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To devise an optimum and robust fuzzy logic controller forMR damper-based structures subjected to earthquake groundmotions,
the multiobjective reliability-based design optimization (RBDO) using the adaptive Kriging model is performed to determine the
parameters of the fuzzy logic controller. Te optimization problem is formulated with two objective functions, namely, the
minimization of interstory drift and average control force of the concerned structure, and subjected to a probability constraint on
structural dynamic responses under the efects of random structural stifness and stochastic earthquake loadings. To reduce the
computational cost of reliability assessment, a global Kriging model is constructed in an augmented space as a surrogate for
computational evaluations. Subsequently, the trained metamodel combined with the nondominated sorting genetic algorithm
(NSGA-II) is integrated into the framework of RBDO for solving the fuzzy logic control (FLC) optimization problem. Te
feasibility and efectiveness of the multiobjective RBDO in the FLC design are fnally validated by conducting numerical
simulations on both linear and nonlinear structures. As demonstrated in the linear case, the fuzzy logic controllers obtained from
the multiobjective RBDO show more robustness than those derived from the multiobjective deterministic design optimization
(DDO). In the nonlinear case, using the multiobjective DDO to prelocate a coarse safety domain can signifcantly reduce the
number of samples for training the metamodel and facilitate the implementation of the multiobjective RBDO; in addition, the
controlled structural performance with a specifed fuzzy logic controller can be further improved by considering MR damper
distribution optimization.

1. Introduction

Te mitigation of structural vibrations caused by dynamic
loads, such as earthquakes and winds, is of major concern
among the structural engineering community. In this
regard, various methods have been proposed for main-
taining the safety and serviceability of civil engineering
structures [1, 2]. Structural control has proved its value in
protecting engineering structures against natural hazards
[3–5]. In general, structural control can be classifed into
four categories, i.e., passive control, active control, hybrid
control, and semiactive control [6]. Among these control
modalities, semiactive control is most promising since it

not only possesses the reliability of passive control sys-
tems and the adaptability of active control systems but
also requires relatively much less external energy than the
frst three control systems [7–9]. A magnetorheological
(MR) damper has been regarded as a promising fail-safe
device for semiactive control of various structures, such as
cable bridges [10, 11] and high-rise buildings [12, 13]. To
utilize the full capacity of MR dampers, an efective and
reliable control algorithm is always essential. Since 1996,
various control algorithms have been successfully applied
to MR damper-based structural systems, which can be
grouped into model-based and nonmodel-based
algorithms.
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Representative model-based algorithms include the
clipped-optimal algorithm [5, 14–18], modulated homoge-
neous friction algorithm [19], and decentralized bang-bang
control algorithm [20]. Tey are generally composed of two
controllers. One is the primary controller which is used to
provide the reference control force, and the other is the
secondary controller which produces the actual damping
force dependent on the reference force. It is worth noting
that the primary controller requires an accurate mathe-
matical model to describe the dynamics of the controlled
system. However, it is not always easy to build such an exact
mathematical model, especially for some complicated
structures.

Contrary to the model-based control algorithms men-
tioned above, the nonmodel-based algorithms, also known
as intelligent control algorithms, can be used with little prior
knowledge about structural dynamics; thus, they have drawn
increasing attention from engineers and researchers. For
instance, Xu et al. [21] developed an online real-time control
scheme to provide semiactive control for the MR damper-
based structure by training a four-layer feedforward neural
network model. Hashemi et al. [22] constructed a wavelet
neural network model for seismic semiactive control of
a benchmark building, in which the model parameters were
identifed with a localized genetic algorithm (GA). Based on
fuzzy set theory, Choi et al. [23] developed a semiactive fuzzy
control algorithm for MR damper-based structural systems,
and the parameters involved in this control scheme were
defned based on human experience. Simulation results
showed that this semiactive fuzzy control scheme was ef-
fective in reducing structural responses under a wide range
of seismic excitation conditions. In fact, fuzzy logic control
(FLC) is known for its insensitiveness to the uncertainties
associated with the structural system, because it introduces
human expertise into control strategy by using linguistic
instructions. Te latter has led to the FLC methodology
being applied to manyMR damper-based structural systems,
such as base-isolated building structures [5], cable-stayed
bridges [24], and ofshore jacket platforms [25].

Although a fuzzy logic controller can be directly defned
based on human experience or trial-and-error tests, many
researchers have tried to identify the FLC parameters using
optimization-basedmethods to obtain an optimal controller.
For example, to reduce the seismic responses of a linear MR
damper-based structure, Yan and Zhou [26] developed
a fuzzy logic controller using GA to tune the fuzzy rules. In
the optimization process, two optimization objectives, in-
cluding minimizing both the maximum structural dis-
placement and acceleration, were considered using the
weighted multiobjective function. Aiming at the seismic
mitigation of a 3-story benchmark building equipped with
MR dampers, Shook et al. [27] optimized fuzzy logic con-
trollers using a nondominated sorting genetic algorithm
(NSGA-II), in which four objectives, i.e., minimizing the
peak and root-mean-square (RMS) interstory drift and peak
and RMS acceleration, were simultaneously considered. As
a multiobjective optimization approach, NSGA-II generates
a set of Pareto-optimal solutions instead of a single solution.
An appropriate design for the specifc performance

requirement can then be conveniently selected from Pareto-
optimal solutions. In this respect, NSGA-II has been widely
applied to optimize the FLC-driven MR damper-based
control system in various structures, such as base-isolated
structures [28–30], adjacent buildings [31], torsion-
responsive structures [32], and nonlinear and/or plan-
asymmetric structures [33].

In the aforementioned literature review, the optimiza-
tion works conducted on fuzzy logic controllers are all aimed
at deterministic structural systems, the optimization ob-
jectives are mainly defned as the maximum or the average of
structural responses, such as structural displacement and
acceleration, and the performance of an optimized fuzzy
logic controller is only verifed by conducting numerical
simulations on several selected scenarios. Actually, large
uncertainties may exist in the MR damper-based structural
system due to inherent randomness associated with struc-
tural properties and external loadings. Tese uncertainties
may afect the reliability of the control system and even lead
to unexpected structural failure. Terefore, the optimal
design obtained from deterministic optimization designmay
be incomplete due to large uncertainties involved, and using
only several parametric scenarios may not be sufcient to
demonstrate the robustness of the fuzzy logic controller. It is
claimed that FLC is characterized by its insensitiveness to
uncertainties associated with the system, but this fact only
stands in the premise of an optimal and robust fuzzy logic
controller, which needs further investigation. In this respect,
it is necessary to take the uncertainties into account in the
design process of FLC to obtain an optimal and robust
controller. To this end, reliability-based design optimization
(RBDO), which seeks the optimal design with consideration
of the parameter uncertainties and probability constraints,
can provide a realistic and rational framework for designing
a fuzzy logic controller. Furthermore, a more comprehensive
assessment of the optimized fuzzy logic controller can then
be performed.

Generally, an RBDO problem can be directly solved
using the traditional two-level approach, in which the inner
loop deals with reliability assessment and the outer loop
deals with cost optimization. However, the two-level ap-
proach can be expensive in terms of model evaluations,
especially for real-world optimization problems which often
need to be solved using high-fdelity computational models.
To improve the efciency of solving expensive RBDO
problems, some simplifed solution strategies, such as the
mono-level and decoupled approaches [34–36], have been
developed to separate the reliability analysis loop from the
optimization loop. However, these approaches still entail
repeated function calls for reliability assessment, which will
be computationally formidable when high-fdelity compu-
tational models are involved. In recent years, surrogate
models, such as polynomial chaos expansion [37], support
vector machine [38], radial basis function [39], and Kriging
[40], have been widely used to replace the expensive-to-
evaluate computational model and thus largely alleviated the
computational burden of reliability assessment. Among
these metamodels, Kriging has gained signifcant popularity,
because it provides estimates of the expected model response
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and the associated variance by interpreting the computa-
tional model as a realization of a Gaussian process. To save
computational cost, some researchers have introduced the
global modeling strategy associated with an adaptive
updating scheme into RBDO [41], which tends to approx-
imate the computational model over the entire domain of
the random variable space.

Te objective of this work is to develop an optimum and
robust fuzzy logic controller for an MR damper-based
structural system in the framework of RBDO. Te ap-
proach taken is to combine the adaptive Kriging-based
global modeling technique combined with NSGA-II to
solve the RBDO problem. However, training a global sur-
rogate model to accurately approximate the response of an
FLC-driven structural system is not an easy task, because
there are many design parameters involved in the FLC, and
thus, a high-dimensional design space needs to be consid-
ered. By using control expertise, the fuzzy rule base can be
conceptually predesigned with a signifcant reduction in the
original design space. Subsequently, an augmented space is
constructed by extending the narrowed design space with
the space of random variables. Finally, the proposed RBDO
problem can be readily solved using the double-loop strategy
combined with NSGA-II and the Kriging model over the
augmented space.

In what follows, Section 2 presents the problem for-
mulation of optimizing fuzzy logic controllers for the MR
damper based-structure whose parameters are modeled in
a probabilistic framework. In Section 3, a multiobjective
RBDOmethod is presented by combining the global Kriging
model with NSGA-II to solve the optimization problem.
Ten, the optimization method is employed to optimize
fuzzy logic controllers for both linear and nonlinear
structural systems in Section 4. Finally, the fndings are
summarized in Section 5.

2. Problem Formulation

In this section, an FLC-driven MR damper-based structural
system with consideration of random parameters in struc-
tural properties and external excitations is frst constructed,
and then, the optimization problem of FLC design is for-
mulated in the framework of RBDO for mitigating the
seismic response of the structure of interest.

2.1. Semiactive Structural Control System

2.1.1. Fuzzy Logic Control. FLC mainly uses a set of lin-
guistic instructions based on human expertise to describe the
relationship between input and output variables instead of
complex mathematical expressions. A schematic view of the
general architecture of FLC is depicted in Figure 1. As can be
seen, there are four steps involved in the FLC design. Te
frst step is fuzzifcation, in which the membership functions
associated with each input variable are used to convert input
crisp values to fuzzy linguistic values. In this paper, the
structural acceleration and velocity are selected as two input
variables, whose ranges are denoted as [− r1, r1] and [− r2, r2].
r1 and r2 are set as 75% (usually 70%∼80% in the literature

[26, 42]) of the maximum interstory velocity and foor
acceleration responses of the uncontrolled structure, re-
spectively. Te control force is chosen as the output variable,
and its range, denoted as [− r3, r3], will be determined in the
subsequent optimization process.

Seven membership functions are defned for each input
or output variable. As the Gaussian membership function
can approximate almost all other types of membership
functions, it is adopted herein for describing the central parts
of input and output variables, as expressed by

μG � e
− (x− b)2/2a2( ), (1)

where a and b are the width and the central position of the
Gaussian membership function, respectively. Te two out-
ermost parts of both input and output variables are, re-
spectively, described by the spline-based Z-shaped and S-
shaped membership functions:
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where g and h are the central position and the width of the Z-
shaped membership function and q and p are the central
position and the width of the S-shaped membership func-
tion. It is obvious that the confguration of input or output
membership functions is determined by the aforementioned
parameters, including a, b, g, h, p, and q. It is worth noting
that g and q usually take the values of the lower and upper
bounds of the input (or output) variable, i.e., ri and ri (i� 1, 2,
3). Terefore, only a, b, h, and p are undetermined, which
are then normalized by their corresponding ranges and
defned as the design variables. A set of evenly distributed
membership functions are illustrated in Figure 2, as an
example. As can be seen, each input or output has seven
fuzzy linguistic variables, including negative large (NL),
negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PM), and positive
large (PL).
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In the second step of fuzzy rule design, IF-THEN rules
are employed for constructing the rule base of FLC. Since
both Inputs 1 and 2 are represented by seven membership
functions, 7× 7� 49 fuzzy rules need to be designed, as
shown in Figure 3. For clarity, an example of the if-premise-
then-consequent statement is expressed as follows: if input 1
(structural velocity) is NL and input 2 (structural acceler-
ation) is NM, then output (control force) is NL.

Te third step, i.e., fuzzy inference design, is the kernel of
a fuzzy logic controller, which characterizes the trans-
formation from input to output. In this study, the Mamdani-
type inference engine is used [43].

As the last step of FLC, the defuzzifcation interface
describes the mapping from the space of fuzzy outputs to the
space of crisp outputs. Here, the center of gravity (CG)
method is employed to transform the fuzzy output obtained
from the fuzzy inference system into the crisp control
output. For the j-th rule of the i-th input variables, the
command force Fi calculated by the CG method is expressed
by

Fi �
􏽐

nr

j�1c
(j)

i 􏽒 μ(j)

i

􏽐
nr

j�1 􏽒 μ(j)
i

, (3)

where nr represents the number of fuzzy rules, μ(j)
i denotes

the membership function corresponding to the output
variable defned in the consequent statement of the j-th rule
for the i-th input variable, and c

(j)
i denotes the center of the

membership function μ(j)
i .

2.1.2. Inverse Modeling for Current Identifcation of the MR
Damper. Te MR damper is directly commanded by the
input current instead of the control force provided by the
constructed fuzzy logic controller. Terefore, an inverse
dynamic model needs to be developed for identifying the
input current according to the desired control force derived
from the fuzzy logic controller. In this work, a simple inverse
modeling technique proposed in [44] is used, which is
developed based on a forward dynamic model of the MR
damper, i.e., the modifed Bingham-plastic model, as
expressed by

FMR � kx + λfy + ξfh, (4)

where FMR is the damping force produced by the MR
damper, x denotes the damper displacement, fy and fh are,
respectively, the yielding and hysteretic forces, k is the spring
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Figure 1: General architecture of FLC.
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stifness, and ξ and λ are, respectively, the hysteretic operator
and the coefcient for controlling the low-velocity stress,
defned as follows:

ξ � arctan
_x − _xHsgn(x)􏼂 􏼃

_xa

􏼨 􏼩, (5)

λ �
2
π
sgn( _x)arctan

_x

_xb

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡, (6)

where _x denotes the damper velocity, _xa and _xb are two
diferent reference velocities for the nondimensional pur-
pose, and _xH is the hysteretic velocity.Temodel parameters
in equations (4)–(6) are then identifed to correlate with the
input current I through ftting the experimental data using
the polynomial function [45], as listed in Table 1.

Based on the forward dynamic model presented above,
the inverse modeling technique is then developed, which
updates the input current by analyzing the damper motion
state and calculating the damper force until the desired
control force at the present instant of time is obtained. For
clarity, the detailed computational procedure is presented in
Algorithm 1, where i denotes the present instant of time.

2.1.3. Structural Model. By combining the fuzzy logic
controller and MR damper, a semiactive structural control
system is constructed, which is investigated as an n-degree of
freedom lumped mass system here. Te corresponding
dynamic model is shown in Figure 4(a), and the equation of
motion is formulated as follows:

M(Θ)€U(t) + C(Θ) _U(t) + f(U, _U(t),Θ)

� BFd(Θ, t) − MIe€ug(Θ, t),
(7)

where U represents the vector of structural displacement
relative to the ground, “.” and “..” aboveU denote the vectors
of velocity and acceleration relative to the ground,M, C, and
f are the mass matrix, damping matrix, and restoring force
vector, respectively, Fd is the force vector containing control
forces provided by the MR damper, B is the matrix denoting
the damper location, Θ represents the vector of random
parameters (environmental variables) involved in structural
properties and external excitations, Ie denotes the unit vector
of size n, and €ug(Θ, t) denotes the ground motion excitation
and is assumed as follows:

€ug (Θ, t) � θ1 €ug1(t) + θ2 €ug2(t)􏼐 􏼑ζ, (8)

where €ug1(t) and €ug2(t) represent the normalized El Centro
acceleration records in the N-S and E-W directions, as
shown in Figure 4(b), θ1 and θ2 are the corresponding
stochastic coefcients, and ζ is the amplitude coefcient.

2.2. Problem Formulation. To strengthen and improve the
constructed semiactive structural control system, an opti-
mum and robust fuzzy logic controller needs to be properly
designed. From the perspectives of both safety and economy,
the minimization of maximum interstory drift as well as the
minimization of average control force is selected as the

objective function. According to Section 2.1.1, a total of
Nd � 86 parameters involved in the input and output
membership functions and rule base are undetermined and
thus defned as the design variable, of which d1∼d5 and
d16∼d20, respectively, represent the central positions and
widths of Gaussian membership functions in input 1, d6∼d10
and d21∼d25, respectively, represent the central positions and
widths of Gaussian membership functions in input 2,
d11∼d15 and d26∼d30, respectively, represent the central
positions and widths of Gaussian membership functions in
output, d31, and d32, respectively, represent the widths of Z-
and S-shaped membership functions in input 1, d33 and d34,
respectively, represent the widths of Z- and S-shaped
membership functions in input 2, d35 and d36, re-
spectively, represent the widths of Z- and S-shaped mem-
bership functions in output, d37 represents the range of
output variable, and d38∼d86 represent the fuzzy rules. Here,
some soft constraints need to be defned to regulate the range
of these design variables. A frst, the range of output variable
d37 is defned. It is worth mentioning that a too small output
range may restrict the optimization space of the membership
function, while a too broad range will increase the com-
puting cost. In this respect, a relatively appropriate output
range (see equation (9)) is defned here to ensure that the
output control force is within a reasonable range as well as to
provide more possibility to search for an optimum solution
to the membership functions without increasing too much
computing cost:

1
2
FMR,max ≤d37 ≤ 2FMR,max, (9)

where FMR,max is the maximum damping capacity of the MR
damper.

If the movements of the fuzzy sets are left unconstrained,
the resulting system may have linguistically meaningless
sets. Tis evolution will alter the predetermined initial rule.
Consistently, the new erroneous rule will have a great efect
on the performance of the control system. Terefore, it is
necessary to impose a set of inequality constraints for the
membership functions, which can not only prevent this
failure but also help minimize the computational cost as-
sociated with the membership function optimization. In
some FLC-related optimization works [46, 47], these con-
straints have been adopted directly or indirectly. Terefore,
second, the initial order of the central positions of fuzzy sets
needs to be maintained by setting the following constraints:

− 1≤ d1 ≤d2 ≤d3 ≤d4 ≤ d5 ≤ 1, (10)

− 1≤d6 ≤d7 ≤ d8 ≤ d9 ≤d10 ≤ 1, (11)

− 1≤d11 ≤d12 ≤d13 ≤ d14 ≤ d15 ≤ 1. (12)

Tird, if the width of membership functions is too large,
the system sensitivity will be decreased; in contrast, if the
width of membership functions is too small, the system
stability will be decreased. Terefore, without loss of gen-
erality, the following restrictions covering a wide range of
possibilities are given:
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Table 1: Fitting equations of current-dependent parameters.

Parameters type Fitting equation

Force-related parameters
k � − 0.2997I3 + 1.9563I2 − 3.7818I − 0.236
fh � 5.101I3 − 50.197I2 + 131.56I + 4.0539

fy � − 45.090I3 + 152.930I2 − 147.940I + 76.710

Displacement-related parameters
_xH � − 0.1209I3 + 0.8308I2 − 1.7046I − 0.5106

_xa � − 0.1347I4 + 0.6602I3 − 1.0982I2 + 0.7768I + 0.204
_xb � − 12.786I4 + 61.726I3 − 105.4I2 + 76.802I − 23.489

(1) Input: state variable, desired control force Fde,i.
(2) Defne initial input current Ii � 0, force error Fϵ,i � 1, and j� 1.
(3) While Fϵ,i≤ 10− 6

(4) Update input current, Ii � Ii+ j× 0.1.
(5) Calculate current-dependent parameters ξi, λi, and ki, see Table 1.
(6) Calculate damper force FMR,i using equation (4).
(7) Fϵ,i � Fde,i − FMR,i
(8) If any of the following cases holds, break.

(1) FMR,i< 0, Fde,i> 0, ξi< 0, λi< 0, xi> 0
(2) FMR,i> 0, Fde,i< 0, ξi> 0, λi> 0, xi< 0
(3) FMR,i< 0, Fde,i< 0, Fϵ,i> 0, ξi> 0, λi> 0, xi< 0
(4) FMR,i> 0, Fde,i> 0, Fϵ,i< 0, ξi< 0, λi< 0, xi> 0

(9) End if
(10) j� j+ 1
(11) Return: Ii

ALGORITHM 1: Implementation procedure of the inverse modeling technique.
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Figure 4: Schematic of the FLC-driven MR-damper-based structural system and input seismic excitations. (a) Dynamic model of the MR
damper-based structure. (b) El Centro accelerogram in orthogonal directions.
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0.1≤di ≤ 2.0, (i � 16, . . . , 30), (13)

−
5
6
≤di ≤

3
6
, (i � 31, . . . , 36). (14)

For clarity, Figure 5 has illustrated the width ranges of Z-
shaped, S-shaped, and Gaussian membership functions
defned in equations (13) and (14). As can be seen, a broad
range of width can be covered with consideration of the
constraints given in equations (13) and (14).

On the other hand, two hard constraints are also con-
sidered here. Te frst one is the probability constraint,
which has considered the uncertainties involved in struc-
tural properties and external excitations. Te constructed
semiactive control system is assumed to be failed when the
maximum interstory drift across all stories exceeds a pre-
scribed threshold uthr. Te corresponding failure probability
of the concerned structural system is thus given by

Pf � Pr YEEV ≥ uthr􏼈 􏼉, (15)

where YEEV denotes the equivalent extreme value (EEV) of
interstory drift, defned as follows:

YEEV � max
1≤j≤nf

max
0≤t≤T

Uin,j(Θ, t)􏼐 􏼑􏼚 􏼛, (16)

where Uin,j (Θ, t) is the interstory drift of j-th foor at time t,
nf is the number of structure foors, and [0, T] corresponds to
the time duration. Te other hard constraint is that the
maximum control force should not exceed the maximum
damping capacity Fmax of the MR damper.

Based on the abovementioned statements, the RBDO
problem for the constructed semiactive structural control
system is fnally formulated, as shown in equation (17). In
this formulation, two objectives are considered, in which the
minimization of average control force is to save control cost
and the minimization of maximum interstory drift is to
reduce the earthquake-induced structural responses. It is
noted that the hard constraint regarding failure probability
can also help reduce the interstory drift in the optimization
process, but it only ensures that the probability of the
maximum interstory drift exceeding the defned threshold is
lower than the target failure probability. However, the de-
fned threshold is usually given based on the existing design
codes and is not a small value. Terefore, there is still a lot of
room for further reducing the structural responses when the
hard constraint is satisfed. In this respect, two competing
objective functions are defned, in an attempt to explore
fuzzy logic controllers with high performance and low
control cost:

f ind d � d1, d2, . . . , d86􏼂 􏼃,

min c � Smax(d), Fave(d)􏼂 􏼃,

s.t.

hard constraint: P[g(d,E)≤ 0]≤Pf0,

max Fcon(d)( 􏼁≤Fmax,

soft constraint: fj(d)≤ 0, j � 1, . . . , ns􏼈 􏼉,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where d represents the vector of design variables, E denotes
the vector of random environmental variables, c is the vector
of the objective function, including the maximum interstory
drift Smax (d) and the average control force Fave (d), Π (·)
represents the probability measure of a random event, g (·)
represents the limit state function (LSF), Fcon (·) represents
the actual control force generated by the MR damper,
Pf0 �10− 3 denotes the target failure probability, and fj (d)
represents the soft constraints defned in equations (9)–(14).

3. Multiobjective Reliability-Based Design
Optimization Using Adaptive Kriging

To solve the RBDO problem formulated in Section 2, an
augmented space is constructed by combining the design
and environmental space, and a global adaptive Kriging
surrogate is then constructed in the augmented space.Tis
is fnally combined with NSGA-II to solve the optimi-
zation problem with consideration of two objectives. A
brief review of the Kriging metamodel is given frst as
follows.

3.1.KrigingModel. To save the computational cost caused by
the reliability assessment, metamodels are usually employed
to approximate the limit-state functions in RBDO. In this
work, the Kriging modelM(K)(x) is applied to surrogate the
time-consuming computational model M(x) of the struc-
tural system of interest. In universal Kriging, the compu-
tational model M(x) is interpreted as a realization of an
underlying Gaussian process:

M(x) ≈M(K)
(x) � βT · f(x) + σ2Z(x), (18)

where βT · f(x) represents the trend given by the mean value
of the Gaussian process, consisting of P arbitrary functions
fj; j � 1, . . . , P􏽮 􏽯 and the corresponding coefcients
βj; j � 1, . . . , P􏽮 􏽯. In this paper, the ordinary Kriging model
is employed, in which f(x) � 1 and β is an unknown
constant, as has been widely utilized [48–50]. σ2 denotes the
variance of the Gaussian process, Z(x) represents a zero
mean, unit variance, stationary Gaussian process, and the
autocovariance of samples xk, and xk

′ is described using the
Matérn-3/2 correlation function [51]:
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RM3/2 x, x′; θ􏼒 􏼓 � 􏽙

Nk

k�1
1 +

�
3

√ xk − xk
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

θk

􏼠 􏼡exp −
�
3

√ xk − xk
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

θk

􏼢 􏼣, (19)

where θ � θk > 0, k � 1, . . . , Nt􏼈 􏼉 are hyperparameters and
Nt is the number of dimensions.

We consider a training dataset W � X,Y􏼈 􏼉 consisting
of the experimental design X � x(1), . . . , x(N)􏼈 􏼉 and the
corresponding computational model evaluations Y �

y
(1)
EEV � M(x(1)), . . . , y

(N)
EEV � M(x(N))􏽮 􏽯, and β and σ2 are,

respectively, estimated by

􏽢β(θ) � 1TR− 1
θ 1􏼐 􏼑

− 1
1TR− 1

θ Y,

􏽢σ2(θ) �
1
N

Y − 1T􏽢β(θ)􏼐 􏼑
T
R− 1
θ Y − 1T􏽢β(θ)􏼐 􏼑,

(20)

where R is the correlation matrix with elements
R

(i,j)

θ � RM3/2(x(i), x(j); θ), i, j � 1, . . . , N. Clearly, both 􏽢β
and 􏽢σ2 depend on θ through the correlation matrix RM3/2.
Ten, θ can be estimated by

􏽢θ � argmin
θ

􏽢σ2(θ) det RM3/2(θ)( 􏼁( 􏼁
1/N

􏼐 􏼑, (21)

where det(·) is the determinant operator. Te Kriging pre-
diction at an unknown point x follows Gaussian distribution,
that isM(K)(x)∼N(μ􏽢y(x), σ􏽢y(x)), with themean μ􏽢y(x) and
the variance σ􏽢y(x) given by

μ􏽢y(x) � f(x)
T􏽢β + r(x)

TR− 1
(Y − F􏽢β),

σ􏽢y(x) � 􏽢σ2 1 − r(x)
TR− 1r(x)

T
+ u(x)

T FTR− 1F􏼐 􏼑
− 1
u(x)􏼒 􏼓,

(22)

in which r(x) � [RM3/2(x, x(1)), . . . ,RM3/2(x, x(N))]T and
u(x) � FTR− 1

M3/2r(x) − f(x).

3.2. Augmented Space. Te surrogate model can provide
a cheap approximation to the expensive-to-evaluate limit
extreme state function of a complex structural system, es-
pecially when repeated evaluations are needed.Tis problem
becomes more prominent when solving RBDO problems
using the local modeling strategy, where the surrogate model
needs to be repeatedly updated for each reliability assess-
ment. As a comparison, the global modeling strategy ofers
a more efcient approach, in which a single surrogate model
is built to approximate the whole constraint boundary in an
augmented space [41, 52, 53]. Te RBDO process can then
proceed to search for the optimal solution using the con-
structed model. Terefore, in the following subsections, an
augmented design space is established based on the space of
design and environmental variables. To further improve the
computational efciency, the original design space is frst
narrowed down by regulating the range of design variables as
well as predesigning the fuzzy rules based on control
expertise.

3.2.1. Reduced Design Space. For constructing the aug-
mented space, the design parameters are assumed to be
uniformly distributed in this work. It is noted that there exist
inequality relationships between some design parameters,
see equations (10)–(12). Ten, these parameters are de-
pendent on each other, which will complicate the problem.
Actually, most RBDO-related studies have been reported for
tackling problems where design parameters follow in-
dependent probability distributions. In this respect, for
simplifcation, a determined and equal range is allocated to
each design parameter involved in equations (10)–(12) to
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avoid introducing inequality constraints among parameters,
as expressed by

−
5
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≤d1 ≤ −
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6
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3
6
≤d2 ≤ −

1
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.

(23)

To further narrow down the design space, the fuzzy rules
are designed here by incorporating human expertise into
linguistic IF-THEN rules. It is necessary to observe the
structural movement states and understand the system
dynamics for designing an appropriate rule base for a fuzzy
logic controller. Sinusoidal excitation-based testing or ex-
periment is the most traditional method for testing or ex-
ploring the motion law of structures [54]. Terefore, for
simplicity, a sinusoidal movement is assumed, and the
corresponding structural states, including displacement,
velocity, and acceleration are illustrated in Figure 6 [44].

As observed, one may fnd distinct characteristics of the
structural motion states, which can be summarized as
follows:

State 1:Te structural acceleration and velocity are both
positive (or negative), and the absolute value of the
former is increasing, while the latter is decreasing; in
the meantime, the structural displacement is in-
creasing, indicating the structure is deviating from the
central position. Terefore, a large control force is
demanded for suppressing the structural motion.
State 2: Te structural acceleration and velocity are
opposite in sign, and the absolute value of the former is
decreasing, while the latter is increasing; in the
meantime, the structural displacement shows a de-
creasing trend, indicating the structure is getting back
to the central position. In this case, the control force can
be arranged at a small or zero value.

According to the two states summarized above, the
structural motion can be regarded as symmetrical behavior,
and thus, a standard symmetric rule base is devised here. A
detailed description is given in Table 2. Consequently, with
the predesigned fuzzy rules (where 49 parameters are de-
fned), only the parameters involved in the input and output
membership functions need to be optimized. Te number of
design variables Nd has decreased from 86 to 37, and the
design space has been largely narrowed down.

3.2.2. Augmented Space. Te augmented design space built
here is the tensor product of confdence regions defned for
the design and environmental variables, i.e., Δ�Ξ× E, where

Ξ refers to the space of design variables and E is the space of
environmental parameters [41].Terefore, the bounds of the
associated augmented space in the i-th dimension are de-
fned as

x
−
i � F

− 1
Xi|d

−
i

αdi

2
􏼒 􏼓,

x
+
i � F

− 1
Xi|d

+
i
1 −

αdi

2
􏼒 􏼓,

(24)

where di denotes the i-th design parameter with lower and
upper bounds of d−

i and d+
i , Xi follows the marginal dis-

tribution, F− 1
Xi|d

−
i
and F− 1

Xi|d
+
i
are the corresponding inverse

cumulative distribution functions (CDF), and αdi
is the

probability of sampling outside the augmented space in the
i-th dimension. Te design confdence region is eventually
obtained by the following tensorization:

X � 􏽙

Nd

i�1
x

−
i , x

+
i􏼂 􏼃. (25)

Similar to the design variables, the lower and upper
bounds of the augmented space for environmental variables
in the i-th dimension are defned as

z
−
j � F

− 1
Zj

αzj

2
􏼠 􏼡,

z
+
j � F

− 1
Zj

1 − αzj

2
􏼠 􏼡,

(26)

where F− 1
Zi

is the inverse CDF associated with the envi-
ronmental variable Zi and αzi

is the probability of sampling
outside the augmented space in the i-th dimension. Ten,
the associated confdence region can be obtained:

Z � 􏽙

Ne

j�1
z

−
j , z+

j􏽨 􏽩, (27)

where Ne is the number of environmental variables. For
clarity, Figure 7 illustrates an augmented space for a simple
three-dimensional problem, which consists of one envi-
ronmental and two design variables.
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Table 2: Predesigned fuzzy rules.
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Figure 7: Illustration of an augmented space for a three-dimensional problem considering two design variables X1(d1) and X2(d2) and
a random environmental variable E.
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3.3. Learning Function and Stopping Criterion. To adaptively
refne the Kriging model, many learning functions have been
proposed to enrich the DoE of the metamodel, such as the U
learning function and expected feasibility function (EFF). In

this study, EFF is used as a learning criterion for the selection
of additional training samples, which is defned as follows
[55]:

EFF(x) � (􏽢G(x) − a) 2Φ
a − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠ − Φ
(a − ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠ − Φ
(a + ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− σ􏽢G
(x) 2ϕ

a − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠ − ϕ
(a − ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠ − ϕ
(a + ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ Φ
(a + ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠ − Φ
(a − ε) − 􏽢G(x)

σ􏽢G
(x)

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(28)

where Φ represents the standard normal CDF, ϕ is the
standard normal probability density function (PDF), 􏽢G(x) is
the predicted response at the location x, and σ􏽢G

(x) is the
corresponding standard deviation. Te value of EFF in-
dicates how well the actual performance function value at
the location x is expected to satisfy 􏽢G(x) � a over the region
a± ε. A large EFF value implies a high level of uncertainty in
the predicted function value. Hence, x corresponding to the
maximum EFF is selected as the point to be added to the
training set. Te next candidate sample is then selected by

x∗ � arg max
x∈SED

EFF(x), (29)

where SED denotes the candidate samples in the
augmented space.

Furthermore, a convergence criterion needs to be
adopted to terminate the addition of samples to the DoE
when the trained metamodel is accurate enough for further
use in reliability assessment and optimization. Here, the
convergence criterion is defned as the stability of the failure
probability estimate:

􏽢P
(j)

f − 􏽢P
(j− 1)

f

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

􏽢P
(j)

f

≤ ε, (30)

where 􏽢P
(j)

f represents the estimated failure probability at the
j-th iteration and ε is the tolerance (or relative error in the
probability estimate) and set as 0.001.

3.4. OptimizationMethod. To simultaneously consider two
competing objectives, i.e., minimizing the interstory drift
and average control force, NSGA-II is used to search for
the optimal solution to construct reliable fuzzy logic
controllers. In this multiobjective optimization algorithm,
the solutions are frst sorted into each front according to
a nondomination rank, and then, the solutions of each
front can be optimized for population diversity by rep-
resenting each group of crowded points with a single
point. For more details about NSGA-II, please refer to

[56]. Te main procedures of the NSGA-II-based opti-
mization implemented in this study are illustrated in
Figure 8.

3.5. Implementation Scheme. A double-loop strategy com-
bined with the Kriging model and NSGA-II is used to
construct optimum and robust fuzzy logic controllers for
mitigating the seismic response of the MR damper-based
structural system. For clarity, the implementation aspects
are illustrated in Figure 9, and the basic steps are summa-
rized as follows:

(1) Determine the design variables to form the original
design space

(2) Narrow down the original design space by regu-
lating the range of design variables and predes-
igning fuzzy rules based on control expertise

(3) Determine the distribution characteristics of both
the design and environmental variables and then
build the augmented space by extending the space
of reduced design variables and environmental
variables with the space of random variables

(4) Use the Latin hypercube sampling (LHS) method to
generate the initial DoE X � x(1), . . . , x(N0); N0 �􏼈

2(Nd + Ne) + 1} and then evaluate the corre-
sponding LSF responses Y � y(1), . . . , y(N0)􏼈 􏼉 �

g(x(1)), . . . , g(x(N0))􏼈 􏼉 by the computational model
(5) Train the Kriging model based on the current

DoE X,Y􏼈 􏼉

(6) Estimate the failure probability using Monte Carlo
simulation with the current surrogate model M(K)

(7) Choose the best next sample x∗ to be added to the
current DoE X,Y􏼈 􏼉 based on the learning
function EFF

(8) Check whether the stopping criterion is satisfed or
the maximum number of added DoE, i.e.,
Ns,max � 600, is reached. If it is, skip to Step (10),
otherwise, continue with Step (9)
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(9) Add x∗ and the corresponding LSF response to the
DoE of the metamodel and return to Step (5)

(10) Obtain the fnal Kriging model with the pre-
determined accuracy

(11) Conduct the multiobjective RBDO for the MR
damper-based structural system using the NSGA-II
combined with the constructed Kriging model, see
Figure 8

(12) Stop the optimization once the maximum number
of iterations is reached.

4. Numerical Examples

In this section, multiobjective RBDO is employed to opti-
mize fuzzy logic controllers for both linear and nonlinear
structures.

4.1. 3-Story Linear Structure

4.1.1. Structural Model. Te frst numerical example is
a three-story linear structure, in which a total of Ne � 5
independent random environmental variables are consid-
ered, including interstory stifness (k1, k2, and k3) and ex-
ternal excitations (θ1 and θ2). Tese random variables are all
assumed to be lognormally distributed. Te statistical

information of these random variables and the mass of each
structural foor are shown in Table 3.Te height of each foor
is taken as 3.0m. Rayleigh damping is assumed for calcu-
lating the damping matrix C (C� a M+ b K), and the
damping ratio is assumed as 5%. Based on the frst two
natural vibration periods of the structure, related damping
coefcients are calculated: a� 1.2574 s and b� 0.0016 s. Te
maximum damping capacity of the MR damper is set as
Fmax � 1000 kN under the maximum input current of 2A by
scaling the parameters involved in the forward dynamic
model. Te amplitude coefcient of input earthquake ex-
citations is set as ζ � 0.2 g, corresponding to a frequently
occurred earthquake. In the Chinese seismic design code
[57], it is specifed that to keep the reinforced concrete frame
structure remain in an elastic state, the maximum interstory
drift of the structure should not exceed 1/550 of the foor
height, i.e., 1/550× 3000� 5.45mm, under a frequently oc-
curred earthquake. Tis study applied this specifcation to
defne the threshold of maximum interstory drift for the
linear structure. Te failure probability of the uncontrolled
structure is 0.47.

4.1.2. Comparison between Multiobjective RBDO and DDO.
According to the multiobjective RBDOmethod presented in
Section 3, the Kriging model is built in the 42-dimensional
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Figure 8: Flowchart of NSGA-II-based optimization.
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(Nau �Nd+Ne � 37 + 5) augmented space. First, LHS is
employed to generate the initial DoE of size N0 �Nau ×

2 + 1� 85.Ten, the learning function EFF (equation (28)) is
employed to place as many training samples as possible in
the neighborhood of the limit state, so as to refne adaptively
the Kriging model, and 111 new training points are fnally
needed when the corresponding stopping condition in
equation (30) is satisfed. As shown in Figure 10, there is still
a misclassifcation of several samples with respect to the safe
and failure domain, whereas the number of samples that are
regarded as failure points but are actually in the safe domain
(red dots) and the number of samples that are classifed as
safe points but are actually in the failure domain (blue dots)
are approximately equal. As a result, the resultant failure
probability 􏽢Pf is very close to its true counterpart.

With the trained Kriging model, the NSGA-II-based
multiobjective optimization with an initial population size
of Na � 100 is conducted to search for optimal design so-
lutions.Te optimization results from diferent optimization
generations in the form of Pareto fronts are compared in
Figure 11(a). It is observed that, with the increasing number
of optimization generations, the Pareto front is moving
closer to the origin of coordinates, indicating the

improvement of the quality of the elite individuals. Here, the
Pareto front is assumed to be converged at 100 generations
as the Pareto fronts of the last two optimization generations,
i.e., Nge � 80 and Nge � 100, are highly overlapped.

As a comparison to multiobjective RBDO, the multi-
objective DDO is also employed here for solving the same
optimization problem. Te only diference between the two
approaches is that there is no probability constraint in the
latter approach. Te multiobjective DDO-derived solutions
are shown in Figure 11(b). It is seen that the Pareto front also
converges as fast when there is no probability constraint. It is
mainly because the design space has been narrowed down
into a relatively small and reasonable range, which can save
much computational cost. Besides, it is worth noting that the
Pareto fronts derived from the RBDO are a bit closer to the
Y-axis than those derived from DDO, indicating the RBDO-
derived solutions can achieve a better control performance.

Furthermore, the failure probability of the linear
structural system under the design solutions obtained from
multiobjective RBDO and DDO is, respectively, calculated
and compared in Figure 12. It is observed that some DDO-
derived solutions show relatively high failure probability,
while the solutions obtained from RBDO all show very low
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Determine the design variables to
form the original design space

Regulate the range of design variables
and design fuzzy rules to narrow
down the original design space

If є ≤ 10-3

or Ns,max≥600
NoYes
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Use LHS method to generate initial DoE, and
then evaluate the corresponding LSF responses

Train the Kriging model based on the current
DoE

Estimate the failure probability using MC
simulation with the current surrogate model

Choose the best next sample x* to be added to
the current DoE

Add x* and the
corresponding LSF

response to the DoE
of the metamodel

Conduct the multi-objective RBDO
using the NSGA-II combined with the

constructed Kriging model.

Figure 9: Flowchart of the proposed multiobjective RBDO method.

Table 3: Parameters of structural properties and input excitations.

Variables Notifcation Distribution Mean C.O.V.
Floor mass Mi — 3.8, 3.2, 2.3 (×105 kg) —
Interstory stifness Ki Lognormal 4.56, 4.16, 3.55 (×108N/m) 0.1
Stochastic coefcient of N-S θ1 Lognormal 0.5 0.2
Stochastic coefcient of E-W θ2 Lognormal 0.5 0.2
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failure probability due to the consideration of probability
constraint. Terefore, it is necessary to take the uncertainties
into account for obtaining more reliable fuzzy logic
controllers.

To further verify the robustness of the optimized fuzzy
logic controllers, the design solutions from Nge � 100 opti-
mization generations of DDO and RBDO are used. Cor-
responding maximum interstory drift and foor acceleration
responses of the structural system with 25% stifness deg-
radation are compared in Figure 13(a). It is observed that the
maximum interstory drift responses of the structural system
utilizing the RBDO- and DDO-derived fuzzy logic con-
trollers are all much lower than the uncontrolled structural
responses, but the maximum foor acceleration responses of
several controlled cases are larger than those of the un-
controlled case. It is mainly because there is a trade-of
between interstory drift and foor acceleration responses,
and minimizing the interstory drift may have an adverse

efect on foor acceleration. Terefore, the solutions which
can minimize the interstory drift mostly show the worst
performance in reducing foor acceleration. For both
interstory drift and foor acceleration responses, the RBDO-
derived fuzzy logic controllers show better control perfor-
mance than the DDO-derived ones, indicating superior
robustness. In the meantime, the robustness of the opti-
mized fuzzy logic controllers to the uncertainty associated
with external excitations is also verifed, as shown in
Figure 13(b). Here, three ground motion records collected
from diferent earthquake events, i.e., Imperial Valley (1979),
Hachinohe (1968), and Kobe (1995), are scaled to have
a peak acceleration of 0.2 g and then used as external ex-
citation. It is observed that the fuzzy logic controllers ob-
tained from RBDO and DDO both show good control
performance under diferent earthquake excitations, but
apparently, the RBDO-derived controllers show more ro-
bustness than the DDO-derived ones.
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Figure 10: Validation of the trained Kriging model.

Av
er

ag
e c

on
tro

l f
or

ce
 (k

N
)

0

60

120

180

240

300

0.20 0.25 0.30 0.35 0.400.15
Maximum inter-story drift (cm)

Nge=60
Nge=40
Nge=20

Nge=100
Nge=80

(a)

Av
er

ag
e c

on
tro

l f
or

ce
 (k

N
)

0.20 0.25 0.30 0.35 0.400.15
Maximum inter-story drift (cm)

0

60

120

180

240

300

Nge=60
Nge=40
Nge=20

Nge=100
Nge=80

(b)

Figure 11: Comparison between the Pareto fronts obtained from multiobjective RBDO (a) and DDO (b).

14 Structural Control and Health Monitoring



Fa
ilu

re
 p

ro
ba

bi
lit

y

8 16 24 32 400
Optimal Pareto solutions

10-5

10-4

10-3

10-2

10-1

RBDO
DDO
Probability constraint

Figure 12: Failure probability of the linear structural system using the DDO- and RBDO-derived optimal solutions.

M
ax

im
um

 in
te

rs
to

ry
 d

rif
t (

cm
)

5 10 15 20 25 30 35 400
Optimal solutions

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RBDO
DDO
Uncontrolled

M
ax

im
um

 fl
oo

r a
cc

el
er

at
io

n 
(c

m
/s

2 )

50

100

150

200

250

300

5 10 15 20 25 30 35 400
Optimal solutions

RBDO
DDO
Uncontrolled

(a)
Figure 13: Continued.

Structural Control and Health Monitoring 15



4.1.3. Parameter Analysis. To probe the characteristics of the
RBDO-derived optimal solutions, the solutions from the
fnal optimization generation (Nge � 100) are selected for
analysis here. For clarity, these solutions are frst normalized
by the bounds of the design space and then mapped into
a 37-dimensional polygon. In the polygon-based design
space, the upper and lower bounds of a design variable are,
respectively, represented by the vertex and the center of the
polygon.

Figure 14(a) shows the RBDO-derived solutions, which
are represented by blue-flled triangles and constrained in two
black dash curves, respectively, representing the upper and
lower bounds of the solutions. It is observed that these so-
lutions mostly gather in the central zone of the design space,
indicating the rationality of the reduced design space. As
a comparison, the DDO-derived optimal solutions
(Nge � 100) are illustrated in Figure 14(b), in which the so-
lutions of low (Pf≤ 10− 3) and high (Pf> 10− 3) failure proba-
bility are, respectively, represented by gray-flled circles and
red spheres. It is seen that the DDO-derived solutions, es-
pecially for those of high failure probability, are more scat-
tered and closer to the bounds of the design space than the
RBDO-derived solutions. Figures 14(c) and 14(d) show that
the RBDO-derived solutions can be largely enclosed by the
domain defned by the lower and upper bounds of the DDO-
derived solutions, especially for the solutions from a relatively
lower optimization generation, i.e., Nge � 20, as the optimal
solutions are more concentrated with the increasing opti-
mization generations. In this respect, the multiobjective DDO
method can be used to locate a relative safety domain for
simplifying some complex, nonlinear RBDO problems, be-
cause RBDO only searches for optimal solutions in the do-
main where the probability constraint is satisfed.

4.2. 10-Story Nonlinear Structure

4.2.1. Structural Model. Here, a ten-story nonlinear struc-
ture is investigated, and a total of Ne � 12 independent
random environmental variables concerning initial inter-
story stifness (k1, . . ., k10) and external excitations (θ1 and
θ2) are considered, which are all assumed to be lognormally
distributed. Detailed information regarding structural
properties and earthquake excitations is listed in Table 4.Te
height of each foor is taken as 3.0m. Rayleigh damping is
utilized here, with the damping ratio being 0.05. Corre-
sponding coefcients are a� 0.3242 s and b� 0.0063 s. Te
maximum damping capacity of the MR damper is also set as
1000 kN here. Te amplitude coefcient of input earthquake
excitations is set as ζ � 0.4 g, corresponding to a rarely oc-
curred earthquake. According to the Chinese seismic design
code [57], to keep the reinforced concrete frame structure
remain in an elastic-plastic state, the maximum interstory
drift of the structure should not exceed 1/50 of the foor
height, i.e., 1/50× 300� 6 cm, under a rarely occurred
earthquake. Te failure probability of this uncontrolled
nonlinear structure is 0.03. Te nonlinear interstory hys-
teretic behavior is considered and represented by the
Bouc–Wen model [58, 59], as shown in Figure 15. Te
parameters of the Bouc–Wen model are deterministic, as
a reference to the literature [59].

4.2.2. Metamodel Training. For the nonlinear structure
investigated here, the Kriging model is trained in a 49-
dimensional (Nau �Nd+Ne � 37 + 12) augmented space
with an initial DoE of size N0 � (Nd+Ne)× 2 + 1� 99.
However, before training the Kriging model for the
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Figure 14: Relative position of the optimum solutions derived by multiobjective RBDO and DDO. (a) RBDO-derived solutions (Nge � 100).
(b) DDO-derived solutions (Nge � 100). (c) RBDO-derived solutions in the range defned by the DDO-derived solutions of Nge � 100.
(d) RBDO-derived solutions in the range defned by the DDO-derived solutions of Nge � 20.
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Table 4: Statistical properties of random variables.

Random variables Notifcation Distribution Mean C.O.V.
Floor mass Mi — 4.50, 4.14, 3.78, 3.15, 2.97, 2.88, 2.88, 2.79, 2.52, 2.25 (×105 kg) —
Interstory stifness Ki Lognormal 3.36, 3.12, 2.76, 2.52, 2.40, 2.10, 1.68, 1.50, 1.20, 1.20 (×108N/m) 0.1
Stochastic coefcient of N-S θ1 Lognormal 0.5 0.1
Stochastic coefcient of E-W θ2 Lognormal 0.5 0.1
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nonlinear structure, it is worth noting that metamodel
training for a nonlinear structure is usually much more
difcult than for a linear structure due to the nonlinearity
and associated complexity of structural dynamics. Besides,
compared with the investigated linear structure, the di-
mension of the augmented space of the nonlinear structure
is increased and the uncontrolled structural failure proba-
bility is decreased, which further increases the difculty of
building an accurate Kriging model for the nonlinear
structure. It is worth noting that RBDO only searches for
optimal solutions in the safety domain, where the probability
constraint is always satisfed, i.e., Pf≤ Pf0. Terefore, the
constructed surrogate model should have sufcient pre-
diction accuracy for evaluating samples within the safety
domain, while the prediction accuracy for samples out of the
safety domain can be relaxed, which can reduce the training
samples required by metamodel training.

For clarity, a simple illustration of locating a safety
domain in a two-dimensional augmented space is shown in
Figure 16, in which the LSF line-enclosed area is flled with
failure points (red) and the other area is full of safe points. It
is seen that, when the design variable takes the value of x2, x4,
x5, or x7, the failure probability Pf equals the target failure
probability Pf0. Since LSF can be represented by the simple
analytical expression, the safety domain, i.e., [x− , x2],
[x4, x5], and [x7, x+], can be easily identifed. However, it is
not an easy task to locate the safety domain for a compli-
cated, realistic engineering problem that cannot be described
with explicit analytical expressions. According to the
analysis presented in Section 4.1.3, the RBDO-derived op-
timal solutions can be largely covered within the range
defned by the lower and upper bounds of the DDO-derived
optimal solutions. Terefore, to more efectively solve the
optimization problem of fuzzy logic controllers for the
nonlinear structure, multiobjective DDO can be pre-
conducted to locate a rough safety domain. Te main
implementation procedures are listed as follows: frst,
multiobjective DDO is conducted for 20 generations, and
the lower and upper bounds of the obtained optimal so-
lutions are defned as the safety domain; then, the safety
domain-based design space is combined with the random
environmental space to construct an augmented space,
where the surrogate model is trained, and fnally, multi-
objective RBDO is conducted for searching optimal solu-
tions based on the trained metamodel.

Te process of the Kriging model trained in the safety
domain-based augmented space is shown in Figure 17(a). It
is observed that the stopping condition is fnally satisfed
with less than 160 new training points. Figure 17(b) shows
that the metamodel predictions agree well with the com-
putational model evaluations in the neighborhood of the
limit state, which efectively ensures the high accuracy of the
failure probability estimate.Temetamodel is also trained in
the original augmented space for comparison. Te corre-
sponding training process is shown in Figure 18(a), in which
600 additional new training points have been sequentially
added, but the stopping condition has not been reached.Te
trained model is then used to predict the structural inter-
story drift responses and compared with the computational

model evaluations, as shown in Figure 18(b). It is seen that
there is a large discrepancy between the results derived by
the metamodel and computational model, indicating the
inaccuracy of the trained surrogate model. Terefore, pre-
locating a safety domain can efectively improve the ef-
ciency of training a desired metamodel for complex,
nonlinear structures.

4.2.3. Optimization Results and Analysis. With the well-
trained Kriging model, multiobjective RBDO is then car-
ried out for searching for optimal FLC designs for the
nonlinear structure. Te optimal solutions derived from
diferent optimization generations are illustrated in
Figure 19(a). It is seen that the Pareto front is moving closer
to the origin with the increasing generations and fnally
converging at 200 generations. Te solutions from the fnal
optimization generation are then mapped into the original
design space represented by a 37-dimensional polygon, see
Figure 19(b). Tese optimal solutions are represented by
gray-flled circles enclosed in the DDO-provided safety
domain denoted by the shadow area surrounded by two
black dash curves. As can be seen, the solutions of each
design variable are quite close to each other in the design
space due to the probability constraint.

For further analysis, three solutions corresponding to
diferent control force levels, i.e., Fave � 60, 70, and 80 kN, are
selected from the fnal optimization generation and high-
lighted in colorful spheres, see Figure 19(b). Te member-
ship functions corresponding to the selected solutions are
depicted in Figure 20. It is observed that the diference
between the input or output membership functions of the
three selected solutions is minor in terms of shape, and the
obvious distinction only exists in the range of the output
membership function, which has determined the control
force level.

Based on the selected solutions mentioned above, three
fuzzy logic controllers are obtained, denoted as Controller 1
(Fave � 60 kN), Controller 2 (Fave � 70 kN), and Controller 3
(Fave � 80 kN), and then used to control the seismic response
of the nonlinear structure.Te peak interstory drift and foor
acceleration of the controlled and uncontrolled nonlinear
structures are compared in Figure 21(a). It is observed that
both the interstory drift and foor acceleration are reduced
when fuzzy logic controllers are applied, and the interstory
drifts are decreased with the increasing average control
force. One may notice that the maximum interstory drift
responses of the controlled and uncontrolled structures both
appear on the frst foor, which can be regarded as the weak
foor. Terefore, the original damper distribution, i.e., one
damper for each foor, is rearranged here by transferring the
top foor damper to the frst foor and keeping the other
foors unchanged. Ten, the peak interstory drift responses
of the rearranged structural system under the three selected
fuzzy logic controllers are, respectively, recalculated, as
shown in Figure 21(b). It is seen that the selected fuzzy logic
controllers still work well when the damper distribution is
slightly rearranged and even better control performance is
achieved, especially for the weak foor.Terefore, the seismic
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performance of a controlled structure with a specifed FLC
confguration may be further improved by optimizing the
damper distribution. In this respect, an NSGA-II-based
multiobjective deterministic optimization is then

conducted on the nonlinear structure under the control of
the three selected controllers for fnding an optimal damper
distribution. Te corresponding optimization problem is
formulated as follows:

f ind p � p1, p2, . . . , p10􏼂 􏼃,

min c � Smax(p), Fave(p)􏼂 􏼃,

s.t.
0≤pi ≤ 3, (i � 1, . . . , 10),

NMR � sum pi( 􏼁≤ 10, (i � 1, . . . , 10),
􏼨

(31)
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Figure 16: Illustration of safe and failure domains in an augmented space.
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Figure 17: Metamodel training in the safety domain-based augmented space: (a) training process of the metamodel; (b) validation of the
metamodel.
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where pi denotes the number of MR dampers on the i-th
foor and NMR represents the total number of MR dampers.
Here, in view of damper size restriction and the economical
aspect, two soft constraints are considered for restricting the
quantities of MR dampers on each foor and total foors.

Te optimization results in terms of the Pareto front are
shown in Figure 22. As a comparison, the optimization
results corresponding to Controllers 1, 2, and 3 for the
evenly distributed MR damper-based structure are also
depicted in Figure 22, which are respectively represented by
the hollow circle, square, and triangular. As can be seen, with
consideration of optimizing damper distribution, the
maximum interstory drift responses can be further de-
creased, and correspondingly, a higher average control force

level is required. It is also observed that the Pareto front of
the controller corresponding to a lower control force level is
closer to the origin of coordinates, indicating a better
structural system in terms of mitigating structural response
and saving control cost. Among all the solutions shown in
Figure 22, most solutions have applied 10MR dampers, and
only 5 solutions have used fewer than 10MR dampers, which
are labeled with ①, ②, ③, ④, and ⑤, respectively, cor-
responding to 8, 7, 9, 9, and 9MR dampers. Te damper
distributions corresponding to these 5 solutions are shown
in Figures 23(a)–23(e). It is observed that MR dampers
mostly concentrate on the bottom and upper foors. Te
reason behind this phenomenon is that the seismic forces
exerted on the bottom foors are relatively larger than those
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Figure 18: Metamodel training in the original augmented space: (a) training process of the metamodel; (b) validation of the metamodel.
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Figure 21: Peak interstory drift and foor acceleration versus structural foor of diferent damper distributions: (a) original damper
distribution; (b) rearranged damper distribution.
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Figure 23: Continued.
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exerted on other foors, and the structure stifness of the
upper foors is relatively smaller than that of other foors.
Furthermore, compared with the peak interstory drift re-
sponses of the controlled structure applying evenly dis-
tributed dampers (Figure 21(a)), the peak interstory drift
responses of the controlled structure applying the optimized
damper distributions are relatively smaller and more uni-
form (Figure 23(f )). However, the peak foor acceleration
responses are not as optimistic as the maximum interstory
drift responses. For solutions ①∼④, the acceleration re-
sponses are increased when the damper positions are op-
timized, especially for the upper foors. Only solution⑤ still
shows good control performance on both interstory drift
and foor acceleration responses. Terefore, solution ⑤ is
selected as the most optimal damper distribution here,
because it not only reduces the number of MR dampers but
also greatly alleviates the interstory drift and foor accel-
eration responses without increasing the control force level
too much. It may be concluded that an appropriate damper
distribution is not only benefcial for enhancing the struc-
tural performance but also for saving the control cost.

5. Conclusion

Tis paper contributes to devising optimum and robust
fuzzy logic controllers for MR damper-based structural
systems whose parameters are modeled in a probabilistic

framework. To reduce the computational cost, the design
space is frst narrowed down by adjusting the range of design
parameters and predefning the fuzzy rules according to the
control expertise. An augmented space is then constructed
by combining the narrowed design space and random en-
vironmental space, based on which a global Kriging model is
adaptively trained for replacing the time-consuming com-
putational model evaluations involved in reliability assess-
ment. Finally, the trained metamodel combined with
NSGA-II is integrated into the framework of RBDO for
solving the FLC optimization problem of both linear and
nonlinear structural systems. Te main conclusions are
summarized as follows:

(1) Both the multiobjective DDO and RBDO are capable
of generating well-distributed optimal Pareto solu-
tions to the FLC design, but the fuzzy logic con-
trollers optimized by the probabilistic optimization
framework present better reliability and robustness
than those optimized by the conventional de-
terministic optimization framework.

(2) Multiobjective DDO can be used to locate a coarse
safety domain for facilitating the implementation of
multiobjective RBDO, as the RBDO-derived solu-
tions can be largely enclosed by the domain defned
by the lower and upper bounds of the DDO-derived
solutions.
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Figure 23: Damper distribution and corresponding controlled structural response from diferent solutions. (a) Damper distribution of
solution ①. (b) Damper distribution of solution ②. (c) Damper distribution of solution ③. (d) Damper distribution of solution ④.
(e) Damper distribution of solution⑤. (f ) Peak interstory drift versus structural foor. (g) Peak foor acceleration versus structural foor.
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(3) For complex, nonlinear structures, using the mul-
tiobjective DDO to prelocate a rough safety domain
can signifcantly reduce the number of samples for
training the metamodel and further improve the
efciency of searching for optimal design solutions.

(4) Te input or output membership functions of dif-
ferent optimal solutions are similar in terms of shape,
and obvious distinction exists in the range of the
output membership function, which has determined
the control force level.

(5) Te performance of a controlled structure with
a specifed FLC confguration can be further im-
proved by considering the damper distribution op-
timization, especially for the structure with
a relatively low-control-force-level controller.

It may be generally concluded that, for simple linear
structural systems, multiobjective RBDO is an efcient and
feasible approach for searching for optimal and reliable FLC
designs. For complex, nonlinear structural systems, a safety
domain needs to be predefned before conducting multi-
objective RBDO. Te safety domain provided by multi-
objective DDO is a coarse estimate, and the number of DDO
optimization generations used is based on experience.
Terefore, further study on proposing a more reliable ap-
proach to locate the safety domain needs to be conducted in
the future.
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