection time of a single sample
with a sampling time of 10minutes was only
0.0365 seconds, which shows that this method can also
efciently and accurately detect various anomalies in long-
term continuous monitoring data.

Normal Outlier Square Missing Minor

Normal

Outlier

Square

Missing

Minor

Predicted
Tu

re

Figure 16: Examples in detection results arranged by confusion matrix.

Table 4: Te calculation results of the diferent models.

Model Accuracy (%) Loss
Time (s)

Preprocessing Training Total
1D-CNN 88.78 0.5242 238.8 21.4 260.2
CNN 89.43 0.3740 583.3 54.9 638.2
LSTM 89.02 0.4158 238.8 86.6 325.4
Bi-LSTM 94.46 0.1256 238.8 200.0 438.8
CNN-LSTM 99.83 0.0140 238.8 37.8 276.6

14 Structural Control and Health Monitoring



4.3. Validation of Generalization Ability of the Proposed
Method. To validate the generalization ability of the pro-
posed method, we employed vibration data from another
SHM system of an actual long-span cable-stayed bridge to
verify whether the trained model is efective for other
structures. Te system consisted of 19 channels. Te sam-
pling time was January 1, 2021, continuously covering
24 hours, with a sampling frequency of 50Hz. Te accel-
erometer positions of the bridge are shown in Figure 21.

Te detection results obtained using the vibration data
anomaly detection method proposed in this paper for this
segment of data are shown in Figure 22. As shown in the
fgure, this method successfully detected a variety of abnormal
data, and the detection results were consistent with the
manual detection results, which shows that the proposed
method has a strong generalization ability. It not only is
efective on a single specifc structure but also can accurately
detect anomalies in the vibration data of other structures.
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Figure 17: Te t-SNE visualization of the output results of the fully connected layer on the validation dataset: (a) CNN-LSTM; (b) CNN.

Normal

PSD

Minor

PSD

Figure 18: Visual comparison between minor pattern and normal pattern.

Structural Control and Health Monitoring 15



No.1
No.3

No.4

No.5

No.2

Time

H7
H6
H5
H4
H3
H2
H1

V1

V3
V2

V4
V5
V6
V7
V8
V9

V10
V11
V12
V13
V14

Se
ns

or
s

20
20

-0
5-

16

20
20

-0
5-

22

20
20

-0
5-

28

20
20

-0
6-

03

20
20

-0
6-

09

20
20

-0
6-

15

20
20

-0
6-

21

20
20

-0
6-

27

normal
outlier
square

missing
minor

(a)

Time

H7
H6
H5
H4
H3
H2
H1

V1

V3
V2

V4
V5
V6
V7
V8
V9

V10
V11
V12
V13
V14

Se
ns

or
s

20
20

-0
5-

16

20
20

-0
5-

22

20
20

-0
5-

28

20
20

-0
6-

03

20
20

-0
6-

09

20
20

-0
6-

15

20
20

-0
6-

21

20
20

-0
6-

27

normal
outlier
square

missing
minor

(b)

Figure 19: Distribution of data patterns from May 16 to June 27, 2020: (a) detection results; (b) actual data anomaly distribution.
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5. Conclusions

In this study, the problem of abnormal vibration mon-
itoring data detection was modeled as a standard time-
series classifcation problem. Te original vibration se-
quence was processed using feature engineering, and
a feature sequence with a smaller size was obtained.
Feature engineering includes the residual signal
extracted from the upper and lower peak envelope of
vibration data, which is used to characterize the sym-
metry of data in the time domain, and the power spectral
density sequence of the data is used to characterize the
interpretability of the data in the frequency domain. Tis
study established a CNN-LSTM model for feature se-
quence classifcation. Te CNN in the front of the model
was used to extract the hidden features of the input
sequence and construct a new time series that combines
the features of the original signal in the time and fre-
quency domains. Te new feature sequences are then
classifed using LSTM and the fully connected layer. Te
efectiveness of this method was verifed using the vi-
bration monitoring data of a long-span suspension
bridge. Te results showed that the total accuracy of the
training set and the validation set was 99.83% and
97.87%, respectively. Te average accuracy on the test set
composed of 42 days of continuous monitoring data
exceeded 94%, and the average detection time of a single
sample with a sampling time of 10 minutes was only
0.0365 seconds. Te novelty of this framework is that it
accurately imitates the manual preprocessing workfow
of vibration monitoring data, including symmetry checks
in the time domain and interpretability judgments in the
frequency domain. In addition, dimensionless process-
ing and downsampling operations are performed on
feature sequences extracted by feature engineering,
which increases the universality and computational ef-
fciency of the method. Terefore, the proposed anomaly
detection method can be extended to other structural
types of vibration monitoring data and has signifcant
advantages in detecting anomalies in long-term
monitoring data.
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